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Abstract: Generalized boundary conditions (GBCs) for electromagnetic surfaces are investigated in
this paper, which can be used to analytically characterize field discontinuities across two-dimensional
surfaces. First, five representative features are described to categorize various surface problems which
require proper GBC-based characterization procedures. Next, the generalized boundary conditions
are discussed in details, in association with impedance boundary conditions, generalized sheet
transition conditions, and surface scattering coefficients. Then an extraction method for surface
susceptibilities, the characteristic parameters of surfaces in GBCs, are proposed and validated. Finally,
to illustrate the applications of GBCs, two representative surface problems are demonstrated, namely,
isolated-aperture surface analysis and surface-wave mode characterization. For the isolated-aperture
surface, a characterization procedure is derived based on GBCs and Babinet’s principle, and the
accuracy is validated through comparison with full-wave simulations. For surface wave analysis,
a characterization procedure is also developed from GBCs, and the feasibility is verified by numerical
examples as well.

Keywords: surface electromagnetics; generalized boundary conditions; electromagnetic surfaces

1. Introduction

Surfaces with two-dimensional structures have attracted a great deal of research interests. This is
due to many desirable features such as their low profile, light weight and ease of fabrication, as well as
their diversified capabilities of manipulating electromagnetic (EM) waves. During the past decades,
different kinds of two-dimensional EM surfaces such as frequency selective surfaces (FSS) [1–3],
electromagnetic band gap (EBG) structures [4–6] and metasurfaces (MTS) [7–9] have been studied in
depth, leading to diversified applications which realize various kinds of functions.

To comprehensively understand EM surfaces, it is necessary to locate surface problems among
overall EM studies. In respect to spatial dimensions, EM problems can be categorized according to
the electrical size of structures interacting with EM fields. As shown in Figure 1, where dimensions
along different directions in Cartesian coordinates are designated as Lx, Ly and Lz respectively, all EM
problems are classified into four types:

• 3D EM problems. For structures with Lx, Ly and Lz all comparable to wavelength λ, they are
usually discussed with three-dimensional electromagnetics, which is analyzed by general EM
theory. For 3D problems, permittivity ε and permeability µ are utilized to characterize properties
of homogeneous mediums while their effective counterparts are defined for inhomogeneous ones.
The corresponding mathematical tools are derived from Maxwell’s equations.
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• 0D EM problems. In contrast, if all dimensions are much smaller than λ, problems can be
addressed with the zero dimension approach through description by lumped parameters. As a
result, these problems can be analyzed with circuit theory. For 0D problems, structures can be
represented by lumped circuit parameters, such as resistance R, inductance L and capacitance C.
Field relations are consistent with Kirchhoff’s laws.

• 1D EM problems. If transverse dimensions Lx and Ly are much smaller than λ, these
one-dimensional problems can be solved with transmission line theory. For 1D problems,
the characteristic impedance Z0 and propagation constant β are the principal parameters which
comply with transmission line equations [10].

• 2D EM problems. When only the longitudinal dimension Lz becomes much smaller than λ,
characterization of these two-dimensional surfaces can be denominated as theory of surface
electromagnetics (SEM). For 2D problems, the most appropriate characterization parameters are
effective surface susceptibilities χee and χmm [11], while related mathematical models are named
as generalized boundary conditions (GBCs).

Figure 1. Classification of electromagnetic problems.

This begs the question of how GBCs differ from conventional boundary conditions. In surface
electromagnetics, field discontinuities across engineered surfaces are deliberately designed in order
to manipulate or transform EM waves [12–14], and boundary conditions are used to describe these
field discontinuities. In conventional boundary conditions, field discontinuities are attributed to
current sources distributed along surfaces, as shown in Figure 2. Meanwhile, the current sources are
dependent not only on the surface characteristics but also on the applied fields. Thus, the EM fields
and the current sources are coupled together. As a result, it is not straightforward and sometimes even
complicated to solve field discontinuities with conventional boundary conditions.

To overcome this difficulty, an alternative approach to determine the field discontinuities directly
from the surface characteristics exists: generalized boundary conditions (GBCs). It is worthwhile to
point out that the surface characteristics here are eigen-parameters of surfaces dependent on surface
geometry and material, but independent of applied fields. Once their values have been determined,
the field discontinuities across surfaces are expected to be analytically computed for applied fields
with arbitrary propagation directions and polarizations.

A significant amount of research focuses on generalizing the EM boundary conditions,
such as impedance boundary conditions (IBCs) [15–17], generalized sheet transition conditions
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(GSTCs) [7,11,18], and general linear and local conditions [19,20]. These approaches have been applied
to specific kinds of surfaces with satisfactory results. Due to the vast diversity of various engineered EM
surfaces, GBCs still require further exploration in order to characterize general EM surfaces analytically.

The remainder of this paper is organized as follows: Section 2 describes the classification of
two-dimensional surface problems according to different features while Section 3 reviews various
boundary conditions, scattering properties of surfaces, and the relationship between the two. Section 4
demonstrates how to extract characteristic parameters from limited sets of simulations and utilize
them to compute scattering coefficients for arbitrary situations. In Sections 5 and 6, analytical solutions
to the issues of isolated-aperture surfaces and surface-wave mode are proposed respectively. Finally,
Section 7 presents the conclusions. To help visualization, a flow chart depicting the organization of
this paper is shown in Figure 3.

Figure 2. Conventional boundary conditions and generalized boundary conditions.

Figure 3. Organization of this paper.
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2. Classification of Electromagnetic Surfaces

Most two-dimensional EM surfaces are composed of periodic or quasi-periodic elements,
which are also called unit cells. These unit cells have various kinds of features determining the
EM properties of surfaces. Five representative features are introduced below, through which the
categories of EM surfaces can be described.

2.1. Homogeneous Effective and Spatially Dispersive

Two-dimensional surfaces are always composed of inhomogeneous unit cells, like the periodically
distributed square patches shown in Figure 4. However, if the inhomogeneity scale is much smaller
than wavelength λ, the surfaces can be modelled as homogeneous effective mediums [17], whose
characteristic parameters are constants along surfaces. Homogeneous effective surfaces whose period,
p, is usually much smaller than λ can be characterized by effective surface susceptibilities χee and
χmm [7,21]. As frequency increases, λ will gradually become comparable to p, and surfaces cannot
be regarded as homogeneous mediums any more. Then χee and χmm become functions of space
coordinates, and surfaces with wavelength-comparable period are spatially dispersive [17]. FSS is a
typical application of spatially dispersive surfaces, whose period is usually designed close to λ/2.

Figure 4. Homogeneous effective and spatially dispersive surfaces.

2.2. Isolated Scatterers and Isolated Apertures

Surfaces can also be classified as isolated scatterers or isolated apertures according to their
topological structures. Isolated-scatterer surfaces refers to planar arrays composed of separated
scatterers, while isolated-aperture surfaces are ones consisting of periodically spaced apertures,
as shown in Figure 5. The two surfaces shown in Figure 5 are complementary structures of each
other, which are defined as two structures that can cover entire plane without any overlapping.
Isolated-scatterer surfaces and isolated-aperture surfaces usually have quite different scattering
properties. For example, isolated-scatterer FSS is utilized for designing spatial bandstop filters while
isolated-aperture one has characteristic of bandpass [3]. There are also some surfaces that can be either
isolated scatterers or isolated apertures, like a grating of parallel conducting wires, which depends on
field propagation direction [7].



Appl. Sci. 2019, 9, 1891 5 of 28

(a) (b)

Figure 5. Electromagnetic surfaces consisting of (a) isolated scatterers (b) isolated apertures.

2.3. Isotropic and Anisotropic

In three-dimensional electromagnetics, anisotropy means that the characteristic parameters
of mediums are functions of applied field’s direction [22], otherwise they are isotropic.
For two-dimensional surfaces, since ẑ dimension is much smaller than λ, discussion on isotropy
and anisotropy do not concern about ẑ component of EM fields. Because isotropic surfaces have the
same effects on x̂ and ŷ polarizations, as a result their scattering properties are not related to the
azimuthal angle ϕ of wave propagation direction k̂, but only to the elevation angle θ. In contrast,
anisotropic problems are related to not only θ but also ϕ, meanwhile cross-polarization fields may arise
in reflection and transmission. An example of isotropic and anisotropic surfaces is given in Figure 6.
Actually, there are no purely isotropic surfaces as frequency increases. While λ becomes comparable to
p, the so-called isotropic problems are also related to ϕ. That is because even though the scatterers
have the same effects on field components along different directions, the periodic square lattice of unit
cells is not. As discussed before, at low frequency, p is much smaller than λ which makes surfaces
effectively homogeneous, and further makes them isotropic.

(a) (b)

Figure 6. Electromagnetic surfaces which are (a) isotropic (b) anisotropic.

2.4. Single-Layer and Multiple-Layer

When talking about two-dimensional surfaces, we usually refer to single-layer surfaces where
Lz is much smaller than λ, as shown in Figure 7a. However, many desirable properties are realized
by cascading multiple layers together like Figure 7b. For instance, multiple-layer surfaces can be
utilized to improve bandwidth performance of FSS [3]. Four-layer structures are used to realize a 360◦

transmission phase range with magnitude larger than –1 dB for FSS-type transmitarray antennas [23].
One feasible solution to problems of multiple-layer structures is to determine surface susceptibilities
of each layer and characterize whole structures using equivalent circuit model [24]. Multiple-layer
surfaces with a ground plane as bottom layer are called impenetrable surfaces [25], such like EBG and
reflectarray antenna [26]. As their name implies, there is no field components below the ground plane
of impenetrable surfaces. Conversely, surfaces without bottom ground plane are named as penetrable
surfaces, which usually have non-zero transmission like FSS and transmitarray antenna.
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(a) (b)

Figure 7. Electromagnetic surfaces with (a) single-layer structure (b) multiple-layer structure.

2.5. Space Wave and Surface Wave Features

Two-dimensional surfaces can interact with EM fields of both space-wave modes and surface-wave
modes, as shown in Figure 8a. When discussing space-wave modes, it is usually required to characterize
reflection and transmission properties of given surfaces. In this case, the propagation constant along the
normal direction to the surfaces, kz, is purely real, which means that EM fields can propagate along ẑ
direction. Conversely, for surface-wave modes, EM fields would exponentially decay along ẑ direction
and kz is purely imaginary, since fields propagation is constrained along surfaces. Surface-wave modes
are eigen propagation modes of given surfaces, where propagation constants of specific frequencies
can be determined using eigen-mode solver of commercial simulation softwares like ANSYS High
Frequency Structure Simulator (HFSS). Problems related to surface-wave modes can be modelled as
special cases of space-wave modes, where incident angle θ is equal to 90◦ + jθ′′. The unknown value
of θ′′ is determined by both surfaces’ characteristic parameters and frequencies. It is worthwhile to
point out that there is also a complex mode with complex kz [27].

(a) (b)

Figure 8. Electromagnetic surfaces (a) space-wave mode (b) surface-wave mode.

2.6. Summary

Five representative features are introduced above to describe different properties of
two-dimensional surfaces, each of which can classify surface problems into at least two categories,
as shown in Figure 9. If characterization methods corresponding to these features are well established,
then GBCs for general surface problems can be further developed. Surface problems related to
homogeneous effective, isolated-scatterer, isotropic, single-layer and space-wave mode have been
well studied by previous researchers [7,18,21], while others still remain to be solved analytically.
In Sections 5 and 6, characterization methods of isolated-aperture surfaces and surface-wave mode
will be discussed respectively, while problems of spatially dispersion, multiple layers, and anisotropy
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would be discussed in future. Although multiple-layer problems are not specifically discussed in this
paper, EM surfaces discussed for surface-wave features in Section 6 are impenetrable ones with ground
plane, which are in fact dual-layer structures.

Figure 9. Brief classifications of surface problems.

3. Boundary Conditions and Scattering Properties of Two-Dimensional Surfaces

In this section, impedance boundary conditions (IBCs) and generalized sheet transition conditions
(GSTCs) will be reviewed first, compared with conventional boundary conditions. Then scattering
coefficients of two-dimensional surfaces are defined, and related formulas derived from IBCs and
GSTCs are given. Finally, relationship between sheet impedances and surface susceptibilities will
be discussed.

3.1. Evolution of Boundary Conditions

Conventional boundary conditions describe the relationship between field discontinuities across
boundary and current sources distributed along boundary, which can be expressed as

ẑ× (~H2 − ~H1)|z=0 = ~Js,e|z=0 (1)

(~E2 − ~E1)|z=0 × ẑ = ~Js,m|z=0, (2)

where (~E1, ~H1) and (~E2, ~H2) respectively represent the total fields in region z < 0 and z > 0 while~Js,e

and~Js,m are surface electric and magnetic currents along boundary. Here boundary is selected as the
z = 0 plane where EM surfaces are located. If tangential components of ~E are continuous along the
boundary, the magnetic current~Js,m in Equation (2) would become zero. Similarly,~Js,e in Equation (1)
is equal to zero if tangential magnetic fields are continuous. For general surface problems, both ~Js,e

and~Js,m are non-zero and their values depend on both surfaces’ characteristic parameters and applied
EM fields.

The field discontinuities led by EM surfaces can be characterized by their effective sheet
impedances, based on which IBCs are derived [15]. The electric sheet impedance Ze is defined



Appl. Sci. 2019, 9, 1891 8 of 28

as the ratio of average electric fields ~Eav,tan along surfaces to surface electric current~Js,e while magnetic
sheet impedance Zm is the ratio of~Js,m to average magnetic fields ~Hav,tan

~Eav,tan|z=0 = Ze ·~Js,e|z=0 (3)

~Hav,tan|z=0 = Z
−1
m ·~Js,m|z=0. (4)

Based on Equations (1) and (2), surface currents in Equations (3) and (4) can be replaced by the
discontinuities of EM fields. Consequently, IBCs describe the relationship between average fields along
surfaces and field discontinuities across surfaces

ẑ× (~H2 − ~H1)|z=0 = Z
−1
e ·

1
2
(~E1,tan + ~E2,tan)|z=0 (5)

(~E2 − ~E1)|z=0 × ẑ = Zm ·
1
2
(~H1,tan + ~H2,tan)|z=0. (6)

It is obvious that all field components that appear in IBCs are tangential ones. In general, Ze

and Zm are two-dimensional tensors. If surfaces are isotropic, the tensorial sheet impedances can be
simplified as scalars Ze and Zm for specific polarizations.

If EM surfaces are modelled as two-port networks, then the tangential components of ~E and ~H can
be equivalent to voltage V and current I in circuit theory. As a result, the field relations described by
IBCs (Equations (5) and (6)) can be further represented by the bridged-T circuit model [28,29] shown
in Figure 10a. The impedance matrix [Z] [10] of this two-port network can be written as[

V1

V2

]
=

[
Ze + Zm/4 Ze − Zm/4
Ze − Zm/4 Ze + Zm/4

] [
I1

−I2

]
, (7)

where Ze and Zm are the sheet impedances defined in Equations (5) and (6). Through the impedance
matrix, the S-parameters of the two-port network can be readily computed [10], which stand for the
scattering coefficients of EM surfaces that will be discussed in Section 3.2. Consider two special cases:

• If the tangential electric fields are continuous across surfaces, the surface magnetic current~Js,m

becomes zero according to Equation (2). As a result, the magnetic impedance Zm is equal to zero
and the bridged-T circuit model can be simplified into a shunt impedance shown in Figure 10b.
A specific example is surfaces composed of zero-thickness scatterers made of perfect electric
conductor (PEC).

• If the tangential magnetic fields are continuous, then the surface electric current~Js,e is equal to
zero based on Equation (1). Consequently, the electric impedance Ze would become infinity and
the circuit model is simplified as a series impedance shown in Figure 10c. Surfaces made of
zero-thickness perfect magnetic conductor (PMC) can be characterized by this model.

The equivalent circuit model can be also utilized to characterize advanced EM surfaces such
as perfect electromagnetic conductor (PEMC), which is a generalization of both PEC and PMC with
similar properties [30].
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(a) (b) (c)

Figure 10. Equivalent circuit model of two-dimensional surfaces: (a) generalized bridged-T model (b)
shunt-impedance model (c) series-impedance model.

With IBCs, field discontinuities led by EM surfaces can be determined once their sheet impedances
Ze and Zm are known. However, since IBCs only describe the relationship between tangential field
components, the values of Ze and Zm are sometimes related to the propagation directions and
polarizations of applied fields. Thus, they are not characteristic parameters of EM surfaces and
their values for different situations cannot be readily determined.

As mentioned in Section 1, the characteristic parameters of two-dimensional surfaces are
effective surface susceptibilities, whose values are independent of applied fields. Based on
surface susceptibilities, GSTCs are initially derived for metafilms [18], the isolated-scatterer type
of metasurfaces [7]. Ignoring the mutually-polarized effects between (~Ps, ~Ms) and (~E, ~H) [31], where
~Ps and ~Ms are the surface electric and magnetic surface polarization densities respectively, GSTCs for
metafilms located in free space can be expressed as

ẑ× (~H2 − ~H1)|z=0 = jωε0χee ·
1
2
(~E1,tan + ~E2,tan)|z=0 − ẑ×∇t(χ

zz
mm

1
2
(H1,z + H2,z))|z=0 (8)

(~E2 − ~E1)|z=0 × ẑ = jωµ0χmm ·
1
2
(~H1,tan + ~H2,tan)|z=0 + ẑ×∇t(χ

zz
ee

1
2
(E1,z + E2,z))|z=0, (9)

where three-dimensional tensors χee and χmm are effective surface electric and magnetic susceptibilities
respectively. They are related to the polarizability densities of scatterers per unit area and have unit of
meters [7]. For isotropic metafilms, χee and χmm become diagonal matrices

χee =

χxx
ee 0 0
0 χ

yy
ee 0

0 0 χzz
ee

 , χmm =

χxx
mm 0 0
0 χ

yy
mm 0

0 0 χzz
mm

 , (10)

with χxx
ee = χ

yy
ee and χxx

mm = χ
yy
mm. Thus, there are four unknown terms in total in surface susceptibilities

of isotropic problems. Through GSTCs, field relations across metafilms can be analytically determined
once χee and χmm are known. An overview of characterizing metafilms using GSTCs and its
related applications in metasurfaces design is given in [7], including waveguide design [32] and
guided wave characterization [27]. Numerical methods based on GSTCs are also derived from
Equations (8) and (9) [33–35]. However, the surface characterization method based on surface
susceptibilities and GSTCs are only appropriate for single-layer metafilms [18]. For EM surfaces with
other types of features like isolated aperture or multiple layers, the corresponding characterization
methods remain to be explored.

Since neither IBCs nor GSTCs can give a general solution to surface problems, it is necessary to
derive generalized boundary conditions (GBCs) with characteristic parameters χee and χmm, based on
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which the field discontinuities across different kinds of EM surfaces can be analytically characterized.
The mathematical model of GBCs can be generalized as

F(~E1,~E2, ~H1, ~H2, χee, χmm) = 0. (11)

Once χee and χmm of given surfaces are determined, their scattering properties can be readily
computed by analytically solving Equation (11). In Sections 5 and 6, the mathematical model F for
problems of isolated aperture and surface-wave mode will be derived respectively.

3.2. Scattering Properties of Two-Dimensional Surfaces

Scattering properties of periodic EM surfaces are usually characterized by reflection and
transmission coefficients, which describe the field relations between incidence, reflection and
transmission, under plane-wave incidence. Here it is assumed that EM surfaces are located along z = 0
in free space and incident plane wave illuminates the surfaces from region z < 0. Thus (~E1, ~H1) in
region z < 0 are the superposition of incident field (~Ei, ~Hi) and reflected fields (~Er, ~Hr) while (~E2, ~H2) in
region z > 0 are equal to transmitted fields (~Et, ~Ht) only. Since it is free space on both sides of surfaces
and the phase discontinuities led by periodic structures are same everywhere, the incident, reflected
and transmitted angles should be equal to each other according to phase matching. Then the wave
vectors of incidence, reflection and transmission can be respectively expressed as

~ki = k0(x̂ sin θ cos ϕ + ŷ sin θ sin ϕ + ẑ cos θ) (12a)

~kr = k0(x̂ sin θ cos ϕ + ŷ sin θ sin ϕ− ẑ cos θ) (12b)

~kt = k0(x̂ sin θ cos ϕ + ŷ sin θ sin ϕ + ẑ cos θ), (12c)

where k0 = ω
√

ε0µ0 is the wavenumber in free space.
For simplicity, only isotropic surfaces are discussed here. As mentioned in Section 2.3, scattering

properties of isotropic surfaces are independent of the azimuth angle ϕ. Thus ϕ is set as 0◦ in the
following derivations. With the assumption of isotropy, the TE-polarized fields can be expressed as [22]

~ETE
i = ŷE0e−j~ki ·~r (13a)

~ETE
r = ŷΓTEE0e−j~kr ·~r (13b)

~ETE
t = ŷTTEE0e−j~kt ·~r (13c)

~HTE
i = (−x̂ cos θ + ẑ sin θ)E0e−j~ki ·~r/η0 (13d)

~HTE
r = (x̂ cos θ + ẑ sin θ)ΓTEE0e−j~kr ·~r/η0 (13e)

~HTE
t = (−x̂ cos θ + ẑ sin θ)TTEE0e−j~kt ·~r/η0, (13f)

and for TM polarization

~ETM
i = (−x̂ cos θ + ẑ sin θ)E0e−j~ki ·~r (14a)

~ETM
r = (−x̂ cos θ − ẑ sin θ)ΓTME0e−j~kr ·~r (14b)

~ETM
t = (−x̂ cos θ + ẑ sin θ)TTME0e−j~kt ·~r (14c)

~HTM
i = −ŷE0e−j~ki ·~r/η0 (14d)

~HTM
r = ŷΓTME0e−j~kr ·~r/η0 (14e)

~HTM
t = −ŷTTME0e−j~kt ·~r/η0, (14f)



Appl. Sci. 2019, 9, 1891 11 of 28

where~r = xx̂ + yŷ + zẑ and η0 =
√

µ0/ε0 is the wave impedance in free space. Γ and T represent
reflection and transmission coefficients respectively.

According to Equations (13) and (14), if the tangential components of ~E are continuous along
surfaces, for instance, surfaces composed of zero-thickness PEC scatterers, then Γ and T satisfy that

1 + Γ = T. (15)

Under this condition, once either Γ or T is determined, the other one can be easily computed
through Equation (15).

Similarly, if tangential magnetic fields are continuous, like periodic zero-thickness PMC
scatterers, then

Γ + T = 1. (16)

It should be noted that Equations (15) and (16) are only valid under condition that the discussed
surfaces are located in free space. For example, if either side of surfaces is filled with dielectric materials,
the corresponding relations for TM polarization need to be modified according to the reflected and
transmitted angles.

3.3. Relations between Scattering Properties and Sheet Impedances

Since field relations across surfaces can be described by IBCs, their scattering coefficients can be
determined from sheet impedances. By substituting the EM field expressions (Equations (13) and (14))
into IBCs (Equations (5) and (6)), Γ and T of isotropic EM surfaces can be written as functions of Ze

and Zm as

ΓTE(θ) =
ZTE

e (θ)ZTE
m (θ)− (η0/ cos θ)2

(2ZTE
e (θ) + η0/ cos θ)( 1

2 ZTE
m (θ) + η0/ cos θ)

(17a)

TTE(θ) =
(η0/ cos θ)(2ZTE

e (θ)− 1
2 ZTE

n (θ))

(2ZTE
e (θ) + η0/ cos θ)( 1

2 ZTE
m (θ) + η0/ cos θ)

, (17b)

ΓTM(θ) =
ZTM

e (θ)ZTM
m (θ)− (η0 cos θ)2

(2ZTM
e (θ) + η0 cos θ)( 1

2 ZTM
m (θ) + η0 cos θ)

(18a)

TTM(θ) =
(η0 cos θ)(2ZTM

e (θ)− 1
2 ZTM

m (θ))

(2ZTM
e (θ) + η0 cos θ)( 1

2 ZTM
m (θ) + η0 cos θ)

, (18b)

for TE and TM polarizations respectively. Through Equations (17) and (18), the scattering coefficients
for arbitrary incident angles and polarizations can be readily computed if the corresponding sheet
impedances are known. By rewriting Equations (17) and (18), Ze and Zm can be expressed in terms of Γ
and T, through which the sheet impedances of given surfaces can be extracted from the corresponding
measured or simulated scattering coefficients. However, as mentioned before, the values of sheet
impedances are related to the properties of applied fields. The values of Ze and Zm extracted from one
situation cannot be utilized to compute scattering coefficients of others with different incident angle θ

or polarizations (TE/TM).
As discussed before, for surfaces composed of zero-thickness PEC scatterers, the tangential electric

fields are continuous and the magnetic sheet impedance Zm is equal to zero. Then Equations (17)
and (18) can be simplified as

ΓTE
e (θ) = − η0

2ZTE
e (θ) cos θ

/(1 +
η0

2ZTE
e (θ) cos θ

) (19a)

TTE
e (θ) = 1/(1 +

η0

2ZTE
e (θ) cos θ

), (19b)
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and

ΓTM
e (θ) = − η0 cos θ

2ZTM
e (θ)

/(1 +
η0 cos θ

2ZTM
e (θ)

) (20a)

TTM
e (θ) = 1/(1 +

η0 cos θ

2ZTM
e (θ)

), (20b)

which satisfy the relation shown in Equation (15). Similarly, expressions of Γ and T for surfaces
composed of zero-thickness PMC scatterers can be derived by letting Ze = ∞.

3.4. Relations between Scattering Properties and Surface Susceptibilities

The scattering coefficients of EM surfaces can also be determined from surface susceptibilities
through the field relations defined by GSTCs. By substituting EM field expressions (Equations (13)
and (14)) into GSTCs (Equations (8) and (9)), Γ and T can be written as functions of χee and χmm [7]

ΓTE(θ) =
−j k0

2 cos θ (χ
yy
ee − χxx

mm cos2 θ + χzz
mm sin2 θ)

1− ( k0
2 )

2χxx
mm(χ

yy
ee + χzz

mm sin2 θ) + j k0
2 cos θ (χ

yy
ee + χxx

mm cos2 θ + χzz
mm sin2 θ)

(21a)

TTE(θ) =
1 + ( k0

2 )
2χxx

mm(χ
yy
ee + χzz

mm sin2 θ)

1− ( k0
2 )

2χxx
mm(χ

yy
ee + χzz

mm sin2 θ) + j k0
2 cos θ (χ

yy
ee + χxx

mm cos2 θ + χzz
mm sin2 θ)

, (21b)

and

ΓTM(θ) =
−j k0

2 cos θ (−χ
yy
mm + χxx

ee cos2 θ − χzz
ee sin2 θ)

1− ( k0
2 )

2χxx
ee (χ

yy
mm + χzz

ee sin2 θ) + j k0
2 cos θ (χ

yy
mm + χxx

ee cos2 θ + χzz
ee sin2 θ)

(22a)

TTM(θ) =
1 + ( k0

2 )
2χxx

ee (χ
yy
mm + χzz

ee sin2 θ)

1− ( k0
2 )

2χxx
ee (χ

yy
mm + χzz

ee sin2 θ) + j k0
2 cos θ (χ

yy
mm + χxx

ee cos2 θ + χzz
ee sin2 θ)

, (22b)

for TE and TM polarizations respectively. Through Equations (21) and (22), Γ and T for arbitrary
incident conditions can be analytically computed once χee and χmm are determined. Different from
sheet impedances, surface susceptibilities are characteristic parameters of surfaces that do not vary
with properties of applied fields. Thus, χee and χmm extracted from one situation can be directly
utilized in the computation of others. The extraction method of surface susceptibilities from limited
sets of full-wave simulations will be discussed in Section 4.1.

Consider surfaces composed of isotropic zero-thickness PEC scatterers again. Since transverse
magnetic current cannot exist along PEC surfaces, the values of χxx

mm and χ
yy
mm should be equal to zero.

Meanwhile, χzz
ee is also equal to zero because there is no electric current along z-direction due to zero

thickness. χxx
ee and χ

yy
ee are non-zero due to the induced electric currents along PEC surface. Also, there

are electric current loops formed along surfaces when the incident angle θ is not equal to zero, leading
to the non-zero χzz

mm. Therefore, for this special case, surface susceptibilities can be simplified as

χee =

χxx
ee 0 0
0 χ

yy
ee 0

0 0 0

 , χmm =

0 0 0
0 0 0
0 0 χzz

mm

 , (23)

with χxx
ee = χ

yy
ee . There are only two unknowns to be determined. Then Equations (21) and (22), which

compute scattering coefficients based on surface susceptibilities, can be respectively simplified as
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ΓTE
e (θ) =

−j k0
2 cos θ (χ

yy
ee + χzz

mm sin2 θ)

1 + j k0
2 cos θ (χ

yy
ee + χzz

mm sin2 θ)
(24a)

TTE
e (θ) =

1

1 + j k0
2 cos θ (χ

yy
ee + χzz

mm sin2 θ)
, (24b)

and

ΓTM
e (θ) =

−j k0
2 χxx

ee cos θ

1 + j k0
2 χxx

ee cos θ
(25a)

TTM
e (θ) =

1

1 + j k0
2 χxx

ee cos θ
. (25b)

The corresponding results for zero-thickness surfaces composed of PMC scatterers can be derived
using a similar procedure by letting χxx

ee , χ
yy
ee and χzz

mm equal to zero.

3.5. Relations between Sheet Impedances and Surface Susceptibilities

Two-dimensional periodic surfaces can be represented by either sheet impedances or surface
susceptibilities, both of which can be utilized to characterize scattering properties of surfaces
analytically. Using sheet impedances, EM surfaces are equivalent to the circuit models shown in
Figure 10, based on which more complicated surface problems like multiple layers can be solved
through cascading network. However, the values of sheet impedances are related to the properties
of applied fields, which makes it difficult to determine Ze and Zm for arbitrary incident angles
and polarizations. Surface susceptibilities are characteristic parameters that do not vary with the
applied field, thus their values can be determined through limited sets of (Γ, T) and then be utilized
to compute scattering coefficients for arbitrary situations through the field relations described by
GSTCs. But GSTCs are only appropriate for metasurfaces with single-layer structures, implying that it
cannot be directly utilized to solve problems of multiple layers. Thus, here it is proposed to combine
sheet impedances and surface susceptibilities together in order to solve more complicated surface
problems. Once surface susceptibilities of given surfaces are determined, the corresponding sheet
impedances for arbitrary incident angles and polarizations can be readily computed and utilized for
surface characterizations.

Take the TE polarization as an example. Based on the EM field expressions of TE polarization
(Equation (13)), GSTCs can be rewritten as

ẑ× (~H2 − ~H1)|z=0 = j
k0

η0
(χ

yy
ee + χzz

mm sin2 θ)
1
2
(~E1,tan + ~E2,tan)|z=0 (26)

(~E2 − ~E1)|z=0 × ẑ = jη0k0χxx
mm

1
2
(~H1,tan + ~H2,tan)|z=0. (27)

By comparing Equations (26) and (27) with IBCs (Equations (5) and (6)), relations between sheet
impedances and surface susceptibilities can be written as

ZTE
e (θ) = − jη0

k0(χ
yy
ee + χzz

mm sin2 θ)
(28)

ZTE
m (θ) = jη0k0χxx

mm, (29)

where Ze and Zm are the impedance shown in Figure 10a. It is obvious that for TE polarization
Ze is related to the incident angle θ while Zm is θ-independent. Similarly, for TM polarization,
the corresponding relations can be written as
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ZTM
e (θ) = − jη0

k0χxx
ee

(30)

ZTM
m (θ) = jη0k0(χ

yy
mm + χzz

ee sin2 θ), (31)

where Ze is θ-independent but Zm is not. Therefore, the values of Ze and Zm for arbitrary incident
angles and polarizations can be readily computed through Equations (28)–(31), once χee and χmm of
given surfaces are determined.

For arbitrary single-layer isotropic metafilms, their surface susceptibilities can be extracted
using the method that will be introduced in Section 4.1. With surface susceptibilities determined,
the scattering coefficients for arbitrary incident angles and polarizations can be readily computed
through Equations (21) and (22). Meanwhile, the corresponding sheet impedances can be determined
through Equations (28)–(31), which can be further utilized to solve more complicated problems
with equivalent circuit model and impedance matrix. While the characterization method described
above is only valid for metafilms with isolated-scatterer topological structures, the corresponding
method for metascreens composed of periodic isolated apertures will be derived in Section 5. Also,
the combination of sheet impedances and surface susceptibilities will be utilized in Section 6 for
characterizing surface-wave mode of multiple-layer impenetrable surfaces.

4. Surface Characterizations Based on Surface Susceptibilities

In Section 3, it is shown that scattering coefficients of EM surfaces for arbitrary θ and polarizations
can be analytically computed through Equations (21) and (22) once surface susceptibilities are
determined. This section will present how to extract surface susceptibilities of given surfaces from
limited sets of unit cell simulations and show the procedure of surface characterizations based on
surface susceptibilities. In order to make related formulas shown in Section 3 applicable, it is assumed
that the surfaces discussed here are single-layer isotropic metafilms which have period of unit cells
much smaller than wavelength and are composed of periodic isolated scatterers.

4.1. Extraction of Surface Susceptibilities

According to Equation (10) and related discussions, there are totally four unknown components
of surface susceptibilities for isotropic problems. Since surface susceptibilities are characteristic
parameters that do not vary with properties of applied fields, their values can be determined from
Γ and T with different incident angles and polarizations. Derived from Equations (21) and (22),
the surface susceptibilities can be extracted through [7]

χxx
ee = χ

yy
ee =

2j
k0

Γ(0◦) + T(0◦)− 1
Γ(0◦) + T(0◦) + 1

(32a)

χxx
mm = χ

yy
mm =

2j
k0

Γ(0◦)− T(0◦) + 1
Γ(0◦)− T(0◦)− 1

(32b)

χzz
ee = − χ

yy
mm

sin2 θ0
+

2j cos θ0

k0 sin2 θ0

ΓTM(θ0)− TTM(θ0) + 1
ΓTM(θ0)− TTM(θ0)− 1

(32c)

χzz
mm = − χ

yy
ee

sin2 θ0
+

2j cos θ0

k0 sin2 θ0

ΓTE(θ0) + TTE(θ0)− 1
ΓTE(θ0) + TTE(θ0) + 1

, (32d)

where Γ(0◦), T(0◦), Γ(θ0) and T(θ0) stand for the reflection and transmission coefficients of normal
incidence and oblique incidence with θ = θ0 respectively. It is worthwhile to point out that isotropic
surfaces have same scattering coefficients Γ(0◦) and T(0◦) of normal incidence for TE and TM
polarizations. The values of Γ and T can be obtained through either measurements of periodic
surfaces or full-wave simulations of unit cells with periodic boundary conditions (PBCs), while the
simulation method is utilized in this paper. According to Equation (32), three sets of simulations are
required to determine the values of χee and χmm:
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1. one simulation of normal incidence with θ = 0◦ to obtain Γ(0◦) and T(0◦);
2. one simulation of TE-polarized oblique incidence with θ = θ0 to obtain ΓTE(θ0) and TTE(θ0);
3. one simulation of TM-polarized oblique incidence with θ = θ0 to obtain ΓTM(θ0) and TTM(θ0).

4.2. Surface Characterization Procedure

Once χee and χmm are determined, Γ and T for arbitrary applied fields can be readily computed
through Equations (21) and (22). For given single-layer isotropic metafilms, the characterization
procedure based on surface susceptibilities is listed below:

1. carry out three sets of unit cell simulations of given surfaces, including θ = 0◦ and θ = θ0 for both
TE and TM polarizations;

2. extract χee and χmm from simulated scattering coefficients through Equation (32);
3. compute (Γ, T) for arbitrary θ and polarizations using Equations (21) and (22).

4.3. Example of Surface Characterizations Based on Surface Susceptibilities

An example of surface characterization based on surface susceptibilities is given here.
Configuration of the discussed surface’s unit cell is shown in Figure 11, which is composed of dual-layer
PEC Jerusalem cross-shaped patches with four metallized vertical vias. Its scattering properties at
10 GHz will be characterized through the procedure introduced above. At 10 GHz, the wavelength
λ is equal to 30 mm, which is much larger than unit cell’s period p, which makes the assumption of
homogeneous effective valid. Also, its thickness h is much smaller than p, so it can be regarded as a
single-layer structure. The unit cell has the same effect on EM fields along x̂ and ŷ directions, leading
to isotropy of the discussed surface.

In order to determine its surface susceptibilities, three simulations of the unit cell are done
at 10 GHz using ANSYS HFSS with PBCs, where the value of θ0 is selected as 60◦. The extracted
surface susceptibilities based on Equation (32) with variation of parameter a are shown in Figure 12.
The fluctuation of χzz

mm should be due to the numerical errors from simulation software.
With χee and χmm determined, Γ and T of this surface for arbitrary θ and polarizations can

be readily computed. For verification purpose, computations with θ = 45◦ for both TE and TM
polarizations are selected as examples. Figure 13 shows the computed transmission coefficients at
10 GHz through Equations (21) and (22), compared with simulated results from ANSYS HFSS. Good
agreement between computation and simulation is observed, which validates the effectiveness of the
method. Although only one example is given here, this characterization method can be utilized for
arbitrary single-layer isotropic metafilms.

(a) (b)

Figure 11. Unit cell of a single-layer isotropic metafilm with p = 3 mm, w = 0.2 mm, h = 1 mm, radius
of vias equals 0.05 mm and relative permittivity εr = 4: (a) perspective view, (b) top view.
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(a) (b)

Figure 12. Surface susceptibilities of the unit cell shown in Figure 11 at 10 GHz: (a) χee, (b) χmm.

(a) (b)

Figure 13. Comparison between simulated and computed transmission coefficients of the unit cell
shown in Figure 11 with θ = 45◦ at 10 GHz: (a) magnitude, (b) phase.

5. Characterization of Isolated-Aperture Surfaces

GSTCs are initially derived for single-layer metasurfaces consisting of isolated scatterers [18],
which is named as metafilms. However, GSTCs based on surface susceptibilities are not appropriate
for metascreens composed of periodic isolated apertures. Starting from Maxwell’s equations, another
form of GSTCs specially for metascreens is derived in [36], where the EM field relations across surfaces
are described by not only surface susceptibilities but also other parameters called surface porosities.
Different from GSTCs for metascreens in [36], an alternative characterization method for zero-thickness
metascreens is given in this paper, which is directly derived from GSTCs for metafilms combined with
Babinet’s principle. Furthermore, only the surface susceptibilities are required to compute scattering
coefficients of given metascreens through the method introduced below.

5.1. Babinet’s Principle

Babinet’s principle was originally derived for optics [37] and R. Harrington developed the EM
version of it in [38]. Babinet’s principle relates scattering properties of the three radiation problems
shown in Figure 14, with a given EM source located in the region z < 0:

1. in free space;
2. there is an infinitely large planar zero-thickness PEC screen having an aperture with arbitrary

shape, which is located at z = 0 plane;
3. there is a zero-thickness plate made of PMC located at z = 0 plane, whose shape and position is

exactly same as the aperture in the last problem.
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As discussed in Section 2, the screen and plate are complementary structures that can cover the
whole z = 0 plane without overlapping. Suppose that the EM fields in the region z > 0 of the three cases
are denoted as (~Ei, ~Hi), (~Ee, ~He) and (~Em, ~Hm) respectively. Babinet’s principle demonstrates that [38]

~Ei = ~Ee + ~Em (33a)

~Hi = ~He + ~Hm. (33b)

Thus, the combined transmitted EM fields of the complementary surfaces are equal to the ones of
the free-space problem shown in Figure 14a. Since there is no scatterers in Figure 14a, the transmitted
fields at z = 0 plane are exactly same as the incident fields.

(a) (b) (c)

Figure 14. Babinet’s principle: (a) free space, (b) perfect electric conductor (PEC) screen, and (c) perfect
magnetic conductor (PMC) plate.

Now consider the zero-thickness PEC metascreen shown in Figure 15a, where the source is
replaced with a plane wave propagating towards the region z > 0. Its corresponding complementary
metafilm made of PMC is shown in Figure 15b. According to Babinet’s principle, along z = 0 plane
the summation of the transmitted field in these two cases are equal to the incident field. Since both of
these two surfaces are assumed to be periodic and infinitely larger at z = 0 plane, the field relations can
be characterized by scattering coefficients Γ and T. Denoting the transmission coefficients as Tscreen

e
and Tfilm

m respectively, it can be readily demonstrated that

Tscreen
e + Tfilm

m = 1. (34)

Through Babinet’s principle, relations between the scattering coefficients of PEC metascreen and
its complementary PMC metafilm are established.

(a) (b)

Figure 15. Scattering problem of metascreen and metafilm (a) PEC metascreen, (b) complementary
PMC metafilm.
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5.2. Scattering Coefficients of Metascreens and Surface Susceptibilities of Complementary Metafilms

For the metafilm shown in Figure 15b, its scattering coefficients can be analytically computed
from its own surface susceptibilities through GSTCs for metafilms. For metafilms composed of
zero-thickness PMC scatterers, the transmission coefficients for TE and TM polarizations can be
respectively written as

Tfilm,TE
m (θ) =

1

1 + j k0
2 χxx

mm cos θ
, (35)

and
Tfilm,TM

m (θ) =
1

1 + j k0
2 cos θ (χ

yy
mm + χzz

ee sin2 θ)
. (36)

By substituting Equations (35) and (36) into Babinet’s principle (Equation (34)), the transmission
coefficients of zero-thickness PEC metascreen can be written as

Tscreen,TE
e (θ) =

j k0
2 χxx

mm cos θ

1 + j k0
2 χxx

mm cos θ
, (37)

and

Tscreen,TM
e (θ) =

j k0
2 cos θ (χ

yy
mm + χzz

ee sin2 θ)

1 + j k0
2 cos θ (χ

yy
mm + χzz

ee sin2 θ)
, (38)

where χxx
mm, χ

yy
mm and χzz

ee are the surface susceptibilities of its complementary PMC metafilm.
For metascreen composed of zero-thickness PEC scatterers, the tangential components of ~E are
continuous everywhere along surfaces. Therefore, their reflection coefficients Γscreen

e can be derived
through the relations defined by Equation (15).

In order to characterize scattering coefficients of zero-thickness metascreens based on surface
susceptibilities, there are three unknowns to be determined: χxx

mm, χ
yy
mm and χzz

ee . Since the discussed
surfaces are assumed to be isotropic, the first two quantities are equal to each other. As shown in
Section 4, the surface susceptibilities of complementary PMC metafilms can be determined through
full-wave simulations of their unit cells. For convenience, they can also be extracted from simulated
scattering coefficients of the given metascreens, based on the relations described by Equation (34).
Derived from Equations (37) and (38), the unknowns χxx

mm = χ
yy
mm and χzz

ee can be determined through

χxx
mm = χ

yy
mm =

Tscreen
e (0◦)

j k0
2 (1− Tscreen

e (0◦))
(39a)

χzz
ee =

Tscreen,TM
e (θ0)− j k0

2 cos θ0
χ

yy
mm(1− Tscreen,TM

e (θ0))

j k0
2 cos θ0

sin2 θ0(1− Tscreen,TM
e (θ0))

, (39b)

where Tscreen
e is the transmission coefficient of the given zero-thickness PEC metascreens. According to

Equation (39), only two sets of simulations of given metascreens are required to determine the surface
susceptibilities of complementary metafilms:

1. one simulation of normal incidence with θ = 0◦ to obtain Tscreen
e (0◦);

2. one simulation of TM-polarized oblique incidence with θ = θ0 to obtain Tscreen,TM
e (θ).

Once the values of complementary metafilms’ surface suceptibilities are determined, scattering
coefficients of given metascreens for arbitrary θ and polarizations can be readily computed.

The procedure of characterizing isotropic zero-thickness PEC metascreens based on surface
susceptibilities is listed below:

1. carry out two sets of unit cell simulations of given metascreens, including θ = 0◦ and θ = θ0 for
only TM polarization;

2. extract χee and χmm from simulated scattering coefficients through Equation (39);
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3. compute (Γ, T) for arbitrary θ and polarizations using Equations (37) and (38).

An example of metascreen characterization based on this procedure will be given in Section 5.3.
By comparing Equations (37) and (38) with Equations (19) and (20), the sheet impedance Ze of

isotropic zero-thickness PEC metascreens can be expressed as

ZTE
e (θ) =

1
4

jη0k0χxx
mm (40)

ZTM
e (θ) =

1
4

jη0k0(χ
yy
mm + χzz

ee sin2 θ), (41)

through which the metascreens can be modelled as the shunt impedance shown in Figure 10b. It can
be observed that Ze of metascreens for TM polarization is θ-related. This relation will be utilized in
Section 6 to solve problems of surface-wave mode. Characterization method for zero-thickness PMC
metascreens can be derived using a similar method.

It is worthwhile to point out that the characterization method derived in this section is only
appropriate for zero-thickness metascreens made of PEC or PMC, since Babinet’s principle is not
valid for other cases. Characterization of metascreens with general properties based on surface
susceptibilities still remains to be derived.

5.3. Example of Metascreen Characterizations

Take the zero-thickness PEC metascreen shown in Figure 15a as an example, which is composed
of periodic square apertures. The period p of its unit cells is equal to 3 mm and side length of the
aperture is denoted as a. At 10 GHz, this surface is a single-layer isotropic metascreen, which ensures
that the characterization method derived above is valid.

Firstly, two simulations of the metascreen’s unit cell at 10 GHz are done using ANSYS HFSS,
with one normal incidence and another TM-polarized θ0 = 60◦ oblique incidence. Based on the
simulated transmission coefficients, surface susceptibilities of its complementary PMC metafilm
(Figure 15b) are extracted through Equation (39), which are shown in Figure 16 with variable a.

Figure 16. Surface susceptibilities of the zero-thickness PMC metafilm shown in Figure 15b, which are
extracted from simulated scattering coefficients of the metascreen shown in Figure 15a.

Then scattering coefficients of the given metascreen for arbitrary incident angles and polarizations
can be analytically computed using Equations (37) and (38). The computed transmission coefficients
with θ = 45◦ at 10 GHz for both TE and TM polarizations are shown in Figure 17, which are also
compared with full-wave simulated results. It can be observed that the computed results agree well
with the simulated ones.
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(a) (b)

Figure 17. Comparison between simulated and computed transmission coefficients with θ = 45◦ of the
zero-thickness PEC metascreen shown in Figure 15a: (a) magnitude (b) phase.

6. Characterization of Surface Wave Modes

In [27], surface susceptibilities and GSTCs are utilized to characterize guided waves along
single-layer metafilms for both surface-wave mode and complex mode. However, most surface-wave
applications have multiple-layer structures including a ground plane at bottom, like EBG [4–6]
and modulated metasurface antennas [39–41]. Since GSTCs are only appropriate for single-layer
surfaces, related methods derived in [27] cannot be utilized for the analysis of multiple-layer
structures’ surface-wave mode. In this section, a characterization method for surface-wave mode
of multiple-layer surfaces will be derived, based on surface susceptibilities, sheet impedances and
equivalent circuit model.

6.1. Characterization Parameters of Surface-Wave Mode

For space-wave mode, the scattering properties of EM surfaces are mainly described by reflection
and transmission coefficients. In contrast, surface-wave mode is an eigen propagation mode of surfaces,
which is usually characterized by the transverse wave vector or the surface impedance.

The transverse wave vector~kt is defined as

~kt = x̂kx + ŷky = k̂t|~kt|, (42)

which stands for the propagation characteristics of surface wave along surfaces. Since surface-wave is
a slow-wave mode, |~kt| is usually larger than k0. Compared with the space-wave mode (Equation (12)),
the wave vector of the surface-wave mode can be expressed as

~k = x̂kx + ŷky − ẑjγz, (43)

since EM fields exponentially decay along ẑ direction. γz is the complex propagation constant along
ẑ direction and it is a real number for surface-wave mode. According to Equations (42) and (43),
the relations between~kt and γz can be expressed as

|~kt|2 = k2
0 + γ2

z . (44)

The surface impedance Zsurf is defined as the ratio of tangential electric fields to tangential
magnetic fields along one side of EM surfaces, for example the field components in region z > 0.
The relations between ~E, ~H and Zsurf are usually expressed as

~Etan|z=0+ = Zsurf · (ẑ× ~H|z=0+). (45)
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Since field components in region z < 0 are not considered, Equation (45) is sometimes called
opaque impedance boundary conditions, while the ones based on sheet impedances introduced in
Section 3 are denominated as transparent IBCs [42]. Similar to sheet impedances, surface impedance
is a two-dimensional tensor for general cases and can be simplified as a scalar with the condition
of isotropy.

Suppose that the surface wave propagates towards +x̂ direction (ky = 0) along a periodic isotropic
surface. Then the ẑ components of EM fields can be expressed as

Ez = E0e−j|~kt |x−γzz (46a)

Hz = H0e−j|~kt |x−γzz. (46b)

Based on the relations between transverse and longitudinal components of EM fields [43], field
components along x̂ and ŷ directions can be respectively expressed as

Ex = jγzE0e−j|~kt |x−γzz/|~kt| (47a)

Ey = k0η0H0e−j|~kt |x−γzz/|~kt| (47b)

Hx = jγzH0e−j|~kt |x−γzz/|~kt| (47c)

Hy = −k0E0e−j|~kt |x−γzz/(η0|~kt|). (47d)

For TE polarization, Ex = Ez = Hy = 0. According to Equation (45), the surface impedance ZTE
surf

can be expressed as

ZTE
surf = Ey/Hx = −jη0

√
k2

0/(|~kt|2 − k2
0). (48)

Similarly, for TM polarization,

ZTM
surf = −Ex/Hy = jη0

√
(|~kt|2 − k2

0)/k2
0. (49)

According to Equations (48) and (49), Zsurf is capacitive for TE polarization and inductive for
TM polarization.

The traditional method to determine~kt or Zsurf is based on eigen-mode solver of commercial
simulation softwares [44]. The input variables to eigen-mode solvers are the phase delay φ across one
period of unit cell along the propagation direction of surface wave, from which the value of |~kt| can be
determined. With given surface structures and φ, eigen-mode solvers will compute the corresponding
eigen-frequency. A number of eigen-mode simulations with different phase delays are required in
order to get the phase delay φ0 at target frequency f0 through interpolation. Once |~kt| is determined
from φ0, Zsurf can be computed through Equations (48) or (49). Since eigen-mode solver requires
parametric sweep of phase delay to determine the propagation characteristics, the simulation-based
characterization method for surface-wave mode is usually very time-consuming.

6.2. Equivalent Circuit Model and Transverse Resonance Method

An alternative method to determine ~kt or Zsurf of surface-wave mode is introduced below.
Different from the method based on eigen-mode solvers, the value of Zsurf can be analytically computed
by solving the transverse resonance equation established through equivalent circuit model.

The equivalent circuit model of a dual-layer surface with ground plane at bottom is shown in
Figure 18, where the zero-thickness PEC top layer is represented as sheet impedance Ze and the ground
plane is modelled as a shorted load. For simplicity, the substrate between top layer and ground plane
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is selected as air, which has a thickness of h and is modelled as a transmission line with characteristic
impedance equals Z0. Z0 can be expressed as

ZTE
0 = η0/ cos θ (50)

for TE polarization and
ZTM

0 = η0 cos θ (51)

for TM polarization respectively. For the space-wave mode, θ is the incident angle related to direction
of wave vector~k. However, as discussed in Section 2, θ of surface-wave mode is an unknown complex
number, as a special case of space-wave mode. Based on Equation (43), cos θ can be expressed as

cos θ = γz/(jk0), (52)

while the value of γz is also undetermined. According to the equivalent circuit model, Zsurf represents
the impedance looking down from the reference plane (dashed line) located along the top face of the
given surface, while the impedance looking up from reference plane is Z0. Based on the knowledge of
microwave engineering [10], Zsurf can be expressed as

1
Zsurf

=
1
Ze

+
1

Z0 tanh(γzh)
. (53)

In order to compute Zsurf, it is required to determine the values of Ze, Z0 and γz first.

Figure 18. Equivalent circuit model of a dual-layer surface with ground plane at bottom.

The transverse resonance technique [45] demonstrates that, for the existence of surface-wave
mode, it has to satisfy the condition

1
Zup(z)

+
1

Zdown(z)
= 0, (54)

where Zup(z) and Zdown(z) represent the impedances looking in opposite directions from any
observation plane along the transmission line. Equation (54) is also called transverse resonance
equation. As discussed before, along the reference plane selected in Figure 18, Zup(z) = Z0 and
Zdown(z) = Zsurf. Consequently,

Z0 = −Zsurf. (55)

Take TM polarization as an example, which is the dominant mode of surface wave propagating
along surfaces with ground plane, γz can be expressed as

γz = −jk0ZTM
surf/η0, (56)

based on Equations (51) and (52). According to Equations (55) and (56), both Z0 and γz in Equation (53)
can be expressed as functions of Zsurf. Thus, if Ze is also determined or related to Zsurf, the value of
Zsurf can be computed from Equation (54).
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In [39], an extraction method of Ze based on simulations of space-wave mode is utilized to solve
Equation (53) for surface-wave mode characterization. One set of unit cell simulation for the given
dual-layer surfaces with normal incidence (θ = 0◦) is required. With simulated reflection coefficients Γ,
the corresponding surface impedance Zsurf of space-wave mode can be computed through

Zsurf = Z0
1 + Γ
1− Γ

. (57)

Once Zsurf has been extracted, the sheet impedance Ze can be obtained from the relations defined
by Equation (53), where γz should be modified as jk0 due to normal incidence of space-wave mode.
By substituting the determined value of Ze into Equation (53) for surface-wave mode, there is only one
unknown ZTM

surf in this equation, which can be solved by numerical tools like MATLAB.
Based on the method derived in [39], it is assumed that sheet impedance Ze is not related to

the incident angle θ, so its value extracted from the space-wave simulation with θ = 0◦ is directly
utilized for characterization of surface-wave mode. However, as discussed in previous sections, Ze is
θ-dependent in many cases, thus its value of surface-wave mode can be quite different from the one
of space-wave mode with θ = 0◦. Still take TM polarization as the example. If the top-layer surface
is zero-thickness PEC metafilm, based on Equation (30) given in Section 3, ZTM

e is independent of θ,
and method of [39] still works. But if the top layer is metascreen, ZTM

e is related to sin2 θ according to
Equation (41) derived in Section 5. In this case, the assumption of θ-independent Ze is invalid, leading
to the inaccuracy of computed results. Thus, the method that directly extracts Ze from simulations of
space-wave mode is not a general solution for different kinds of surfaces.

Here it is proposed to determine Ze from surface susceptibilities χee and χmm, based on relations
derived in previous sections. For example, ZTM

e of metascreens can be readily determined through
Equation (41), once χ

yy
mm, χzz

ee and sin2 θ are determined. Although the value of θ for surface-wave
mode is unknown, the sin2 θ term required can be expressed as

sin2 θ =
k2

0 + γ2
z

k2
0

, (58)

according to Equation (44). Thus, sin2 θ can be written as a function of γz, and further replaced by
Zsurf through Equation (56). Consequently, there is still one unknown Zsurf in Equation (53), which can
be numerically solved. With the method based on surface susceptibilities, more accurate results can be
obtained rather than the one based on method given in [39], since Ze is considered as θ-dependent.
The procedure to compute surface-wave Zsurf of dual-layer impenetrable surfaces based on surface
susceptibilities, equivalent circuit model and transverse resonance technique is listed below:

1. carry out limited sets of space-wave simulations of the top-layer surface and extract its surface
susceptibilities from simulated scattering coefficients;

2. determine the expression of Ze based on χee and χmm through related formulas derived in
previous sections;

3. substitute Ze into Equation (53) and solve the equation of Zsurf with numerical tools.

One example computing surface impedance of a dual-layer metasurface, which is composed of
one layer of zero-thickness metascreen at top with ground plane at bottom, will be given in Section 6.3.

6.3. Example of Surface-Wave Mode Characterization

Take the dual-layer PEC surface shown in Figure 19a as an example. Its surface impedance of TM
polarization at 10 GHz is analytically computed through the procedure listed above. The top layer is
composed of periodic square apertures, which is exactly the same as the metascreen characterized in
Section 5.3, and the extracted surface susceptibilities have already been shown in Figure 16. With χee
and χmm determined, expression of ZTM

e is obtained using Equation (41), where sin2 θ is replaced as a
function of ZTM

surf through Equations (56) and (58). Then Equation (53) is solved using MATLAB, results
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of which are shown in Figure 19b with variable a. Since the surface is lossless, its surface impedance is
purely imaginary. The computed ZTM

surf is compared with eigen-mode simulated results from ANSYS
HFSS, and the computed results through the method in [39] are also shown in Figure 19b. It can be
observed that the method proposed in this paper, which is based on surface susceptibilities, is more
accurate than the one given in [39].

(a) (b)

Figure 19. Dual-layer metasurface with periodic square apertures at top and ground plane at bottom:
(a) configuration of surface with p = h = 3 mm (b) comparison between simulated and computed
TM-polarized surface impedance of surface-wave mode at 10 GHz.

Equation (53) can also be utilized to compute eigen-frequencies with given phase delay across
one period, with which the dispersion diagram of surface-wave mode can be plotted. Still take TM
polarization as the example. Suppose the phase delay across one period of unit cell along x̂ and ŷ are
φx and φy respectively, then Equation (49) can be rewritten as

ZTM
surf = jη0

√
φ2

x + φ2
y

k2
0 p2

− 1, (59)

where φx and φy are variables in dispersion diagram and their relations represent the propagation
direction. According to Equation (59), ZTM

surf can be expressed as a function of k0 = 2π f , which
makes all unknown quantities in Equation (53) related to f . Consequently, f can be computed by
solving Equation (53). By computing f for different groups of (φx, φy) with this analytical method,
the dispersion diagram can be solved.

Figure 20a,b respectively show the computed dispersion diagrams with a = 1.5 mm and a = 2.5 mm
for the dual-layer surface shown in Figure 19a, compared with simulated ones from eigen-mode solver.
Figure 20c shows the relative error which is defined by

Relative Error =
| fsim − fcom|

fsim
, (60)

where fsim and fsim are the simulated and computed eigen-frequencies respectively. It can be observed
that the computed results agree well with eigen-mode simulations when f is small. As frequency
increases, the wavelength λ becomes comparable to the fixed period p, which makes the assumption
of homogeneous effective invalid and results in quite large relative errors. For example, the period
p = 3 mm is equal to one-tenth wavelength at f = 10 GHz but half wavelength at f = 50 GHz. It is also
found that the case with a = 2.5 mm has larger error than the one with a = 1.5 mm, which should be
due to the approximation of dipole interactions assumed in derivation of GSTCs [18].
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(a) (b)

(c)

Figure 20. Comparison between the simulated and computed dispersion diagram for the impenetrable
metasurfaces with different a: (a) a = 1.5 mm (b) a = 2.5 mm (c) relative error.

7. Conclusions

Generalized boundary conditions characterize EM field relations across two-dimensional surfaces
based on characteristic parameters of surfaces. Research related to GBCs constitutes an important
theoretical foundation of surface electromagnetics. Based on generalized boundary conditions,
scattering properties of EM surfaces can be analytically computed for applied fields with arbitrary
propagation directions and polarizations once surface susceptibilities are determined.

In this paper, generalized boundary conditions were investigated in depth. Firstly, five
representative features were discussed for categorizing various types of two-dimensional surfaces.
Then the evolution of boundary condition theories were reviewed and the relations between scattering
coefficients and different kinds of parameters were discussed. For surface problems related to
homogeneous effective, isolated-scatterer, isotropic, single-layer and space-wave mode, the extraction
method of surface susceptibilities from limited sets of full-wave simulations were introduced and
the results were utilized to compute reflection and transmission coefficients with arbitrary incident
angles and polarizations. Next, the characterization methods for two representative surface problems
were derived. For isolated-aperture surfaces, surface susceptibilities of their complementary structures
were utilized with field relations defined by Babinet’s principle, where the surface porosities required
in [36] was not necessary. For surface-wave mode characterization, the surface impedances were
analytically computed based on the equivalent circuit model and the transverse resonance technique,
where surface susceptibilities were utilized to determine the θ-related sheet impedances. Examples of
surface characterizations with different features were given, where good agreement between computed
and simulated results was observed, validating the effectiveness of generalized boundary conditions.
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Future work is still required. One necessary and challenging problem is the characterization of
spatially dispersive surfaces, which are quite useful for surface applications having periods comparable
to corresponding wavelengths. Characterization methods of anisotropic and multiple-layer surfaces
also require further research and development. These issues should be properly addressed in order to
make generalized boundary conditions applicable to more kinds of surface problems.
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