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Abstract: The electrical characteristics of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs)
deposited with different N2/O2 partial pressure ratios (PN/O) are investigated. It is found that the
device with 20% PN/O exhibits enhanced electrical stability after positive-bias-stress temperature
(PBST) and negative-bias-stress illumination (NBSI), presenting decreased threshold voltage drift
(∆Vth). Compared to the N-free TFT, the average effective interface barrier energy (Eτ) of the TFT
with 20% PN/O is increased from 0.37 eV to 0.57 eV during the bias-stress process, which agrees with
the suppressed ∆Vth from 3.0 V to 1.12 V after the PBS at T = 70 ◦C. X-ray photoelectron spectroscopy
analysis revealed that the enhanced stability of the a-IGZO TFT with 20% PN/O should be ascribed to
the control of oxygen vacancy defects at the interfacial region.
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1. Introduction

Transparent metal oxide-based thin film transistors (TFTs) have attracted substantial attention as
backplane technology for next-generation active matrix display applications. In particular, amorphous
InGaZnO (a-IGZO) TFTs have been extensively studied because they show attractive characteristics
including desirable channel electron mobility, large-area uniformity, and low off-state leakage compared
with conventional a-Si:H TFTs [1,2]. However, high density localized states originating from oxygen
vacancies (OV) exist within the bandgap of the a-IGZO active layer due to the disordered amorphous
nature, which would considerably degrade the device performance and reliability [3,4]. It has been
demonstrated that the threshold voltage instability in a-IGZO TFTs induced by electrical, light, and
thermal stress is generally related to the OV defects trapping electrons or holes within the a-IGZO
active layer and at the device interface region [5–7]. Hence, suppressing the OV defects in the active
layer or at the interface is crucial to enhance the reliability of a-IGZO TFTs.

In previous reports, the nitrogen has been used to passivate OV-related defects within a-IGZO by
forming N-metal (In, Ga and Zn) bonds [8,9]. For example, the ambient stability of N-doped a-IGZO
TFTs can be enhanced by the mitigation of the oxygen absorption/desorption behavior due to the
substitution of the O atom by an N atom within the a-IGZO [10]. Moreover, the a-IGZO TFTs fabricated
with N-doped a-IGZO layer inserted at the a-IGZO/SiO2 interface exhibit superior bias stability, which
is improved by the passivation of the interface OV defects [11]. However, excess N incorporation into
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the a-IGZO channel layer would induce extra OV-related defects or N-related defects within the active
layer or at the channel/dielectric interface, which would cause the degradation of device performance
and electrical reliability [12,13]. In this work, to achieve an optimal level of nitrogen doping in the
active layer, a-IGZO TFTs with various nitrogen/oxygen partial pressure ratios (PN/O) during active
layer deposition are fabricated. The electrical characteristics of the fabricated devices are investigated
under positive-bias-stress temperature (PBST) and negative-bias-stress illumination (NBSI). The TFT
fabricated with a proper PN/O exhibits improved reliability with decreased threshold voltage drift
(∆Vth) after PBST and NBSI conditions. Such improvements are related to the passivation of OV defects
at the a-IGZO/SiO2 interface.

2. Experiments

The inverted staggered TFTs structure are fabricated in this work. Firstly, a 200 nm SiO2 gate
insulator layer is prepared on a heavily doped n-Si substrate by plasma enhanced chemical vapor
deposition (PECVD). Next, the channel layer of a 45 nm a-IGZO film is grown by dc reactive sputtering.
During the a-IGZO film sputtering process, the Ar flow rate is set to 30 sccm, and the gas mixing ratio
of N2/(O2 + N2) is set to 0%, 20%, and 40% under a total sputtering pressure of 5 × 10−3 Torr. Then, the
TFTs active region with a channel width/length of 100 µm/20 µm are fabricated by photolithography
and wet chemical etching. Next, the drain/source (Ti/Au) contact electrodes and passivation layer
(100 nm SiO2) are prepared successively. Lastly, the fabricated devices are annealed at 300 ◦C in air for
1 h. The inset of Figure 1 shows the cross-sectional schematic of the fabricated TFT.
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Figure 1. The transfer characteristics of the a-IGZO thin film transistors (TFTs) fabricated with different
nitrogen/oxygen partial pressure ratios (PN/O). The inset shows the schematic of the fabricated
TFTs structure.

3. Results and Discussion

Figure 1 shows the transfer characteristics of the a-IGZO TFTs fabricated with 0%, 20%, and 40%
PN/O. The corresponding device parameters are extracted in Table 1. In this study, the Vth is determined
by the gate voltage (VGS) at which the drain current (IDS) reaches 10 nA. The subthreshold swing (SS)
can be calculated by the equation:

SS =

[
∂ log(IDS)

∂VGS

]−1

(1)



Appl. Sci. 2019, 9, 1880 3 of 7

Table 1. Extracted electrical parameters of the a-IGZO TFTs with different PN/O.

PN/O (%) Vth (V) µFE (cm2/Vs) SS (V/dec) Ion/off

0 5.0 2.2 0.8 >108

20 3.8 8.0 0.6 >109

40 7.0 1.2 0.9 >107

It can be seen that the Vth and SS of the a-IGZO TFT with 20% PN/O are improved than that of
the undoped a-IGZO TFT, where the Vth is decreased from 5.0 V to 3.8 V, and the SS is reduced from
0.8 V/dec to 0.6 V/dec. It has been demonstrated that the Vth and SS in TFTs are mainly associated
with the density of trap states in the active region and at the a-IGZO/SiO2 interface [14]. Therefore,
the improved electrical properties of a-IGZO TFT fabricated with 20% PN/O can be determined by the
decrease of trap density in the device active region. In contrast, the Vth and SS of the a-IGZO TFT with
40% PN/O are increased, which indicates that the new trap states are generated by excess N-doping.

The reliability of the a-IGZO TFTs with different PN/O are evaluated by positive-bias-stress
temperatures. During the bias stress process, the devices are applied at VGS = 15 V for 5000 s at
T = 30 ◦C, 50 ◦C, and 70 ◦C, respectively. Figure 2a–c selectively show the transfer characteristics for
the a-IGZO TFTs with different PN/O against the PBS time at T = 70 ◦C. The transfer curves of the TFTs
show a parallel shift toward the positive direction with no apparent degradation in SS and field effect
mobility (µFE) after PBS, which indicates that the ∆Vth of the TFTs after PBS should be ascribed to the
field-induced electron trapping at the a-IGZO/SiO2 interface [5,11]. Meanwhile, it is clearly observed
that the a-IGZO TFT with 20% PN/O apparently exhibits better electrical stability compared with the
undoped and 40% PN/O devices after PBST at T = 70 ◦C. Correspondingly, the ∆Vth of the a-IGZO TFT
fabricated with 20% PN/O (1.12 V) is lower than that of the undoped a-IGZO TFT (3.0 V) and 40% PN/O

device (2.75 V).
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Figure 2. Evolution of the transfer curves against positive bias stress (PBS) time for the a-IGZO TFTs
fabricated using PN/O of (a) 0% at T = 70 ◦C, (b) 20% at T = 70 ◦C, and (c) 40% at T = 70 ◦C.

Figure 3a–c show the quantity of the ∆Vth for the a-IGZO TFTs with different PN/O against the
bias-stress time at different temperatures. It is observed that the relationship between ∆Vth and time is
fitted by a stretched-exponential equation, which reveals the mechanism of the carrier trapping near
the active layer/dielectric interface [15,16]. The stretched-exponential function is described as below

∆Vth = ∆Vth0

{
1− exp

[
−(t/τ)β

]}
(2)

where ∆Vth0 is the ∆Vth at infinite stressing time, β is a stretched-exponential exponent, and τ is the time
content for the charge trapping process, which is given by τ = τ0exp(Eτ/kBT). In this expression, Eτ
is the average effective interface energy barrier, which needs to exceed for channel carrier to inject into
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the device interface region or insulator. To investigate the effect of N-doping on the carrier trapping
process in the a-IGZO TFTs, the Eτ is extracted by the Arrhenius plot of τ. As shown in Figure 3d, a
good linear relationship in the lnτ-1000/T plots is observed, which indicates that the carrier trapping
process in the a-IGZO TFT is thermally activated [15]. Meanwhile, the Eτ of the a-IGZO TFT with 20%
PN/O (0.57 eV) is increased to that of the undoped a-IGZO TFT (0.37 eV). The increased Eτ suggests that
fewer channel carriers can be trapped into the a-IGZO/SiO2 interface or insulator during the bias-stress
process and the corresponding device exhibits better bias-stress stability. On the contrary, compared
with the a-IGZO TFT with 20% PN/O, the Eτ of the a-IGZO TFT with 40% PN/O is decreased to 0.43 eV,
which means that the interface quality is degraded when excess N is incorporated into the a-IGZO
active layer. Therefore, the results indicate that the drift of Vth for the a-IGZO TFTs could be mitigated
by the moderate N-doping.
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of (a) 0%, (b) 20%, (c) 40% at different stress temperatures, and (d) Stress time constant lnτ as a function
of the reciprocal temperature.

In addition, in real applications, switching TFTs are usually negatively biased for keeping
off-state and exposed to light emitted from the backlight in active-matrix displays [17,18]. Thus, the
electrical reliability of the TFTs fabricated with different PN/O is also evaluated by negative- bias-stress
illumination (NBSI). Figure 4a–c show the transfer curves of the a-IGZO TFTs fabricated with different
PN/O against NBS time under white light illumination, in which the device is stressed at VGS = −15 V
for 5000 s. The transfer curves of the TFTs exhibit a shift toward negative gate voltage direction with
no apparent change in SS and µFE after the NBSI condition, which indicates that the negative shift
of Vth should be determined by photo-induced holes trapped into the a-IGZO/SiO2 interface [19,20].
Meanwhile, as shown in Figure 4a,b, it is clear that the negative shift of Vth is decreased from 3.0 V
to 1.1 V for N-free a-IGZO TFT and 20% PN/O a-IGZO TFT after 5000 s NBSI, which means that the
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a-IGZO/SiO2 interface quality is improved by N-doping. However, as shown in Figure 4c, the a-IGZO
TFT with 40% PN/O exhibits a large negative shift of Vth (2.65 V) compared with TFT with 20% PN/O

after 5000 s NBIS, which indicates that additional defects are generated at the a-IGZO/SiO2 interface by
heavy N-doping.Appl. Sci. 2019, 8, x FOR PEER REVIEW  5 of 7 
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To reveal the mechanism of the effect of N-doping on the reliability of the a-IGZO TFTs, the
chemical properties of the a-IGZO, a-IGZO: 20% PN/O, and a-IGZO: 40% PN/O films are analyzed by
the X-ray photoelectron spectroscopy (XPS) measurement. The deconvolution of XPS spectra of O 1s is
shown in Figure 5a–c. The combined O 1s peak could be divided into three components by Gaussian
fitting, which is located at 530.1 eV (OI), 531.3 eV (OII), and 532.4 eV (OIII), respectively. The peaks of
OI, OII, and OIII are associated with the oxygen ions in the lattice surrounded by Ga, In, and Zn atoms,
OV and oxygen in hydroxide (OOH), respectively [11,21]. Thus, the relative amount of OV existing
in the a-IGZO film can be calculated by the proportion of the peak area OV to the whole area O 1s
(Owhole). As shown in Figure 5a,b, it can be seen that the area ratio of OII/Owhole is clearly reduced
from 35% to 25% for the undoped a-IGZO film and a-IGZO: 20% PN/O film, indicating that the OV is
suppressed by N-doping. In contrast, compared with the a-IGZO: 20% PN/O film, the OV rises to 31%
in a-IGZO: 40% PN/O film as shown in Figure 5c, suggesting that the extra OV is generated when excess
nitrogen atoms are incorporated into the a-IGZO film. This result agrees with previous reports that
heavy N-doping in the a-IGZO film could suppress the bonding of O and Ga because of the facilitated
formation of N-Ga bonds, which could result in the increase of OV within the a-IGZO film. Besides, as
shown in Figure 5d, the N 1s spectrum of the a-IGZO: 20% PN/O film is fitted by two energy bonds
centered at 395.7 eV and 397.3 eV corresponding to the Ga Auger and N-Ga bonds [22], respectively.
Thus, the XPS analysis reveals that the enhanced reliability of the a-IGZO TFT with moderate PN/O is
determined by passivating the OV at the a-IGZO/SiO2 interface.
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4. Conclusions

In this work, the effect of different PN/O during the a-IGZO layer deposition on the electrical
properties of a-IGZO TFTs is investigated. It is found that the electrical performances of a-IGZO TFT
with 20% PN/O are improved. Correspondingly, the device shows considerably enhanced electrical
stability after PBST and NBSI conditions, with a significantly suppressed threshold voltage drift.
According to XPS analysis, the concentration of OV defects in the a-IGZO with moderate PN/O film
exhibits an apparent decrease, which causes the increased Eτ of the a-IGZO TFT. Thus, the enhanced
reliability of the a-IGZO TFT with moderate PN/O is ascribed to the suppressed VO defects at the
a-IGZO/SiO2 interface.
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and provided valuable discussions and suggestions. The manuscript was written by X.H., and was revised by all
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