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1. Referees for the Special Issue

A total of 23 manuscripts were received for our Special Issue (SI), of which 7 manuscripts were
directly rejected without peer review. The remaining 16 articles were all strictly reviewed by no
less than two reviewers in related fields. Finally, 13 of the manuscripts were recommended for
acceptance and published in Applied Sciences-Basel. Referees from 10 different countries provided
valuable suggestions for the manuscripts in our SI, the top five being the USA, Germany, Korea, Spain,
and Finland. The names of these distinguished reviewers are listed in Table A1. We would like to
thank all of these reviewers for their time and effort in reviewing the papers in our SI.

2. Main Content of the Special Issue

Since tetragonal Heusler compounds have many potential applications in spintronics and
magnetoelectric devices, such as ultrahigh-density spintronic devices, spin transfer torque devices,
and permanent magnets, they have received extensive attention in recent years [1–5]. In this SI, Zhang et
al. [6] studied the magnetic and electronic structures of cubic and tetragonal types of Mn3Z (Z = Al,
Ga, In, Tl, Ge, Sn, Pb) Heusler alloys. The authors used first-principles calculations to describe the
impact of increasing atomic radius on the structure and properties of Heusler alloys. They investigated
tetragonal distortions in relation to different volumes for Mn3Ga alloys and extended this analysis to
other elements by replacing Ga with Al, In, Tl, Si, Ge, Sn, and Pb.

Spintronics has many advantages over traditional electronics, such as no volatility, high data
processing speed, low energy consumption, and high integration density. Therefore, spintronics,
which utilizes spin instead of charge as the carrier for information transportation and processing, can be
seen as one of the most promising ways to implement high-speed and low-energy electronic devices.
However, in the process of developing spintronic devices, we have also encountered many bottlenecks,
including spin-polarized carrier generation and injection, long-range spin-polarization transport,
and spin manipulation and detection. To overcome these problems, various types of spintronic materials
have been proposed, such as spin-gapless semiconductors (SGSs) [7–13], Dirac half-metals [14,15],
diluted magnetic semiconductors (DMSs) [16,17], and bipolar magnetic semiconductors (BMSs) [18–20].
In this SI, Liu et al. [21] predicted two new 1:1:1:1 quaternary Heusler alloys, ZrRhTiAl and ZrRhTiGa,
and studied their mechanical, magnetic, electronic, and half-metallic properties via first principles.
Chen et al. [22] investigated the effect of main-group element doping on the magnetism, half-metallic
property, Slater–Pauling rule, and electronic structures of the TiZrCoIn alloy. Feng et al. [23] calculated
the band structures, density of states, magnetic moments, and the band-gap of two quaternary
Heusler half-metals, FeRhCrSi and FePdCrSi, by means of first principles. Zhang et al. [24] performed
first-principles calculation to investigate the electronic structure of half-metallic Prussian blue analogue

Appl. Sci. 2019, 9, 1766; doi:10.3390/app9091766 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-4283-6095
http://www.mdpi.com/2076-3417/9/9/1766?type=check_update&version=1
http://dx.doi.org/10.3390/app9091766
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 1766 2 of 5

GaFe(CN)6. They revealed its magnetic and mechanical properties. The pressure dependence of the
electronic structure was also investigated in their study. In 2017, Wang et al. [25] predicted a rare
strain-tunable electronic band structure, which can be utilized in spintronics. Based on Wang et al.’s
study, Chen et al. [26] demonstrated that the physical state of ScFeRhP can be tuned by uniform strain.
Theoretical predictions of strain-adjustable quaternary spintronic Heusler compounds remain of high
importance in the field of spintronics. Similar works can also be found in References [27–32].

In recent years, SGSs [33] have attracted widespread attention in the field of spintronics. Thus far,
nearly 100 Heusler-type SGSs have been theoretically predicted, of which Mn2CoAl, Ti2CoAl,
and Ti2CoSi have been extensively studied. In this SI, Wei, Wu, and Feng et al. focused on these novel
materials. Wei et al. [34] studied the interfacial electronic, magnetic, and spin transport properties
of Mn2CoAl/Ag/Mn2CoAl current-perpendicular-to-plane spin valves (CPP-SV) based on density
functional theory and non-equilibrium Green’s function. Wu et al. [35] conducted a comprehensive
study of the electronic and magnetic properties of the Ti2CoAl/MgO (100) heterojunction with
first-principles calculations. Ten potential Ti2CoAl/MgO (100) junctions are presented based on
the contact between the possible atomic interfaces. The atom-resolved magnetic moments at the
interface and subinterface layers were calculated and compared with the values obtained from bulk
materials. The spin polarizations were calculated to further illustrate the effective range of tunnel
magnetoresistance (TMR) values. Feng et al. [36] systematically investigated the effect of Fe doping in
Ti2CoSi and observed the transition from gapless semiconductor to nonmagnetic semiconductor.

Chen et al. [37] used the spin-polarized density functional theory based on first-principles methods
to investigate the electronic and magnetic properties of bulk and monolayer CrSi2. Their calculations
show that the bulk form of CrSi2 is a nonmagnetic semiconductor with a band gap of 0.376 eV.
Interestingly, there are claims that the monolayer of CrSi2 is metallic and ferromagnetic in nature,
which is attributed to the quantum size and surface effects of the monolayer.

Jekal et al. [38] conducted a theoretical investigation with the help of the density functional theory
and showed that the creation of small, isolated, and stabilized skyrmions with an extremely reduced
size of a few nanometers in GdFe2 films can be predicted by 4d and 5d TM (transition metal) capping.
Magnetic skyrmions is an exciting area of research and has gained much attention from researchers all
over the world. We hope that this work may add value to the scientific community and be helpful for
reference in future work.

Finally, we introduce two manuscripts in this SI related to computational materials. Although
these two papers are not in the field of spintronics, they belong to the field of computational materials
science. The interaction of hydrogen with metal surfaces is an interesting topic in the scientific and
engineering world. In this SI, Wu et al. [39] investigated the hydrogen adsorption and diffusion
processes on a Mo-doped Nb (100) surface and found that the H atom is stabilized at the hollow sites.
They also evaluated the energy barrier along the HS→TIS pathway. Due to their unique physical
properties and wide application, Bi-based oxides have received extensive attention in the fields of
multiferroics, superconductivity, and photocatalysis. In this SI, Liu et al. [40] investigated the electronic
structure as well as the optical, mechanical, and lattice dynamic properties of tetragonal MgBi2O6

using the first-principles method.
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