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Abstract: In order to offer simple and convenient assistance for the elderly and disabled to take
care of themselves, we propose a general learning and generalization approach for a service robot
to accomplish specified tasks autonomously in an unstructured home environment. This approach
firstly learns the required tasks by learning from demonstration (LfD) and represents the learned
tasks with dynamic motion primitives (DMPs), so as to easily generalize them to a new environment
only with little modification. Furthermore, we integrate dynamic potential field (DPF) with the above
DMPs model to realize the autonomous obstacle avoidance function of a service robot. This approach
is validated on the wheelchair mounted robotic arm (WMRA) by performing serial experiments of
placing a cup on the table with an obstacle or without obstacle on its motion path.

Keywords: service robots; dynamic motion primitives (DMPs); dynamic potential field (DPF);
obstacle avoidance

1. Introduction

A wheelchair mounted robotic arm (WMRA) is a typical service robot, which is developed to help
the elderly and disabled to take care of themselves in a home environment [1–4]. However, due to
the physical or cognitive defects of the users, it is still hard or impossible for them to manipulate the
WMRA flexibly to complete daily tasks [5,6]. From the perspective of the disabled and the elderly,
it is better to achieve the autonomous manipulation of such service robots to help them accomplish
related tasks existed in a home environment [7,8]. Unlike the well-structured factory environment,
the natural home environment is full of dynamic, unpredictable, and stochastic events. In this situation,
the robot requires a flexible motion planning and controlling approach in response to the changes
in the environment, such as changed goals, encountered obstacles, and external perturbations [9,10].
The traditional approach of generating a complex movement plan is based on the search process
or related controllers [11,12] to satisfy all the constraints, including the changes in the environment.
However, these approaches are unsuitable for service robot to make rapid reactions due to its drawbacks
of computationally expensive and time-consuming. At the same time, easy to program is another
factor that affects the service robot to become widespread. This can be achieved by learning from
demonstration (LfD) [13–15]. The robot can learn new skills just by reproducing the recorded human
movements. In consideration of the large number of tasks that exist in the home environment, it is
feasible only if a demonstrated movement can be generalized to other contexts, like different goal
positions [16].
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In order to address the above questions, much recent work has focused on dynamic movement
primitives (DMPs) [17–22], which offer a simple and versatile framework to represent and generate
related movements. The core of DMPs is learning from demonstration (LfD). Usually, LfD offers a
simple and convenient way to obtain the movement information of related tasks. Then, DMPs can
represent the arbitrarily recorded movement with a set of nonlinear differential equations in which
a linear point attractor is modulated by a nonlinear function [23,24]. Representing the movement
with differential equation has the advantages that it can be easily initialized with learning from
demonstration and the generated movement is robust against the following changes, such as the task
duration, goal points, and slight perturbations [7]. Moreover, it can ensure system converge to the
specified goal position. In other words, the learned movement can be easily generalized to a new goal
by simply changing the goal parameters [16]. This generalization characteristic is very suitable for a
service robot to replay various learned tasks in different situations.

For online obstacle avoidance, it is also a difficult and classical problem that robots often encounter
in the process of autonomous manipulation. So far, various approaches have been proposed to solve
it [25]. They can be divided into two categories, the local methods and the global methods. The local
methods can offer fast response in face of the obstacles with local optimization, mainly including the
vector field histogram [26], motion field flow [27], the curvature-velocity method [28], and the artificial
potential field approach [29,30]; the global methods can ensure that a valid and whole trajectory
optimized solution can be found if it exists, but requires large computation and global representation of
the environments and obstacles, mainly containing the path planning algorithms [31,32] and the global
search approaches [33,34]. The artificial potential field approach, which was proposed by Khatib [29]
in 1986, has been widely studied to avoid obstacles. Generally speaking, when a potential field is
constructed, the robot in this field suffers the corresponding repellent force both from the goal and
the obstacle simultaneously so as to prevent the robot from colliding with the obstacle. During this
process, the goal generates the attractive field and the obstacle generates the repulsive field. The two
fields act together on robots located in the artificial potential field to generate the desired motion
trajectory [25,35]. This approach has the characteristics of a simple structure and real-time underlying
control. For these above reasons, this approach has been extensively used in mobile robotics [36,37]
and robotic manipulators [38] to achieve real-time obstacle avoidance and smooth trajectory control.

Recently, new discoveries have been found in this research direction. According to Dae-Hyung
Park and Peter Paster’s study, DMPs can combine with the artificial potential fields to avoid the related
obstacles [13,16,23]. The artificial potential field can be seen as a coupling term added to the differential
equation of DMPs directly, with the purposes to offer related direct feedback of the environment.
Additionally, in Dae-Hyung Park’s study, he found that the static potential cannot generate a smooth
trajectory, especially when the end effector moves towards the obstacle directly. To solve this problem,
he used the dynamic potential field in conjunction with DMPs to avoid obstacles. This approach has
been successfully used to avoid the point obstacles [13] and many static obstacles [23]. However, the
obstacles in these papers are all considered as single points individually, without considering the
spatially extended obstacles. Additionally, we have not found any paper systematically describing
DMPs’ generalization ability and its obstacle avoidance function in the autonomous manipulation of
service robots.

In this paper, we have detailed a general framework for WMRA to learn demonstrated motion
and generalize it to a new environment even where existing obstacles are located on its motion path
so as to help the elderly and disabled to live independently in an unstructured home environment.
This framework is mainly based on the DMPs-DPF approach, which is an approach of dynamic
movement primitives combined with dynamic potential fields. The main achievement of this paper is
that it systematically describes the whole realization process of WMRA’s autonomous manipulation,
including learning, generalization, and obstacle avoidance with any shape and size obstacles. Unlike
the traditional path planning method, this approach can quickly generate a new path that conforms to
the user’s operating habits without tedious programming process and heavy consumption of time.
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This characteristic is particularly suitable and preferred by the users of WMRA to accept the assistive
help from WMRA without any panic and fear. It is worth highlighting that the users of WMRA are
just located in the operating space of the robotic arm, which is obviously different from other service
robots. Additionally, this approach can also be used in the field of human-robot collaboration [39,40],
which has similar work scenes with the WMRA. The rest of this paper is organized as follows.
In Section 2, we described the dynamic system framework for movement generation, mainly including
the introduction of the dynamic movement primitives model and the learning and generalization
process of DMPs. In Section 3, we introduced the overall framework of the DMPs-DPF approach
and mainly described the coupling term for obstacle avoidance. In Section 4, we carried out a set of
experiments of placing a cup on the table, including without obstacle, with a small spherical obstacle,
and with a large cuboid obstacle. We concluded and briefly introduced the future research trends in
Section 5.

2. Dynamic System Framework for Movement Generation

2.1. Dynamic Movement Primitives Model

Dynamic movement primitives (DMPs) were first introduced to the trajectory control of a robot
by Auke Ijspeert et al. [17] in 2002. The basic idea of DMPs is to describe related motions using a
series of nonlinear differential equations with attractive points which are modulated by a nonlinear
function. Especially, the DMPs can guarantee the system to converge to the goal point because
the nonlinear function vanishes at the end of a movement. For different goals, discrete DMPs can
generate new trajectories that meet current environmental requirements while ensuring the shape of
the demonstrated trajectory [13,41,42].

In this paper, we carried out related research based on the improved DMPs model motivated by
human behavioral data and convergent force fields [13,16,23]. This improved model can successfully
avoid two major defects of the traditional DMPs model. One is the generated large acceleration when
the goal is near to the initial position; the other is the generated mirror trajectory when the sign of
xg − x0 is contrary to the demonstrated one.

Any discrete movement with DMPs model can be represented with the transformation system,

τ
..
x = K(xg − x) −Dv−K(xg − x0)s + K f (s) (1)

τ
.
x = v (2)

and the canonical system,
τ

.
s = −αs, s ∈ [0, 1]. (3)

In the above equations, x and v represent the current position and velocity of the system; x0 and
xg represent the initial position and goal position; D is the damping term; K acts as the spring constant;
τ is the temporal scaling factor of the movement duration; f is the non-linear function allowed to
generate any complex movements; s is the phase variable; and α is predefined constant.

Especially, the non-linear function is defined as

f (s) =
∑N

i ψi(s)ωis∑N
i ψi(s)

(4)

where ωi are the weights and ψi(s) are Gaussian basis functions with the total number N. The ψi(s)
is computed by ψi(s) = exp(−hi(s− ci)

2) with its width hi and center ci. This function f depends on
the phase s, which is obtained by the canonical system with s(0) = 1 as its initial state. Moreover,
the influence of f vanishes at the end of a movement.
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2.2. Learning and Generalization Process of DMPs

Learning the demonstrated movements and generalizing them to new situations is the ultimate
goals of DMPs. According to the introduction of the DMPs model, the function of a nonlinear function
term f (s) is to generate arbitrary complex movements while ensuring the shape of the demonstrated
trajectory. Especially, the weight parameter ωi is the core factor which can be learned from a given
trajectory during the DMPs’ learning process.

Given the displacement sequence xdemo(t) of a demonstration trajectory, where the corresponding
time is t ∈ {∆t, 2∆t, · · · , n∆t} and ∆t represents the step size, we can easily obtain the velocity sequence
.
xdemo(t) and the acceleration sequence

..
xdemo(t). Rearranging Equation (1), integrating the initial

position with x0 = xdemo(0) and final position with xg = xdemo(n∆t), we can calculate the non-linear
function sequence by

fdemo(s) =
τ2 ..

xdemo + Dτ
.
xdemo

K
− (xg − xdemo) + (xg − x0)s. (5)

Additionally, considering the canonical system is integrable, the phase s can be calculated based
on the constants α and τ. Thus, the non-linear function sequence fdemo can be easily obtained.

Furthermore, the learning problem can be transformed into the function approximation problem.
The purpose of the DMPs learning framework is to determine the approximate weight parameter ωi in
Equation (4) to make the values of f close to fdemo. This problem can be addressed with the locally
weighted regression, such as the least mean square method. Equation (4) can be converted to the form
of a linear equation

Tw = f ≈ fdemo, (6)

where

T =


ψ1(s1)∑N
i=1 ψi(si)

s1 · · ·
ψ1(s1)∑N
i=1 ψi(si)

s1

· · · · · · · · ·

ψ1(sn)∑N
i=1 ψi(si)

sn · · ·
ψN(sn)∑N
i=1 ψi(si)

sn

 and (7)

w = [ w1 · · · wN ]
T

(8)

Based on the minimum error criterion

J =
∑

s
( fdemo(s) − f (s)2), (9)

the optimal weight parameter ωi of the system can be obtained when J takes the minimum value.
Following the above steps, we can obtain the weights sequence of the demonstrated movement, which
can be used to generate new motions in any new environment with the same motion characteristics of
the demonstrated one.

The generalization process of DMPs is just the opposite of the learning process. A movement
plan in a new environment can be generated by reusing the obtained weight parameters ωi by
specifying the desired start point x0 and goal point xg and integrating the canonical system with
s = 1. The non-linear function f, which is derived from the phase variable, can, in turn, perturb
the linear spring-damper system to generate the desired attractor landscapes. Just by rearranging
Equations (1) and (2), the displacement x, velocity

.
x, and acceleration

..
x of the generalized trajectory

can all be computed with the point-by-point iterative method. The whole learning and generalization
process are illustrated in Figure 1 in detail.
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Figure 1. Learning and generalization process of dynamic movement primitives (DMPs).

Furthermore, the learning and generalization process of DMPs can also be generalized to the
motion learning of multi-degrees of freedom. In this case, all the motions are coupled in time,
but each degree of freedom has its corresponding non-linear function and dynamical system. In the
DMPs model, the same canonical system can ensure the time coupling of each degree of freedom
and the corresponding dynamical system can guarantee each degree of freedom has its own motion
characteristics. Just by sharing the same canonical system, each degree of freedom can not only have
its own motion characteristics but also keep the synchronization in time. The detail description of this
process is shown in Figure 2.
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3. DMPs-DPF Approach for Obstacle Avoidance

3.1. Overall Framework of DMPs-DPF Approach

Although the DMPs can generalize the learned skills to new environments, it is still a tricky
problem when some obstacles exist in the re-planned motion path. Here, we only consider the obstacles
existed in the motion path are stationary. Considering the excellent performance of dynamical potential
field (DPF) in obstacle avoidance, it is a good try to combine the DPF with the DMPs model so as to
extend its functionality. Essentially speaking, the DMPs model and DPF model are all force field models
guided by attractors, which can both be described by a set of differential equations. Therefore, it is
reasonable and feasible to insert the DPF force field model after reasonable abstraction and correction
into the DMPs model.

When inserted the DPF term into the transformation system as a coupling term, the transformation
system of DMPs can be described as

τ
.
v = K(xg − x) −Dv−K(xg − x0)s + K f (s) + p(o, x, v), (10)
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where, o is the position of the obstacle, x is the current position of the system, ν is the relative velocity of
the obstacle and system, p(o, x, ν) is the coupling term. The modified DMPs can be called “DMPs-DPF”
for short.

The block diagram of DMPs-DPF approach is shown in Figure 3. It mainly contains two parts
(the DMPs model and the DPF coupling term) with three functions (learning, obstacle avoidance,
and generalization). The DPF coupling term is used to avoid obstacles existed in its motion paths.
This term is inserted into the DMPs model through the transformation system shown in Equation (10).
Just with this modification, the robot can easily follow the similar steps shown in Figure 1 to learn and
generalize related movements, even avoid obstacles may be encountered.
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Compared with the DMPs approach, the main difference is the structure of the transformation
system in the DMPs-DPF approach. Just with this modification, the robot can increase the function of
avoiding obstacles while maintaining the original learning and generalization functions.

3.2. Description of the DPF Coupling Term

Based on the relative position and speed relationships between the system and obstacle,
the coupling term can feedback the repulsive force generated by the obstacle to the system in real time.
If the system is close to the obstacle, the repulsive force is increased. Otherwise, the repulsive force is
reduced. Based on this principle, the system can successfully avoid the obstacle. Especially, compared
to p(o, x) which only considers the position relationship of the system and obstacle, the coupling term
p(o, x, ν) also considers the relative speed relationship in addition to the position relationship. This has
the advantage that it can effectively avoid the drawbacks of unsmooth obstacle avoidance trajectory
and speed incoherence.

According to the size and shape of the obstacle, the obstacle avoidance problem can be divided
into two categories. One is the obstacle with negligible size and shape, the other is the obstacle with
non-negligible shape and size. The coupling terms p(o, x, ν) in these two cases are calculated as follows.

(1) An obstacle with negligible size and shape

When the system operates in an environment with a single small obstacle, the obstacle can be
treated as a point with no size and shape. In this situation, the motion analysis of the system and
obstacle is drawn in Figure 4 in detail.
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Figure 4. Motion analysis diagram of the system and obstacle.

In the above motion analysis diagram, O is the simplified obstacle center point position, x is the
current position of the system, v is the current velocity of the system, ap is the acceleration generated by
the coupling term p(o, x, ν), ϕ is the angle between the velocity vector and the relative position vector,
which can be computed with the following equation

ϕ = arccos

 (o− x)T
·

.
x

|o− x|
∣∣∣ .
x
∣∣∣

. (11)

In order to realize the most efficient obstacle avoidance effect, the acceleration term should be
located in the plane determined by the obstacle O, position x, and velocity ν at an angle of 90 deviating
away from the velocity v.

Considering the matching characteristics of the dynamic potential field with the velocity,
the magnitude of acceleration generated by p(o, x, ν) should be consistent with the velocity of the
system. Thus, the coupling term should include the factor constructed by the following equations

Rv = Rotation Matrix(r,π/2)v (12)

r = (o− x) × v, (13)

where r is the cross product of the relative position vector and velocity vector, R is the rotation matrix
with r as the rotation axis and π/2 as the rotation angle. Moreover, the rotation matrix can be solved
with the Rodrigue Rotation Formula. The processed Equation (12) can be represented as

Rv = v cos
π
2
+ r0 × v sin

π
2
+ (r0 · v)r0(1− cos

π
2
), (14)

where r0 is the unit vector of r, which can be calculated by r0 = r/|r|.
Except considering the impact of velocity, the coupling term p(o, x, ν) also takes the angle ϕ and

relative distance d into account. The factor in the coupling term can be calculated by

ψ = ϕ exp(−βϕ) exp(−kd) (15)

where ψ is the control factor, β is the angle coefficient used to adjust the influence of angle on the
coupling term, and k is the distance coefficient used to adjust the influence of relative distance on the
coupling term. Specifically speaking, when the system is moving slowly or the obstacle in the path is
small, it is better to choose large β and k. On the other hand, when the system is moving quickly or the
obstacle is large, it is better to choose small β and k. Following the above rules, the effects of angle and
distance on the value of the coupling term can be effectively presented.



Appl. Sci. 2019, 9, 1535 8 of 16

In summary, overall considering the velocity, angle, and relative distance, the coupling term
can be constituted by multiplying Equations (14), (15), and coefficient γ used to directly adjust the
amplitude of force field. The basic form of the coupling term is

p(o, x, v) = γRvψ. (16)

It is worth noting that Equation (16) is only suitable for a single and small obstacle, for it treats the
obstacle as a point with no size and shape.

(2) An obstacle with non-negligible shape and size

When encountering an obstacle with non-negligible shape and size, which is shown in Figure 5
for illustration, we choose the nearest point on the obstacle to approximate the obstacle’s boundary.
In this situation, the coupling term can be defined as

p(o, x, v) = γpRvψp + γoRvψo + γdRv exp(−kd). (17)
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Figure 5. Diagram of an obstacle with non-negligible shape and size.

In Equation (17), the first term γpRvψp is generated by the point P which represents the nearest
point on the obstacle to the system, and the selection of point P changes in real time with the relative
location of the system and obstacle; the second term γoRvψo is generated by the centroid of the obstacle,
which is fixed during the whole process; the third term γdRv exp(−kd) just relies on the relative distance
with its purpose to guarantee the coupling term can generate enough force to avoid the obstacle, even if
the first two terms are close to 0 when the system is moving towards the obstacle.

Equation (17) is the final form of the DPF-based negative feedback coupling term. It can timely
feedback the complex obstacle information into the DMPs model in a simple enough form, so as to
achieve a stable and smooth obstacle avoidance behavior. Additionally, the learning and generalization
process based on DMPs-DPF is similar to the whole process based on DMPs. We only have to combine
the transformation system with the corresponding coupling term, the robot can follow similar steps to
learn demonstrated tasks and generalize them to a new environment—even existing obstacles on its
motion path.

4. Robot Experiment

This DMPs-DPF approach to learn and generalize the demonstrated motion as well as avoid
obstacles based on DMPs-DPF was validated on the wheelchair mounted robotic arm (WMRA) by
performing the common domestic task of placing a cup on the table.

The WMRA is a typical service robot mainly composed of an electrical wheelchair (Vermeiren,
Suzhou, Jiangsu Province, China) and a 6-DOF robotic arm JACO (Kinova, Montreal, QC, Canada) on
its front right side in our laboratory. It has the advantages of possessing both the mobility performance
of electric wheelchair and the operational performance of a robotic arm [43,44]. Figure 6 shows a
physical picture of WMRA with JACO robotic arm retracted on its shoulder joint. In this paper, we only
focus on the movement of the hand, which is the end-effector of the JACO robotic arm, to accomplish a
set of specific tasks.
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4.1. Task Demonstration

With the help of appropriate teaching interfaces, end users can easily teach a service robot to
complete various tasks existed in the domestic environment. At present, the common teaching interfaces
are shown as follows: (1) handle control mode; (2) kinesthetic teaching; (3) directly recording human
motions, such as visual, exoskeleton, and wearable sensor; (4) teleoperation mode [43]. Considering
the WMRA is mainly used in a home environment and precise demonstration motion information is
required in the learning framework, it is better to choose the default handle control mode. This mode
requires the flexible manipulation of the handle. This may cause some trouble for the elderly or
disabled, but it is very easy for teachers with a good athletic ability to manipulate it.

In order to facilitate the acquisition process of demonstrated motion information, we also designed
a demonstration interface in Visual C++ of Visual Studio 2013 (Microsoft Corporation, Redmond, WA,
US) based on the original application programming interfaces (APIs) of JACO robotic arm. With this
interface, we just have to gather a few key points of the demonstration trajectory; then, the robot
can move along the gathered key points and save the accurate motion information of the complete
trajectory to the specified document. In this way, the Cartesian coordinate information of the hand and
motion state of the fingers can be easily stored as the most original demonstration motion information.
It should be pointed out that the motion information is obtained by reading relative API information
of the JACO robotic arm. And, this motion information is measured in its default coordinate system.

4.2. An Experiment of Placing a Cup on the Table

The experiment of placing a cup on the table is to bring a cup in the distance to the front of the
user. It is firstly carried out in the scene with no obstacle, aiming to demonstrate that the JACO robotic
arm in our framework can learn the demonstrated task and replay it in a new environment with the
similar trajectory shape. On the basis of this experiment, we separately modify the initial settings of
the experimental scene with small size obstacle and large size obstacle on its motion path, in order to
verify that the DMPs-DPF learning framework can also effectively avoid obstacles.

(1) Placing a cup with no obstacle

In this experiment, the WMRA is parked in front of the table and stayed still during the whole
experiment process. The JACO robotic arm is predefined as the right-hand configuration, which is
consistent with the operating habits of most people. After the above initial settings, we carry out
the task demonstration and subsequently generalize the learned task to new locations. Both the
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demonstrated and generalized locations are all randomly selected on the table with one requirement
that they are in the workspace of JACO. The detail positions are shown in Figure 7 with round
numbered papers indicated. Additionally, the Cartesian coordinate information of related paper
position is given in advance.
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Figure 7. Experiment setting of placing a cup on the table. Cup initial position: 1; demonstration goal
position: 2; new goal positions: 3, 4; demonstration 1: from 1 to 2; replay task 1: from 1 to 3; replay task
2: from 1 to 4.

In this experiment scene, No. 1 indicates the initial position of the cup; No. 2 indicates the goal
position for task demonstration; and No. 3 and 4 are two new goal positions for the learned task
replaying, which are obviously different from the demonstrated one.

The complete demonstration process of placing a cup on the table is shown in Figure 8 with the
help of WMRA. During this process, the Cartesian coordinates of the JACO robotic arm are recorded
as the original raw motion information.
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The task demonstration process mainly contains two phases, the grasp motion phase (from step
a to step c) and the mobile motion phase (from step d to step f). It is worth noting that the initial
positions of the cup and the JACO robotic arm are unchanged during the whole experiment process.
For this reason, the grasp motion phase remains the same even towards any different goal position and
the only difference is the mobile motion phase.

In order to obtain a better contrast effect, we only consider the mobile motion phase in the
following learning and generalization process and comparatively analyze the task replaying with
different goal positions. The complete demonstrated trajectory toward No. 2 goal position is drawn in
Figure 9a. In this figure, the blue straight line represents the grasp motion phase and the red straight
line represents the mobile motion phase.
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Figure 9. Demonstration and generalized trajectories drawn in Matrix Laboratory (Math Works, Natick,
MA, US): (a) original whole demonstration trajectory; (b) generalized mobile motion trajectories.

During the learning process, the recorded motion information is used to compute the non-linear
function fdemo in Equation (5). Its core weight parameters ωi can also be calculated with the least mean
square method with Equations (6)–(8) in the dynamical system. For the related parameters in our
system, we made the following choices. The α in the canonical system is set to –log (0.01), so as to
make sure the ninety-nine percent of phase convergence at t = τ. As the spring constant K in the
transformation is set to 100. The damping D is set to 20, which is used to make the system critically
damped. Additionally, the number of Gaussian basis functions in the non-linear function is set to 4.

When it comes to the replaying phase, we replace Equation (5) with the new goal position.
In addition, the weight parameters ωi obtained in the learning process are used to calculate the
corresponding non-linear function. This is the core to generate any new trajectory with a similar
shape style. Finally, we use the point-by-point iterative method to calculate the motion information of
the new generalized trajectory. In this step, the precision threshold is set to 0.02 and the number of
iterations is set to 5. Following the above steps, the generalized mobile motion trajectories towards
different goal positions can be obtained and drawn in Figure 9b for illustration. With these generalized
mobile motion phases integrated with the grasp motion phase, the WMRA can easily accomplish the
specified task of placing the cup to different goal positions marked with No. 3 and No. 4.

In Figure 9b, the green dotted line represents the generalized trajectory towards No. 3 goal
position and the blue dash-dotted line represents the trajectory towards No. 4 position. Additionally,
we also add the original mobile demonstration trajectory for contrast, which is represented by the red
solid line.

From the above figures, we can easily draw the conclusion that the generalized trajectories can
converge to the specified positions. This indicates the WMRA can replay the learned task in the
new environment. Especially, neither the green dotted line nor the blue dash-dotted line, they have
similar trajectory shape styles compared to the original demonstration. This confirms that the basic
characteristic of the learning framework is to generate a new trajectory with a similar shape style.
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This characteristic is very significant for the users of WMRA. With this advantage, the WMRA can
accomplish related tasks according to the user’s favorite operating habits.

(2) Placing a cup with a small spherical obstacle

Based on the initial settings of the above experiment, we modify the experiment by adding an
extra small spherical obstacle (represented by a ball with its diameter 55 mm) at the center of its
mobile motion path from No. 1 position to No. 3 position. The initial experiment setting is shown in
Figure 10a.
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setting with spherical obstacle; (b) generalization trajectory with a spherical obstacle.

Considering the size of the spherical obstacle is small, we integrate Equation (10) with Equation (16)
as the modified transformation system. With the help of the initial demonstration trajectory obtained
in experiment 1), we follow the same learning and generalization steps to obtain the new avoidance
obstacle trajectory and draw related trajectories in Figure 10b. With this avoidance obstacle trajectory,
the WMRA easily avoid the spherical obstacle during its mobile motion phase and successfully
accomplish the task.

In Figure 10b, the green dotted line represents the new generalization avoidance obstacle trajectory
towards No. 3 goal position. In contrast, the initial generalization trajectory and original demonstration
trajectory are also added and respectively represented with a purple solid line and red dash-dotted
line. Moreover, the three-dimensional models of spherical obstacle and cup are drawn in this figure
for illustration. In addition, the cup position is randomly selected on the table except for the No. 1
position so as to avoid the coincidence with related trajectories. It is needed to point out that the
related trajectory in this paper is the path of JACO robotic arm, which grasps the cup at the middle
height position (shown in Figure 8b). For this reason, we also need to consider the half height of the
bottle to avoid obstacles in the actual experiment. In Figure 10b, the initial part of the green dotted
line coincides with the purple solid line. This indicates the generalized trajectory remains the same as
the originally demonstrated one. When the system approaches the spherical obstacle, the generalized
trajectory changes immediately to avoid the obstacle encountered. After that, the generalized trajectory
smoothly approaches the original demonstrated trajectory and converges to the specified goal position.
Especially, the shape of the avoidance obstacle trajectory is similar to the original demonstration
trajectory except for the avoidance obstacle part. This verifies the DMP-DPF learning framework can
not only avoid the obstacles encountered in its motion path but also can maintain the demonstrated
motion style while avoiding the obstacle.

(3) Placing a cup with a large cuboid obstacle

The initial experiment setting is similar to experiment 2), which is shown in Figure 11a in detail.
The only difference is that we replace the spherical obstacle with a large cuboid obstacle (represented
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by a carton with its length 100 mm, width 100 mm, and height 148 mm) on its motion path. Especially,
the location of the carton is at the center of its mobile motion path from location 1 to location 4 and
its direction is parallel to the JACO robotic arm coordinate system. Considering the shape of the
obstacle cannot be ignored, we integrate the Equation (10) with the Equation (17) as the modified
transformation system. After this modification, we obtain the new avoidance obstacle trajectory which
is drawn in Figure 11b. Combing this avoidance obstacle trajectory with the grasp demonstration
trajectory, the WMRA easily accomplish the task of placing a cup with a large cuboid obstacle.
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Figure 11. Experiment of placing a cup with a large cuboid obstacle: (a) initial experiment setting with
cuboid obstacle; (b) generalization trajectory with a cuboid obstacle.

In Figure 11b, the new generalization avoidance obstacle trajectory towards No. 4 goal position is
represented with the green dotted line. The original demonstration trajectory and initial generalization
trajectory are also added in this figure and represented with the red solid line and blue dash-dotted
line. Except for the relative trajectories, the three-dimensional models of cuboid obstacle and cup are
drawn for illustration. Similar to experiment 2, the position of the cup is also randomly selected.

In Figure 11b, the initial part of the generalization avoidance obstacle trajectory is almost the same
with the original demonstration trajectory. Compared to the avoidance obstacle trajectory in Figure 10b,
the trajectory shape in Figure 11b changes largely when the system approaches the obstacle. This may
be caused by the large repulsive force generated when considering the shape of the obstacle. Even with
this large fluctuation, the trajectory still converges to the goal position with a similar shape style. This
experiment further confirms the validity and advantage of the proposed DMPs-DPF approach

5. Conclusions

In this paper, we mainly describe a general learning and generalization framework based on
DMPs-DPF for WMRA service robot to autonomously accomplish some common domestic tasks.
With this framework, we only have to demonstrate related tasks to the WMRA. Then, the WMRA
can learn the tasks and generalize them to a new environment even obstacles exist on the motion
path. Experiments of placing a cup on the table, no matter with an obstacle or without obstacle on its
motion path, show that our learning framework can help the robot to accomplish the learned tasks and
generate similar motion trajectories with the demonstrated one. Even when an obstacle exists on its
path, the shape style of the generalization trajectory is still similar except the avoidance obstacle part.
This phenomenon proves the validity of the proposed approach.

It is important to emphasize that the approach is not restricted to the WMRA service robot only.
Any type of service robot that can capture the end-effector’s Cartesian coordinate information and
related environment state can substitute the WMRA to accomplish the demonstrated task. Future
work will focus on the management and extension of the related demonstration task library.

Author Contributions: M.C. wrote the paper; Y.Y. conceived and designed the experiments, Y.L. performed the
experiments; M.Z. revised the paper.



Appl. Sci. 2019, 9, 1535 14 of 16

Funding: This work is supported by the Key Project of Science and Technology of Weihai (No. 2016DXGJMS04);
Weihai Robot and Intelligent Equipment Industry Public Innovation Service Platform (No. 2015ZD01), and the
Key Research Project of Science and Technology of Shandong Province (No. 2016GGX101013).

Acknowledgments: The authors would like to thank Dong Ma who participated in the experiments and gave us
some valuable suggestions to improve the research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alqasemi, R.M.; McCaffrey, E.J.; Edwards, K.D.; Dubey, R.V. Analysis, evaluation and development of
wheelchair-mounted robotic arms. In Proceedings of the 9th International Conference on Rehabilitation
Robotics, Chicago, IL, USA, 28 June–1 July 2005; pp. 469–472.

2. Abolghasemi, P.; Rahmatizadeh, R.; Behal, A.; Bölöni, L. Real-time placement of a wheelchair-mounted
robotic arm. In Proceedings of the 25th IEEE International Symposium on Robot and Human Interactive
Communication, New York, NY, USA, 26–31 August 2016; pp. 1032–1037.

3. Kim, D.-J.; Wang, Z.; Paperno, N.; Behal, A. System design and implementation of UCF-MANUS—An
intelligent assistive robotic manipulator. IEEE-ASME Trans. Mechatron. 2014, 19, 225–237. [CrossRef]

4. Kim, B.-H. Analysis on Load Torque Effect for Assistive Robotic Arms. Int. J. Fuzzy Log. Intell. Syst. 2018, 18,
276–283. [CrossRef]

5. Wang, W.; Zhang, Z.; Suga, Y.; Iwata, H.; Sugano, S. Intuitive operation of a wheelchair mounted robotic arm
for the upper limb disabled: The mouth-only approach. In Proceedings of the IEEE International Conference
on Robotics and Biomimetics (ROBIO), Guangzhou, China, 11–14 December 2012; pp. 1733–1740.

6. Kim, D.-J.; Wang, Z.; Behal, A. Motion segmentation and control design for UCF-MANUS—An intelligent
assistive robotic manipulator. IEEE-ASME Trans. Mechatron. 2012, 17, 936–948. [CrossRef]

7. Rai, A.; Meier, F.; Ijspeert, A.; Schaal, S. Learning coupling terms for obstacle avoidance. In Proceedings
of the IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, 18–20 November 2014;
pp. 512–518.

8. Katz, D.; Venkatraman, A.; Kazemi, M.; Bagnell, J.A.; Stentz, A. Perceiving, learning, and exploiting object
affordances for autonomous pile manipulation. Auton. Robot. 2014, 37, 369–382. [CrossRef]

9. Rai, A.; Sutanto, G.; Schaal, S.; Meier, F. Learning feedback terms for reactive planning and control.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017; pp. 2184–2191.
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