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Abstract: The removal process of activated sludge in sewage treatment plants is very nonlinear,
and removal performance has a complex causal relationship depending on environmental factors,
influent load, and operating factors. In this study, how causal relationships are expressed
in collected data was identified by structural equation modeling. First, path modeling was
attempted as a preliminary step in structural equation model (SEM) construction and, as a result,
the nutrient-removal mechanism could not be sufficiently represented as a direct causal relationship
between measured variables. However, as a result of the deduced SEMs for effluent total nitrogen
(T-N) and total phosphorus (T–P) concentrations, accompanied by exploratory factor analysis to
extract latent variables, a causal network was formed that describes the direct or indirect effect of the
latent factors and measured variables. Hereby, this study suggests that it is possible to construct an
SEM explaining the nutrient-removal mechanism of the activated-sludge process with latent variables.
Moreover, nonlinear features embedded in the mechanism could be represented by SEM, which is a
model based on linearity, by including causal relations and variables that were not derived by path
analysis. This attempt to model the direct and indirect causalities of the process could enhance the
understanding of the process, and help decision making such as changing the driving conditions that
would be required.

Keywords: causal model; nutrient removal; path model; structural equation modeling (SEM);
wastewater treatment plant

1. Introduction

The history of the activated-sludge process, which is the core process that determines treatment
performance in the sewage-treatment process, has already been around for over 100 years [1]. Although
the removal mechanism is well-described in textbooks, its characteristics are highly nonlinear and
site-specific, so when problems with effluent quality arise, the operator’s empirical knowledge plays a
big role in maintaining process stability [2].

There are two kinds of approaches to understanding the inner mechanism of the activated-sludge
process, one is a mathematical model-based approach to identify the theoretical structure, and the
other is a data analysis-based approach to extract meaningful information or verify a hypothesis. As a
first method, activated sludge models (ASMs) have been widely applied to field-scale and pilot-scale
plants [3]. However, due to the complexity of Monod equation-based dynamics, and the number of
parameters, there has also been an attempt to simplify the model to improve usability [4–7].
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The efficacy of the second approach, the attempt to understand via statistical analysis of the
obtained data from the activated-sludge process, mainly depends on the quality and quantity of the
obtained data. Unlike the mathematical model-based approach, this method makes it possible to
use various measurement variables that cannot be utilized for mathematical models such as pH and
oxidation reduction potential (ORP). Besides the sensor variables, operational factors such as the F/M
ratio and airflow rate can be analyzed with influent/effluent water-quality variables within a dataset
with the same utility. The most popular methodology applied to data analysis is principal component
analysis (PCA), which has been adapted for sewage-treatment-process monitoring and identification of
the operational state [8–10]. For the other approaches to enhance the understanding of the processing
mechanism, there have been attempts to use signal processing and pattern recognition to detect
operational abnormality or sensor faults. Wimberger et al. (2008) [11] applied a signal filter to detect
the faults of the sewage-treatment process of sequencing batch reactor types. Baklouti et al. (2018) [12]
tried to detect sensor faults using an improved particle filter. Chow et al. (2018) [13] developed
a fault-detection and alarm algorithm based on the correlation analysis of signals of ultraviolet
(UV) spectroscopy.

A causal model can be considered to produce a more intuitive result for the purpose of
supporting the judgment of the process operator and improving understanding the process. For the
activated-sludge process, the causal-relationship model has mainly been attempted in the form of
a rule base. As remarkable cases, Cortés et al. (2003) [14] and Comas et al. (2003) [15] established
a rule-based decision-support system for the settleability of activated sludge, which is relatively
difficult to implement using mathematical models. The interpretation of the process to diagnose
and understand it through the construction of the rule base led to the establishment of the Bayesian
network model, a type of probabilistic causal model. Chong et al. (1996) [2], who previously pointed
out the difficulty of using mathematical models, attempted a rule-based probabilistic approach using
a Bayesian network. Huang et al. (1999) [16] established a graphical model for effluent quality
and enhanced it to a fuzzy causal-network model. Aulinals et al. (2011) [17] developed a causal
model for wastewater-treatment-plant operation and made it implementable as a knowledge-based
decision-support system via web programming equipped with a reasoning function. Li et al. (2013) [18]
tried to use the Bayesian network model to predict the effluent quality of a sewage-treatment plant,
and Garvajal et al. (2017) [19] tried Bayesian belief-network modeling on the disinfection process of
treated effluent to monitoring residual chlorine.

The basis of causal modeling can be obtained from intuitionally collected operational knowledge
and statistical analysis of an accumulated historical database. As an enhanced approach of multivariate
statistical analysis, structural equation modeling (SEM) approaches can be suggested as a tool to
investigate the causal relationships between variables of interest. Although they have mainly been
applied to verify a hypothesis in the field of social science, recently applications to the natural sciences,
including biology, have also been frequently reported [20–25]. For the biology, it is easy to find out its
recent applications which include SEM for biological communities change in river ecosystem [26–29].
The first SEM trial on the water-quality field was by Zou et al. (1994) [30], who pointed out the
drawback of the general regression model is that it cannot reflect measurement errors, and emphasized
the usefulness of SEM considering both the composition of latent variables and the causal relation
between them in one model. Earlier, Ariana et al. (2010) [31] analyzed the denitrification potential
in wetland soil by constructing an SEM. As a recent application of SEM in the water-quality field,
He et al. (2016) [32] discussed the multidimensional inter-relationships between various water-quality
factors and intertwined unit process and established a causal model for meteorological, hydraulic,
and water-quality factors based on probabilistic approach. Zhu et al. (2018) [33] tried to set up an SEM
describing the effect of floodgate operation on nitrogen transformation in a river. For wastewater or the
sewage-treatment process, Moreira et al. (2008) [34] conducted path analysis for Escherichia coli removal
at a sewage-treating pond. As can be seen from these studies, SEM cannot be considered as limited
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to the social sciences. It can be applied to numerical variables from biology and the natural sciences,
and it is especially useful in identifying direct and indirect causal relationships structured together.

This paper suggests some SEM approaches to discover the stressors on effluent T–N and T–P
concentrations from a sewage-treatment plant, and their direct and indirect affecting structure,
although influence factors are, of course, theoretically well-established in textbooks. However, in spite
of the highly nonlinear characteristics of the activated sludge system, operators tend to linearly perceive
the causality. Therefore, verifying the linearity of the causal relationship would conversely be useful
information to the operator.

2. Materials and Methods

2.1. Operational Data Acquisition

The dataset used in this study was obtained from a field-scale A2/O sewage-treatment plant with
a treatment capacity of 680,000 m3/day. Influent T–N and T–P concentration was 27 and 3 mg/L,
respectively, and 8.8 and 1.1 mg/L for effluent. The daily operational records accumulated over 3 years
consisted of 996 datasets for 42 variables. After excluding datasets that were missing records and
outliers, 334 datasets were used to establish the path model and SEM. Because there was the opinion
that the number of datasets should be greater than 150 [35], the amount of data prepared for this study
was reasonable for trying SEM. The 42 variables, including meteorological variables, water-quality at
each end of the unit process, and operational factors, are listed in Table 1. Then, the data were divided
into two groups by random extraction using SPSS ver. 18; one group was used for model construction
and the other for model validation. Meteorological data, such as air temperature (◦C), rainfall (mm),
and relative humidity (%), were included because they could act as a hidden factor influencing influent
water quality. From the bioreactor, operational factors that affect nutrient-removal performance and
state variables implicitly indicating them were included.

Table 1. Collected data variables.

Items Variables

Weather conditions Air temperature (◦C), rainfall (mm), relative humidity (%)

Primary settling tank * Water temperature (◦C), pH, BOD (mg/L), COD (mg/L), SS (mg/L),
T–N (mg/L), T–P (mg/L), alkalinity, S-BOD, HRT (h)

Bioreactor **

Flow (m3/d), water temperature (◦C), pH, DO (mg/L), MLSS (mg/L), MLVSS (mg/L), SVI,
sludge return ratio (m3/d),

Sludge return ratio (%), F/M ratio, BOD loading (kg/m3·day), SRT (day),
A-SRT (day), Internal sludge-return ratio (%), ORP (mV),

PO4–P (mg/L, at both anaerobic and anoxic tanks),
NH4–N (mg/L, at both anoxic and oxic tanks),
NO3–N (mg/L, at both anoxic and oxic tanks),

air flow (m3/day), reactor volume (m3), HRT (h)

Effluent Water temperature (◦C), pH, BOD (mg/L), COD (mg/L), SS (mg/L), T–N (mg/L), T–P
(mg/L), alkalinity, HRT (h)

*: The items will be expressed with indication of “B_in” (ex: B_in_BOD). **: The items will be expressed with
indication of “B_” (ex: B_SRT).

2.2. Structural Equation Model

2.2.1. Path Model

Path analysis is an extension of multiple regression analysis [34], with a path model that depicts
the direct and indirect effects of independent variables on one or more independent variables based
on a hypothesis to be verified. Verification of the path model is performed by assigning data to the
model and determining fitness. There are four types of direct causal relationships shown in Figure 1.
Path analysis is the basis for constructing the basic structure of the SEM. Through path analysis,
the causal relationship can be represented in more detail by confirming the inherent causal effects as
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the direct, indirect, and total effect. The hypothesized relationship, illustrated at each path, is tested on
its acceptance or not by the path direction and the significance of the path coefficient. The standardized
path coefficient is key to explaining the strength of the causal path, which enables to compare it with
other coefficients in one model. The reliability of the path coefficients should be confirmed based on
test statistics such as critical ratio (C.R.) value and p-value. If the C.R. is above 1.96 and the p-value is
smaller than 0.05, then the path is reliable. In this research, the p-value was used to judge reliability.
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To set up the path model for effluent T–N and T–P concentrations, the minimum variables
considered to theoretically affect the targets were used to comprise the initial path models, respectively.
Then, the initial model was examined for fitness using the fitness indices suggested in Table 2. Then,
If the initial path model was judged to be appropriate, the model was extended by adding the variables
and determining the fitness again. Through repetition of this process, the modified path model was
derived. This method of establishing the initial model and then confirming the modified final path
model through expansion and validation is a generalized process to deduce the rational model, which
also has been proposed by Santibáñez-Andrade et al. (2015) [36].

Table 2. Evaluation indices about structure goodness.

Index Acceptance Level Classification

Q value <3: Excellent Parsimony-fit indices
Goodness of Fit Index (GFI) >0.9: Excellent Absolute-fit indices

Root Mean Square Error of Approximation (RMSEA)
<0.05: Excellent

<0.08: Good
<0.1: Normal

Absolute-fit indices

Adjusted Goodness of Fit Index (AGFI) >0.8: Good Absolute-fit indices
CFI >0.9: Excellent Incremental-fit indices

2.2.2. Structural Equation Model

The structural equation model is a statistical multivariate model that can confirm the direct and
indirect effect of independent variables on the dependent, and the degree of the causal relationship
between them, related to a specific phenomenon [37–39]. Wright (1934) [40] introduced this
methodology to the field of natural science to the biological population. Since then, the scope of
applications has greatly expanded and has been applied to social sciences, psychology, chemistry,
and biology. After setting up the initial model reflecting the hypothesis, regression analysis, correlation
analysis, and factor analysis were used to confirm the causal relationship. Particularly, factor analysis
should be used to investigate the causal structure of hidden factors and complete the structure. This is
due to the difference from the path model, which is SEM, including latent variables representing the
complex effects of various measured variables. Factor-analysis application in establishing SEM can
be divided into exploratory factor analysis and confirmatory factor analysis. The confirmatory factor
analysis-based SEM starts with the initial model constructed by the relationships that are already
known, or a designed hypothesis. Then, the model is verified with the fitness indices, and the causal
path in the model is tested for its significance. On the other hand, exploratory factor analysis performs
factor analysis to find out and set the latent variables. This approach has the disadvantage of not being
able to fully reflect the theoretical causal relation because it constitutes a causal relation depending on
the measured data. The structural equation model established in this study was based on exploratory
factor analysis because the latent variables were deduced by factor analysis and they formed the basic



Appl. Sci. 2019, 9, 1398 5 of 18

structure of the SEM. When the theoretical causal relationships are not clear, this procedure is regarded
as a rational approach in both natural-science [27,41] and social fields [42].

The structural equation model consists of factors and their causal relationships forming the
structure model as described in Figure 2, and the measured variables (x1, x2, . . . ) related to latent
variables with their observed error terms form the observed model. Here, the factor is also called a
latent variable, which implies the combined effect of the observed variable. Each measurement variable
contains an error, which means the extent to which the latent variable cannot be fully explained by
measurement variables. This error comes from the measurement process and it is one of the main
reasons for using latent variables in SEM. The advantage of the structural equation is that it can analyze
the combined effects of a large number of factors. In addition, a measurement error can be considered
and its size can be derived. However, since the assumption that data must follow a normal distribution
is satisfied, the more data, the more preferable it is [35].
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The fitness index to examine the suitability of the constructed SEM can be divided into three
categories, absolute-fit indices, parsimony-fit indices, and incremental-fit indices (Table 2). The absolute
fit index is an index of how well the research model reflects input data. It can be said that the developed
model itself is evaluated without comparing with other models. The chi-square statistic is often used
as a representative. However, chi-square statistic has a disadvantage of underestimating the fit as
the size of the sample increases. As an alternative to chi-square, RMSEA (root mean square error of
approximation) is a value adjusted by the chi-square statistic to the degree of freedom and sample
size and has been used in many studies recently. The RMSEA of 0.05 or less means very good fitness
and below 0.8 means good fitness. If it is less than 0.1, it can be said to be normal. GFI (goodness
of fit index), an index used in this study as an absolute fit index, is the most widely used fit index
in the structural equation model. GFI is also indirectly affected by the size of the samples as well
as the chi-square statistic. In order to compensate for this, AGFI (adjusted goodness of fit index) is
used as an indicator that the GFI value is modified by using the degree of freedom of the model.
Both GFI and AGFI have values between 0 and 1, and 0.9 and 0.8, respectively, indicate a good fit of
the model. The Incremental fit index is an index indicating how well the research model reflects the
input data than the null model, unlike the absolute fit index that evaluates the model itself. The most
representative index is the NFI (normed fit index), but NFI has the disadvantage of less sensitivity
to the complexity of the model. Therefore, CFI (comparative fit index) can be used as modified NFI.
Parsimony fit index means the degree to which the model reaches the maximum degree of fit required
fitness for each estimated coefficient. As a representative parsimony fit index, there is Q-value used
in this study, which is a value obtained by dividing the chi-square value by degree of freedom to
compensate for the disadvantage of the chi-square statistic.

The absolute fit index, the incremental fit index, and the parsimony fit index evaluate the model
by different criteria. When evaluating one structural equation model, it is not desirable to evaluate by
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only one kind of index. In most studies, two or more indices from a least two categories are applied
and evaluated. In this study, five indexes were evaluated in three categories to evaluate the fitness of
the structural equation model to be constructed more carefully using data with high uncertainty.

This research adapted the Q value, goodness of fit (GFI), and root mean square error of
approximation (RMSEA) among absolute-fit indices. The adjusted GFI (AGFI) of parsimony-fit
indices and the comparative fit index (CFI) as an incremental-fit index were also adapted for checking
compliance with various criteria. GFI and AGFI were suggested by Jöreskog and Sörbom [37],
and they can be regarded as the most popular indices to test SEM fitness. If the GFI value is greater
than 0.9, it can be generally judged as properly constructed [33,42–44]. An AGFI value larger than
0.9 is seen as “excellent fitness”, but over 0.8 can be “acceptable” [45,46]. The smaller the value of
RMSEA, the most popular index, the better [47], but no larger than 0.06 [42,44,48] or 0.08 [20,43,49,50].
The CFI, the most frequently used incremental index, guarantees the model’s fitness when greater
than 0.8 [49] or 0.9 [36,50], and best close to the value of 1.0 [20,50–52]. In this research, AMOS v.20.0
(IBM Statistics, Inc.) was used for path modeling and the SEM.

3. Results

3.1. Structural Equation Modeling for Effluent T–N

3.1.1. Path Model of Effluent T–N

Initial Path Model for Effluent T–N

The initial path model for effluent T–N concentration (Figure 3a) consists of seven variables,
including the target: airflow rate (B_Airflow), return-sludge ratio (B_Sludge return ratio),
DO concentration in the aeration tank (B_DO), MLSS concentrations in the aeration tank (B_MLSS),
ammonia and nitrate concentration in the aeration tank (Oxic_NH4-N and Oxic_NO3-N), and effluent
T–N concentration (Effluent T–N). These variable configurations fully explain the theoretical
knowledge that nitrate and ammonia in the aeration tank affect effluent T–N. After an initial trial of
model setting with minimum variables as Oxic_NH4-N and Oxic_NO3-N, B_DO and Effluent T–N,
other variables were added or removed by repetitively checking the fitness to obtain the best model
showing acceptable index values. In the confirmed initial path model, the indices showed that its
fitness was acceptable except for an RMSEA of 0.089 (Table 3).
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Table 3. Fitness results of developed path models for effluent T–N concentration.

Classification Goodness-of-Fit
Criterion

Initial Model Modified Model

Result Validation Result Validation

Q value below 3 2.303
(Fitness)

1.373
(Fitness)

1.652
(Fitness)

2.111
(Fitness)

GFI above 0.9 0.991
(Fitness)

0.976
(Fitness)

0.967
(Fitness)

0.958
(Fitness)

AGFI above 0.8 0.945
(Fitness)

0.938
(Fitness)

0.907
(Fitness)

0.881
(Fitness)

RMSEA below 0.05
(below 0.1)

0.089
(Fitness)

0.047
(Fitness)

0.063
(Fitness)

0.082
(Fitness)

CFI above 0.9 0.983
(Fitness)

0.979
(Fitness)

0.989
(Fitness)

0.980
(Fitness)

The direction of each path and significant results are shown in the initial path model (Figure 3a).
The path results of statistical significance showed that the two paths from B_MLSS to both Oxic_NO3-N
and Oxic_NH4-N did not satisfy the 95% level of significance (p < 0.05). Comparing the significant
path coefficients except for these paths, there were three paths that had relatively high importance.
First, airflow rate (B_Airflow) had a relatively high effect on MLSS concentration in the bioreactor.
The second, the strength of the path from the NO3-N concentration in the oxic tank (Oxic_NO3-N) to
the effluent T–N (Effluent T–N) concentration was high, a natural result in theory. Consistent with the
theory is the return-sludge ratio (B_Sludge return ratio) having a large influence on the DO (dissolved
oxygen) concentration in the bioreactor (B_DO), and B_DO having a significant effect on both NH4-N
and NO3-N concentration in the aeration tank. The strength of the path from Oxic_NO3-N to effluent
T–N in the aeration tank was high, as its path coefficient was 0.61, and significant (p < 0.05), whereas
the path from Oxic_NH4-N to effluent T–N was not significant. This result explains the mechanism
of nitrogen removal in the activated-sludge process. When nitrification efficiency is high, ammonia
concentration in the aeration tank would be low. The standardized path coefficient means the level of
influence, and it corresponds to the regression coefficient in the standardized model. In this respect,
it is reasonable that the path coefficient from B_Airflow to B_MLSS is high, and the path coefficient to
B_DO is low (−0.24). The DO concentration measured in the reactor indicates the remaining DO after
being used for carbon oxidation and nitrification. When the airflow rate is excessive, then it is possible
to have a linear correlation with DO concentration. However, the effect of MLSS concentration on
nitrate and ammonia nitrogen was evaluated as statistically insignificant. This is due to the fact that
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MLSS concentration is a composite result of microbial growth, the amount of returned sludge and its
degree of concentration, and inflow rate.

The deduced initial path model was verified with the prepared data group for validation and
not used in the model setup. Validation fitness was acceptable, with a Q value of 1.373, GFI of 0.976,
AGFI of 0.938, RMSEA of 0.047, and CFI of 0.979 (Table 3).

Modified path model for effluent T–N

The initial path model for effluent T–N was enhanced to describe the causal relationships of a
larger number of variables (Figure 3b). As the initial path model could not explain the effect of influent
variation, the measured variables of bioreactor inflow concentrations were added and tested with
fitness indices. Through the iterative process of finding a suitable model, airflow rate (B_Airflow)
was omitted from the causal network, and BOD, COD, and T–N inflow concentration (B_in_BOD,
B_in_COD, B_in_T–N) were introduced into the model. The fitness of this modified path model for
effluent T–N was acceptable for all indices.

There are four paths interpreted as meaningless by having p-values greater than 0.05, and they
are represented by dashed lines in Figure 3b. For the significant paths, there are three paths that
are from influent BOD concentration to MLSS concentration in the bioreactor, from influent T–N
concentration to effluent T–N showing effluent T–N variation depending on influent loading, and the
path from influent T–N to the aeration-tank nitrate. These two paths related to influent and effluent
T–N concentration means that, even with stable nitrogen-removal performance, fluctuation of effluent
T–N is due to influent fluctuation. It can also be interpreted as showing the limitation of nitrogen
removal using inner nitrate return from the aeration tank to the anoxic. This is in agreement with the
well-known theory and the processing mechanism, and it is meaningful to find these relationships
embedded in the measured variable numbers.

MLSS concentration remains in the model because influent BOD is included in it as an influencing
factor on effluent T–N. There was an attempt to build a path model that includes influent BOD as an
essential internal carbon source for denitrification and excludes MLSS concentration, but the model
could not meet the fitness standard. The insignificant path from B_DO to Oxic_NH4-N can be estimated
as having the same theory as the remaining DO concentration mentioned above.

As the validation results of the modified path model for effluent T–N using the datasets prepared
by random extraction for model verification, the model fitness was acceptable with the index values of
2.111 for Q, 0.958 for GFI, 0.881 for AGFI, 0.082 for RMSEA, and 0.980 for CFI.

3.1.2. SEM for Effluent T–N

As mentioned previously, factor analysis was performed to extract latent variables that would
be the core of the causal relationship. With eigenvalues larger than 1 and the absolute value of factor
loading higher than 0.5 (Table 4), four latent factors were extracted (Table 5). All the factor loadings
are according to the nature of the variables under the influence of each latent factor, the name of each
latent variable was assigned. To set up the first SEM trial for effluent T–N, the latent variables were
structured upon the causal concept obtained from the results of path modeling. Then, through the
repeated process of tentatively adding the measured variables to the latent variables, the initial SEM
was extended. For each trial, model fitness was determined and a model was established that includes
the most and most reasonable variables (Figure 4). There are three meaningful paths with statistical
significance. First, the return flow-related factor to effluent T–N shows the developed SEM having high
correspondence with the well-known nitrogen-removal mechanism in process types of MLE or A2/O
adapting internal nitrate recycling. It should be noted that the inner sludge-recycling ratio and the
SRT of the aeration tank could not be included in the path model, whereas the latent variables under
them could form an irreplaceable part of the SEM. The second, the path from the inflow-related factor
to the operational factor shows natural causality between operational actions and influent variation.
The third path is from the operational factor to effluent T–N. This path can be combined with the
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path from the influent-related factor to the operational factor to perfectly explain the dynamics of the
nitrogen-removal process. In detail, the combined path describes the procedure of nitrogen removal,
and influent variation induces a change in the operational factor, which, in turn, affects effluent quality
along with the influence of the return flow-related factor. The SEM constructed for effluent T–N is
different from the modified path model, as it was possible to extensively model the variable effects
that were difficult to be utilized in the path model.

Table 4. Factor loadings for the variables related to effluent T–N concentration.

Variable
Component No.

1 2 3 4

Rainfall 0.038 −0.652 −0.232 0.253
Relative humidity −0.114 −0.796 −0.046 −0.137

B_pH −0.154 −0.758 −0.136 −0.126
B_in_BOD 0.858 0.278 0.006 0.103
B_in_COD 0.933 0.214 0.118 0.047

B_in_SS 0.874 −0.192 −0.103 −0.065
B_in_TN 0.725 0.490 0.177 0.254
B_in_TP 0.869 0.401 0.116 0.021

B_Sludge return ratio 0.293 0.790 0.011 0.026
B_internal sludge return ratio 0.365 0.650 0.449 0.134

B_A-SRT 0.229 0.794 0.241 0.255
B_SRT 0.163 0.880 0.127 0.078

B_Air flow 0.069 0.102 −0.704 -0.044
B_DO −0.190 −0.139 0.639 0.027

B_MLSS 0.325 −0.456 0.565 0.226
B_SVI 0.262 −0.450 0.551 0.370

B_F/M ratio 0.000 −0.085 −0.690 −0.064
Effluent_T-N 0.333 0.268 0.266 0.610

Table 5. Latent variables deduced by factor analysis for effluent T–N concentration.

Factor Variables

Environmental Rainfall, relative humidity, B_pH
Inflow-related B_in_BOD, B_in_COD, B_in_SS, B_in_T–N, B_in_T–P

Return flow-related B_Sludge return ratio, B_Internal sludge-return ratio, B_A-SRT, B_SRT
Operational B_Air flow, B_DO, B_MLSS, B_SVI, B_F/M ratio
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Sanches Fernandes et al. (2018) [29] described the type of connection between a latent variable
and the measured variables to which it is linked as two types of model, the reflective model and
formative model. In this research, the formative model was implemented. The formative model is the
case where the effect of latent variables is expressed as linked measured variables. On the other hand,
measured variables are viewed as latent-variable causes. Therefore, “B_Internal sludge return ratio”
and “B_A-SRT” represent the effect of the “Return flow-related factor” latent variable. In the cases
of “Inflow-related factor” and “Environmental factor”, the relationship can be regarded as reflective.
However, when the reflective type was applied to the factors, model fitness deteriorated. Therefore,
it should be interpreted as rainfall and humidity included in the dataset, expressing the effect of
environmental impact. The suggested SEM for effluent T–N shows the importance of the causal
structure of the latent variables, and that the extent to which a latent variable is exposed depends on
the choice and usage of the measurement variables in the target domain. The fitness of the model was
acceptable for all indices as shown in Table 6.

Table 6. Fitness of structural equation model for effluent T–N.

Factor Criterion Result (Test) Result (Validation) Fitness/Not

Q value <3 2.455 2.604 Fitness
GFI >0.9 0.924 0.919 Fitness

AGFI >0.8 0.847 0.838 Fitness
RMSEA <0.05 (<0.1) 0.094 0.098 Fitness

CFI > 0.9 0.917 0.912 Fitness

3.2. Structural Equation Modeling for Effluent T–P

3.2.1. Path Model of Effluent T–P

Initial Path Model for Effluent T–P

The initial path derived for effluent T–P concentration consisted of five related variables affecting
the target: influent T–P concentration in the bioreactor (B_in_T–P), DO concentration of the aeration
tank (B_DO), PO4–P concentration in the anaerobic tank (Anaero_PO4–P), sludge-recycling ratio from
the settling tank to the bioreactor (B_Sludge return ratio), and PO4–P concentration of the aeration tank
(Oxic_PO4–P) (Figure 5a). The fitness of this initial path model was acceptable for all indices and is
listed in Table 7. There were two paths with an insignificant p-value, from influent T–P concentration
(B_in_T–P) to PO4–P concentration of the aeration tank (Oxic_PO4–P), and from B_DO to Oxic_PO4–P.
This is due to the fact that PO4–P level was kept low in spite of the variation of influent T–P loading in
the bioreactor. For the relationship between B_DO and Oxic_PO4–P, DO concentration is a variable
that can largely be affected by the amount of carbon oxidation and nitrification, not only by excessive
phosphorus accumulation.

There are two paths that have strong causality, from PO4–P concentration in the aeration tank
(Oxic_PO4–P) to effluent T–N, and from influent T–P concentration and PO4–P concentration in the
anaerobic tank. The former path is natural because PO4–P in the aerobic tank would pass the settling
tank almost without any change. The latter would also be the result of adding the effect of phosphorus
release in the anaerobic tank to the influent loading effect. DO concentration of the aeration tank
(B_DO) was included to complete the fitness of path model but did not have significant path-correlation
values in either the path to or from that variable. The two paths explain the effect of the sludge amount
for phosphorus release and uptake. The higher the number of micro-organisms for phosphorus uptake,
the lower the measured phosphorus concentration after uptake, so the path coefficient is interpreted as
having a weak negative value. The fitness of the initial path model for effluent T–N was acceptable for
all indices, with 1.659 for Q, 0.974 for GFI, 0.931 of AGFI, 0.063 of RMSEA, and 0.981 for CFI.
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Table 7. Fitness results of the developed path models for effluent T–P concentration.

Classification Goodness-of-Fit Criterion
Initial Model Modified Model

Result Validation Result Validation

Q value below 3 1.263
(Fitness)

1.659
(Fitness)

1.902
(Fitness)

1.949
(Fitness)

GFI above 0.9 0.981
(Fitness)

0.974
(Fitness)

0.969
(Fitness)

0.967
(Fitness)

AGFI above 0.8 0.949
(Fitness)

0.931
(Fitness)

0.913
(Fitness)

0.908
(Fitness)

RMSEA below 0.05(below 0.1) 0.040
(Fitness)

0.063
(Fitness)

0.074
(Fitness)

0.076
(Fitness)

CFI above 0.9 0.995
(Fitness)

0.981
(Fitness)

0.987
(Fitness)

0.982
(Fitness)

Modified Path Model for Effluent T–P

The final confirmed path model for effluent T–P (Figure 5b) with the acceptable fitness results
listed in Table 7, as influent BOD concentration (B_in_BOD) was added to reflect the influent effect
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on the initial model. The significance of the path coefficient results indicated four unreliable paths,
“B_in_BOD→Anaero_PO4–P”, “B_in_BOD→B_Sludge return ratio”, “B_in_T–P→B_Sludge return
ratio”, and “B_DO→Oxic PO4–P”. Except for these, all path coefficients were significant, especially
the two paths of “B_in_T–P→Anaero_PO4–P” and “Oxic_PO4–P→Effluent T–P”, which coincided
with the results of the initial model. Fitness was all acceptable with a Q value of 1.949, GFI of 0.967,
0.908 of AGFI, 0.076 of RMSEA, and 0.982 of CFI.

3.2.2. SEM for Effluent T–P

Like the model-derivation process for T–N, the latent variables extracted by factor analysis and
their relationships were added to the initially obtained paths from path modeling, from PO4–P in the
anaerobic tank to PO4–P of the aerobic tank, followed by effluent T–P. Through the deduced factor
loadings from the factor analysis (Table 8), the latent variables were extracted as the four groups listed
in Table 9. In contrast to T–N, MLSS concentration, sludge-return rate, and SRT-related variables were
all tied to one latent variable, defined as operating factors. Other measured variables, such as DO, SVI,
and F/M ratios, were grouped into reactor-related latent factors. After setting up the causal network
between the latent variables, through the iterative trials of adding or removing the measured variables
by checking the fitness of the model, the final SEM was deduced as shown in Figure 6.

Table 8. Factor loadings for the variables related to effluent T–N concentration.

Variable
Component No.

1 2 3 4 5

Rainfall 0.083 −0.508 −0.176 −0.111 0.548
Relative humidity −0.093 −0.797 −0.107 −0.055 0.079

B_pH −0.106 −0.680 -0.009 −0.252 −0.370
B_in_BOD 0.845 0.313 0.006 0.118 −0.023
B_in_COD 0.920 0.226 0.105 0.133 -0.077

B_in_SS 0.893 −0.134 −0.070 −0.116 0.082
B_in_TN 0.685 0.489 0.119 0.365 −0.111
B_in_TP 0.852 0.401 0.118 0.110 −0.138

B_Sludge return ratio 0.292 0.827 0.143 −0.174 −0.021
B_internal sludge return ratio 0.346 0.628 0.479 0.179 −0.101

B_A-SRT 0.191 0.216 0.696 0.494 −0.052
B_SRT 0.132 0.059 0.779 0.409 −0.167

B_Air flow 0.031 0.078 −0.807 0.131 −0.211
B_DO −0.156 0.058 0.131 0.115 0.791

B_MLSS 0.296 0.643 -0.442 0.094 0.060
B_SVI 0.253 0.272 −0.367 0.026 0.677

B_F/M ratio −0.010 −0.043 −0.006 −0.107 −0.715
Effluent_T-P 0.087 −0.220 0.291 0.751 −0.093

Table 9. Latent variables deduced by factor analysis for effluent T–P concentration.

Factor Variables

Environmental Rainfall, relative humidity, B_pH
Inflow-related B_in_BOD, B_in_COD, B_in_SS, B_in_T–N, B_in_T–P

Operational B_Air flow, B_MLSS, B_Sludge return ratio, B_Internal sludge return ratio,
B_A-SRT, B_SRT

Reactor-related. B_DO, B_SVI, B_F/M ratio

Fitness (Table 10) showed that all indices except for RMSEA satisfied the fitness-standard values
for training model. RMSEA is decided by degrees of freedom and the model error. The larger the
model error and the smaller the degree of freedom are, the larger the RMSEA value. In this case,
the degree of freedom was 48, so the RMSEA value over 0.1 could be caused by the model error. Since
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all other indices except RMSEA met the criteria, the deduced model can be regarded as having a
normal level of fitness.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 18 

 

B_DO −0.156 0.058 0.131 0.115 0.791 

B_MLSS 0.296 0.643 -0.442 0.094 0.060 

B_SVI 0.253 0.272 −0.367 0.026 0.677 

B_F/M ratio −0.010 −0.043 −0.006 −0.107 −0.715 
Effluent_T-P 0.087 −0.220 0.291 0.751 −0.093 

Table 9. Latent variables deduced by factor analysis for effluent T–P concentration. 

Factor Variables 
Environmental  Rainfall, relative humidity, B_pH 
Inflow-related B_in_BOD, B_in_COD, B_in_SS, B_in_T–N, B_in_T–P 

Operational 
B_Air flow, B_MLSS, B_Sludge return ratio, B_Internal sludge return ratio, B_A-SRT, 

B_SRT 
Reactor-
related. 

B_DO, B_SVI, B_F/M ratio 

 
Figure 6. Structural equation model for effluent T-P concentration. 

Fitness (Table 10) showed that all indices except for RMSEA satisfied the fitness-standard values 
for training model. RMSEA is decided by degrees of freedom and the model error. The larger the 
model error and the smaller the degree of freedom are, the larger the RMSEA value. In this case, the 
degree of freedom was 48, so the RMSEA value over 0.1 could be caused by the model error. Since all 
other indices except RMSEA met the criteria, the deduced model can be regarded as having a normal 
level of fitness. 

Table 10. Fitness of the structural equation model for effluent T–P. 

Factor Criterion Result (Test) Result (Validation) 
Q value  <3 2.892 (Fitness) 3.439 (Not fitness) 

GFI >0.9 0.883 (Not Fitness) 0.861 (Not fitness) 
AGFI >0.8 0.810 (Fitness) 0.775 (Not fitness) 

RMSEA <0.05 (<0.1) 0.107 (Not Fitness, but close) 0.121 (Not fitness) 
CFI >0.9 0.911 (Fitness) 0.854 (Not fitness) 

Figure 6. Structural equation model for effluent T-P concentration.

Table 10. Fitness of the structural equation model for effluent T–P.

Factor Criterion Result (Test) Result (Validation)

Q value <3 2.892 (Fitness) 3.439 (Not fitness)
GFI >0.9 0.883 (Not Fitness) 0.861 (Not fitness)

AGFI >0.8 0.810 (Fitness) 0.775 (Not fitness)
RMSEA <0.05 (<0.1) 0.107 (Not Fitness, but close) 0.121 (Not fitness)

CFI >0.9 0.911 (Fitness) 0.854 (Not fitness)

As the results of the path coefficients and their statistical significance, some important paths could
be extracted. As in the case of T–N, the influent-related factor strongly affects the operational factor.
The influent factor was expressed as influent T–P and BOD concentration, and the operational factor
as the amount of airflow (B_Airflow). These causalities between latent factors and the measurement
variables expressed by them can be interpreted as presupposing the phosphorus-removal mechanism.
The strong causality from the operational factor to the reactor factor proves that this model was
constructed on well-measured and -managed reliable data. The strong path coefficient from the reactor
factor to PO4–P in the aeration tank can be interpreted as the effect of the F/M ratio on phosphorus
release and uptake. From the fitness validation results, no index value met the fitness criteria (Table 10).
However, since index values are distributed near the reference value, and the fitness results of the
test SEM were good, it is considered that better fitness can be obtained if a larger number of datasets
is applied.

4. Discussion

In this study, we investigated the linearity of the dynamics of nutrient removal during sewage
treatment by constructing a path model and a structural equation model. As already known,
the mechanism of nutrient removal is nonlinear, so complex linear causal relationships cannot be
identified through path modeling. This is due to limitations of the path model, which can only
structure linear relationships between measured variables. On the other hand, the SEM can reflect the
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influence between multiple latent variable factors, thus representing the direct and indirect effect of
more variables. In addition, the path model does not take into account the error term of each variable,
but structural equation modeling can take into account the error term of each measurement variable
and the structural error of latent variables so that a more accurate causal model can be constructed.

In this sense, it should be noticed that the causal relationship, which was not derived by the path
diagram, could be implemented as a structural equation model where the causal relationship of the
latent variable acts as the main subject. It can be assumed that the nonlinearity of nutrient removal
using activated sludge can be reflected to some extent as a causal relationship of latent variables.

All of the path models derived from this study satisfied the fitness criterion. However, the SEM of
T–P did not satisfy the fitness standard in the model-verification process. This can be due to a variety
of causes, but the most likely is the number of data points used. Anderson and Gerbing [35] stated
that the number of data points should be larger than at least 150. In this study, the number of data
points used for model establishment and validation was 167, respectively, and it would have been
possible to have better fitness if a larger number of data points were used. Another possible cause
is uncertainty from data organization. Generally, it takes time to affect the biological characteristics
of activated sludge when operating conditions are changed. Therefore, direct causal trends are not
well-reflected in the measured data.

The path model is known as the most basic form of the structural equation model. Path analysis
is performed on the premise of the following assumptions. The relationship between independent
variables and dependent variables is linear and summative. In addition, there is no problem in the
measurement of the variable itself, and there is no measurement error. These assumptions make a
difference from the structural equation model. The structural equation model admits the existence of
measurement error. The effect of independent variables on dependent variables can be expressed in a
complex way through latent variables. However, path modeling should not be regarded as having any
value in comparison with the structural equation model. Path modeling can be tried as a previous
step in the structural equation modeling in that it can identify the structure of the combined effects of
the linearity and the significance of that existing between one variable and one variable. Preferably,
the derived path model for the same data can be the backbone of the structural equation model.
However, due to the characteristic of this study, the implementation of nonlinearity through latent
variables, the ideal model transformation process has not been realized. Since the derived path model
reflects the nutrient removal mechanism, the attempt of the path model is not meaningless. However,
it can be said that the structural equation modeling is more suitable to express causality of wastewater
treatment plant data with high measurement uncertainty and complex cause-effect relationships.

In addition, it is noteworthy that theoretically known knowledge is somewhat reflected in the
SEM proposed in this study. So far, SEM has been mainly used to verify an explored, so there is no
case of applying it to the removal mechanism of the sewage-treatment process. This is because the
type of process and its mechanism have reliably been recognized for certainty. However, the purpose
of this study was to ascertain whether such mechanisms are inherent to the data, and how their
causality is expressed with some degree of linearity. As a result, there are not many variables that
are linear causative factors of effluent quality. The most obvious factor of linearity was the path from
the concentration of nutrients in the aeration tank, the last compartment of the bioreactor, to effluent
quality. The complex and linear causal paths between the variables, on the other hand, were found
to be rare, but the SEM was constructed to sufficiently reflect the causal relationship between the
potential variables.

A further consideration in future studies is that more data should be collected. The water quality
items used in this research were limited. If the water quality data obtained from the field included
various carbon source concentration in the influent, the path model and the developed SEM would
have been able to express more mechanisms. The data used in this research included only BOD and
COD for carbonaceous material. Therefore, the detailed mechanism could not be implemented in the
developed models. In addition, because the T-N removal and T-P removal mechanisms are closely



Appl. Sci. 2019, 9, 1398 15 of 18

related, modeling of the combination of these two dependent variables could be possible. As already
theoretically known, T-N and T-P cannot be removed without a carbon source. The nitrate produced in
the oxic tank flows into the anaerobic tank through the settling tank and works as an electron acceptor
for anoxic carbon oxidation inhibiting phosphorus release. For this reason, in the developed SEM
for T-N, Anaero_PO4-P, a variable indicating the phosphorus release is described to be affected by two
latent variables such as “Inflow factor” and “React factor” comprising F/M ratio. In addition, the SEM
described the combined effect of the latent variable “Operational factor” including aeration flow and
the “Reactor factor” including F/M ratio to the PO4-P concentration in the oxic tank. This reflects that
there is an indirect combined effect of the amount of the carbon source and the aeration flow in the
oxic tank to the PO4-P concentration in the oxic tank.

In addition, if excessive aeration is given to the oxic tank to obtain maximum nitrification, oxygen
will flow into the anoxic tank by the nitrate return flow, thereby inhibiting denitrification. Therefore,
it is hard to simply conclude the relationships between nitrogen and DO as proportional or inverse,
as shown in Figure 3. There is an inverse proportional relationship between B_DO and Oxic_NH4-N
whereas weak positive correlation with oxic_NO3-N. This is expressed at the SEM for T-N as that the
latent variable “Operational factor” has a direct effect to the effluent T-N with high correlation factor,
0.67. For the case of Oxic_NO3-N, the fact that it is affected by the latent variable “Return flow related
factor” with the high correlation value 0.83 can be regarded as reflecting the theoretical fact for the
level of Oxic_NO3-N decided by the nitrate return ratio.

Therefore, this study is meaningful in improving the understanding of the activated sludge
mechanism, and as a new SEM attempt to remove nutrients in the activated sludge process. If this kind
of approach is applied to the data obtained other wastewater treatment plants with the same process
and gets the same results, it will add confidence in the results obtained in this research. The SEM
approach can be easily implemented using various tools such as AMOS, R, and LISREL. The linear and
nonlinear characteristics found from SEM based approaches can be used to set up a new type of model
such as a Bayesian network model or to simplify the complex nonlinearity of Activated Sludge Models.

5. Conclusions

From a traditional point of view, the performance of a sewage-treatment plant is determined
by the control of operational factors against changing influent conditions, but uncertainty is high
because the main removal dynamics are based on a biological mechanism. Despite these uncertainties,
theories are well-established and the causal relationship of biological nutrient removal mechanisms
are explained in detail in textbooks as a result of many studies on process dynamics. Many researchers
have tried mathematical modeling to improve models and theories with simulations but have rarely
confirmed such theories from the accumulated data.

In this study, we tried to find out whether the causal relationship of the nutrient-removal
mechanism is actually embedded in a historical database using a structural equation model. From the
path-modeling results, which is a process of the structural equation model, we concluded that
the relationship between variables cannot be represented as linear. However, the results of the
construction of the structural equation model were interesting because the SEM could well describe
the nutrient-removal mechanism in the sewage-treatment process using latent variables. This study
implies that the causal-relation model of the sewage-treatment plant could be constructed by expressing
nonlinear causal relations as the combined effect of latent variables. As previously discussed in the
literature review, this study is the first to attempt the SEM approach to the operation data of the sewage
treatment plant. Regarding T-P, the fitness in the validation task was not perfect, but the SEM derived
for the T-P as training model and for T-N could confirm what kind of associations exist between the
numerical data.
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