
applied  
sciences

Article

Quadrupedal Robots Whole-Body Motion Control
Based on Centroidal Momentum Dynamics

Mingmin Liu 1,2,3,*, Daokui Qu 1,2,4, Fang Xu 1,2,4, Fengshan Zou 4, Pei Di 4,* and Chong Tang 4

1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences,
No. 114 Nanta Street, Shenhe District, Shenyang 110016, China; dkqu@sia.cn (D.Q.); xufang@sia.cn (F.X.)

2 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences,
Shenyang 110016, China

3 University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
4 SIASUN Robot & Automation Co., Ltd., No. 33 Quan Yun Road, Hunnan New District,

Shenyang 110168, China; zoufengshan@siasun.com (F.Z.); tangchong@siasun.com (C.T.)
* Correspondence: liumingmin@sia.cn (M.L.); di.pei@aliyun.com (P.D.); Tel.: +86-024-3116-7417 (M.L.)

Received: 19 February 2019; Accepted: 22 March 2019; Published: 29 March 2019
����������
�������

Abstract: In this paper, we demonstrate a method for quadruped dynamic locomotion based on
centroidal momentum control. Our method relies on a quadratic program that solves an optimal
control problem to track the reference rate of change of centroidal momentum as closely as possible
while satisfying the dynamic, input, and contact constraints of the full quadruped robot dynamics.
Given the desired footstep positions, the according reference rate of change of the centroidal
momentum is formulated as a feedback control task derived from the CoM motions of a simplified
model (linear inverted pendulum) based on Capture Point dynamics. The joint accelerations and the
Ground Reaction Forces(GRFs) outputted from the quadratic program solver are used to calculate
the desired joint torques using an inverse dynamics algorithm. The performance of the proposed
method is tested in simulation and on real hardware.
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1. Introduction

Legged robots are highly mobile and can walk over rough terrain with their discontinuous support
motion. As a legged robot, quadruped robot, such as BigDog [1], Cheetah [2], Anymal [3] and HyQ [4],
have a great potential for applications in complex environments.

Recently, agility and dynamic skills have been demonstrated by the Massachusetts Institute of
Technology’s (MIT) Cheetah robots, which are actuated with a unique electric actuation system [2].
Cheetah 1 [5], a planar quadruped platform can run up to speeds at 3.2 m/s in plane experiments, using
proprioceptive touchdown feedback and programmable leg compliance. Cheetah 2 is skilled enough
to bound over obstacles using an MPC controller [6]. A time-switched impulse scaling principles,
which generalize the control parameters, allowing the Cheetah 2 robot to run at speeds of up to
6.4 m/s [7,8]. The event-based framework based on the contact detection algorithm [9,10] allows the
Cheetah 3 robot to leap and gallop across unstructured terrain with obstacles and climb a staircase
littered with debris without relying on external sensing information of the environment. The IIT HyQ
quadruped has shown a control architecture for quadrupedal quasi-static walking over challenging
inclined terrain [11]. Dynamic trotting gaits have also been demonstrated in [12] using bio-inspired
nonlinear oscillators.

Using inverse dynamics for a floating base multi-body systems (MBS) force control has become
a popular topic. Khatib [13] was the first to propose this broad category. The advantage of this
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approach is that the control problem change under a transformation to coordinates of the task-space
coordinates. It is effective for applications involving the end-effector at contact with a highly stiff
surface. Joint torques are computed using the inertia matrix, which is required for pseudoinverse
computations and projections. Taking the unilateral contact and friction into account and based on
a convex optimization to solve an optimal control problem, the reference motion in the operational
space of the robot can be tracked perfectly [14]. Although detailed formulations differ, numerous
optimization problems are phrased as cascades of quadratic programming (QP) to solve the floating
base inverse dynamics. Hierarchical operational-space inverse dynamics control framework rely on a
least-squares method specifically considering the effects of contact interactions has been proposed and
applied to StarlETH [15]. Ref. [16] demonstrates a control architecture rely on a whole-body control
framework that allows ANYmal to execute dynamic gaits, such as pronking and running trot.

A successive approach for whole-body humanoid locomotion control based on centroidal
momentum rise in popularity [17,18], because it is more robust to disturbances than inverse
dynamics-based control strategies [19]. The momentum of a floating base MBS is comprised of
its linear momentum and angular momentum. The centroidal momentum of a floating base MBS is
added to its linked momentum, which is referred to as the robot centroid or Center of Mass (CoM).
Kajita was the first to propose a approach to generate whole body motion of robot with given reference
momentum, named this approach the Resolved Momentum Control [20]. The humanoid robot HRP-2
has demonstrated its application for balance maintenance and the HRP-2LR robot [21] achieved
running gaits based on the Resolved Momentum Control. Orin and Goswami indicated that the
centroidal momentum are linearly related to joint velocities [22]. They introduced the centroidal
momentum matrix (CMM), which represents the linear sensitivity of centroidal momentum to the joint
velocities. They recognized the fact that this matrix is a function of the inertia and Jacobian matrix.
Specialized algorithms to compute the CMM were originally presented by Wensing and Orin in [23].
They noted that the CMM and the bias force can be computed though the mass matrix, Coriolis force
and the kinematics of the floating-base. Based on this work, the humanoid robot achieves a dynamic
kick and dynamic jump in the simulation.

The novel contributions of this paper include:

• The presentation of trotting gait with a quadruped robot based on centroidal momentum dynamics
controller. While the robot is under-actuated, we sacrifice the lateral component of linear
momentum to aid stability of Capture Point trajectory tracking. The controller is robust to
errors in the inertial parameters (such as mass) of the robot.

• Using Capture Point methodology to generate the desired motion of the quadruped robot.
• We demonstrate a method to establish the dynamics equations of a floating base systems into a

closed-form, which is convenient to compute and analyze the centroidal momentum dynamics.

The remainder of this paper is organized as follows. Section 2 demonstrates the framework of
the centroidal momentum control application for quadrupedal robot dynamic motion. The method
demonstrated in the previous sections are tested in simulations and on the physical prototype in
Section 3. Finally, the conclusions of this paper are presented in Section 4.

2. Methods

The following subsection introduces our control framework. The dynamics equations of the
quadruped robot are established in Section 2.1 and then the centroidal dynamics of the quadruped
robot are obtained in Section 2.2. Section 2.3 demonstrates the framework of centroidal momentum
control application for quadrupedal robot dynamic motion.

2.1. Dynamics Equation of Floating Base Systems

Dynamic-based approaches play an important role in legged robot dynamic locomotion because
they have strong disturbance resisting ability. The modelling presents an inherent complexity, mainly
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due to the joint variables must satisfy several loop-closure constraint equations. Several algorithms
have been used to the dynamic modelling of floating base systems. In this paper, we employ the
Newton–Euler inverse dynamics algorithm organized into a closed-form [24] to establish the dynamics
equation of the quadruped robot.

Consider the quadrupedal robot shown in Figure 1. For modelling purposes, we attach a base
reference frame to the robot and assume that the base frame can freely move relative to a fixed inertial
frame. Figure 1 illustrates this representation by showing the 6 virtual degrees of freedom (θb ∈ R6

is the position and orientation of the coordinate system attached to the robot base, measured with
respect to the fixed inertial frame).

Inertial Frame

Body Frame

 6 unactuated 
virtual DOFs

 

Figure 1. The base frame attached to the robot is connected to the inertial frame via 6 unactuated
virtual DOFs.

As shown in Figure 2. The system can be partitioned into four subsystems (the inertia tensor
for the body is also divided into four parts). We can write the dynamic equation for the four chains
as follows:

Hi(θi)θ̈i + C(θi, θ̇i) + Gi(θi)=Si
Tτi + Ji

T fi, i = RF, LF, LH, RH (1)

where Hi(θi) ∈ R9×9, Ci(θi, θ̇i) ∈ R9, Gi(θi) ∈ R9, θi=
[
rb

T qb
T qi

T
]T
∈ R9, Si=[03×6 I3×3] and

τi ∈ R3 denote the mass matrix, the force vector as the sum of the Coriolis and centrifugal forces,
gravitational forces, the actuated joint selection matrix and the actuator torque, respectively. Limbs
in contact with the ground are modelled as point contacts (with 3 forces). The Ground Reaction
Forces (GRFs) at the contact points are mapped to the joint space torques through the Jacobian
Jstance,i = [Jbody

stance,i Jleg
stance,i] ∈ R3×9.

Inertial Frame

Body Frame

 6 unactuated 
virtual DOFs

Subsys.RH Subsys.RF

 

Figure 2. Segmentation of the floating base systems.
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For floating-base systems, such as a quadruped robot, the dynamic in Equation (1) can be divided
into floating-base and actuated components[

H11
i (θi) H1∗

i (θi)

H∗1i (θi) H∗∗i (θi)

] [
θ̈b
q̈i

]
+

[
C1

i (θi, θ̇i)

C*
i (θi, θ̇i)

]
+

[
G1

i (θi)

G*
i (θi)

]
=

 Jbody
stance,i

T
fi

τi + Jleg
stance,i

T
fi

 (2)

where θb=
[
rb

T qb
T
]T
∈ R6. All the four subsystems are clustered together, and we obtain the

dynamics equation of the quadruped robot in a closed form

H(θ)θ̈ + C(θ, θ̇) + G(θ)=STτ + JT f (3)

where

H(θ) =



RH
∑

i=RF
H11

i (θi) H1∗
RF(θRF) H1∗

LF(θLF) H1∗
LB(θLB) H1∗

RB(θRB)

H∗1RF(θRF) H∗∗RF(θRF) 0 . . . 0
H∗1LF(θLF) 0 H∗∗LF(θLF) . . . 0

H∗1LB(θLB)
...

... H∗∗LB(θLB) 0
H∗1RB(θRB) 0 0 0 H∗∗RB(θRB)


∈ R18×18 (4)

C(θ) =
[

RH
∑

i=RF
C1

i (θi, θ̇i), C∗RF(θRF, θ̇RF), C∗LF(θLF, θ̇LF), C∗LB(θLB, θ̇LB), C∗RB(θRB, θ̇RB)

]
∈ R18

(5)

G(θ) =

[
RH
∑

i=RF
G1

i (θi), G∗RF(θRF), G∗LF(θLF), G∗LB(θLB), G∗RB(θRB)

]
∈ R18 (6)

θ =
[
θb

T qRF
T qLF

T qLB
T qRB

T
]T
∈ R18 (7)

τ =
[
τRF

T τLF
T τLB

T τRB
T
]T
∈ R12 (8)

where m is the number of limbs in contact, and the Jacobian J ∈ Rk×18 projects the Ground Reaction
Forces (GRFs) f ∈ Rk(k = 3m) at the contact points to the joint space torques. S = [012×6 I12×12].

Equation (3) can be written explicitly as[
H11(θ) H1∗(θ)

H∗1(θ) H∗∗(θ)

] [
θ̈b
q̈

]
+

[
C1(θ, θ̇)

C*(θ, θ̇)

]
+

[
G1(θ)

G*(θ)

]
=

 Jbody
stance

T
f

τ + Jleg
stance

T
f

 (9)

2.2. Centroidal Dynamics

The centroidal momentum of the quadruped robot is the total momenta of its links, defined in
centroidal frame. The centroidal frame locate in the instantaneous center of mass (COM) position and
aligned with the world frame [18]. The centroidal momentum of the quadruped robot consists of its
linear momentum l ∈ R3 and its angular momentum k ∈ R3

h =

[
l
k

]
= Aθ̇ ∈ R6 (10)

where A is called the CMM. The rate of the centroidal momentum is often required for dynamic
whole-body controllers. The differentiation of (10) can be written in the following forms:

ḣ = Aθ̈ + Ȧθ̇ (11)
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These centroidal dynamics are in connection with the external wrench (force/torque) on the
quadrupedal robot. The Newton’s and Euler’s laws states that ḣ be equal to the net external wrench
(force/torque about the instantaneous CoM) on the quadrupedal robot.

Aθ̈ + Ȧθ̇ = Wg + ∑
i=1

Wgrd,i (12)

where Wg=
[
mgT 01×3

]T
is the wrench due to gravity, and Wgrd,i are the ground reaction wrenches

exerted upon the limbs in contact with the ground. Note that the rate of the change of momentum is
unaffected by forces or torques internal to the quadrupedal robot. The CMM A and bias Ȧθ̇ can be
calculated, using the mass matrix H(θ) and the Coriolis term C(θ) through the spatial transform 1XT

G,
which was proposed by Wensing in [23]

A = 1XT
G

[
RH
∑

i=RF
H11

i (θi) H1∗
RF(θRF) H1∗

LF(θLF) H1∗
LB(θLB) H1∗

RB(θRB)

]
(13)

Ȧθ̇ = 1XT
G

[
RH

∑
i=RF

C1
i (θi, θ̇i)

]
(14)

2.3. Application to Quadrupedal Robot Dynamic Motion

This section demonstrates the application of centroidal momentum control to the dynamic motion
of a quadruped robot. Figure 3 shows the block diagram of our control framework. The set of future
footprints are given from high level behaviour, and the reference walking pattern of the quadruped
robot is generated based on the Capture Point dynamics in Section 2.3.1. The motion of the robot is
projected according to the walking pattern. The according reference rate of change of the centroidal
momentum is formulated as a feedback control task derived from the CoM motions of the quadrupedal
robot in Section 2.3.2. We design a QP to solve an optimal control problem to track the reference
rate of change of the centroidal momentum as closely as possible while satisfying the constraints
in Section 2.3.3. The joint accelerations and the Ground Reaction Forces (GRFs) outputted from the
quadratic programme solver are used to compute the reference joint control torques using an inverse
dynamics algorithm. The application of the whole-body control system based on centroidal momentum
to control a quadruped robot dynamic motion is shown in Section 2.3.4.

constraint

CP trj. 
generator

Quadratic 
Program 

solver

Inverse
Dynamics

Low 
level 

torque 
control

Robot

Footsteps 
Planner

dP

Swing_leg trj. 
generator

+
+

  θ θ
swingfbτ

swingffτ

stanceτ

swingτ
dτ d dFθ

 Centroidal 
dynamics

v

_, , swing dp p p 

dh

 Centroidal dynamics Task
  GRFs Task

  Motion Task

Inverse
Kinematics

Joint postion
PD Control

_, swing dθ θ

 Dynamics input limits
 Contact motion Task

Figure 3. The whole body control system based on centroidal dynamics. Pd is the desired footprint
from a high level behaviour. v is the desired velocity of CoM. ḣd is the desired rate of change of the
centroidal momentum. p, ṗ, p̈swing_d are the desired position, velocity and acceleration of the swing
foot in Cartesian space, respectively.
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2.3.1. Walking Pattern based on Capture Point Dynamics

The walking pattern is defined as a set of time series of joint angles for the desired walking [25].
To ensure stable walking, a reduced model of the robot is indispensable. Recently, the linear inverted
pendulum model (LIPM) required for the control of bipedal walking robots rise in popularity [26–30].
Once the walking pattern is using simple models, such as the LIPM, the motion of the robot can be
equivalent to the motion of the centre of mass of the robot and the motion of the supporting foot.
In general, the walking pattern was generated with a predetermined footstep position. If a set of time
series of robot footstep positions is given, the set of time series of the CoM trajectory of the robot is the
general walking pattern [31].

In the simplified model, when a quadruped robot is supporting its body on two legs, the behaviour
of a pair of legs acting in unison can be represented by an equivalent virtual leg [32]. In this paper,
we extend the concept of virtual leg. No matter how many legs in contact with the ground, it can be
equivalent to a virtual leg, as depicted in Figure 4. GRFs Fi at the contact point can be mapped to the
CoM though the matrix B.

[
I3 · · · I3

[P1 − r]× · · · [Pi − r]×

]
︸ ︷︷ ︸

B

F1
...
Fi

 =

[
F
τ

]
(15)

where F =
[

fx fy fz

]T
, τ =

[
τx τy τz

]T
. We assume that the virtual foot is located at the

midpoint between the two supporting foot, which strike the ground recnetly. Its dominant dynamics
can be represented by a single inverted pendulum, which is comprised of a point mass and a massless
telescopic leg in contact with the ground. According to LIPM, the relationship between the CoM and
Pvl can be expressed as follows:[

px

py

]
=

1
z̈ + g

[
x(z̈ + g) + zẍ
y(z̈ + g) + zÿ

]
− 1

m (z̈ + g)

[
τy

τx

]
(16)

where x, y and z denote the horizontal, lateral and vertical CoM position, px and py denote the
horizontal and lateral position of the virtual leg, τy and τx denote the torque about the y axis and x
axis of CoM, m is the total mass of the quadruped robot and g is the acceleration due to gravity.

Inertial Frame

P1

F1

。 mg 。 mgτ

F
rr

z0 P1

2P

F1

2F

。 mg
r

2P

2F

Case 1 Case 2

3P

3F

4P

4F
Pvl 

Figure 4. The simplification of the quadruped robot to the Linear Inverted Pendulum model.

The Linear Inverted Pendulum Model, described by Kajita et al. [26,27] assumes that the height
of the CoM remains constant and the change in the rotational momentum about the CoM is zero.
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Based on these assumptions, the dynamic equations of the robot are linear and decoupled, and the
relationship between the CoM and P can be written:[

ẍ
ÿ

]
= w2

([
x
y

]
−
[

px

py

])
(17)

where w=
√

g/z0 is the natural frequency of the pendulum.
Pratt et al. derive the unstable part of LIPM from its orbital energy and named it the Capture

Point [33]. This is the point on the floor where the robot (modelled as an LIPM) has to step to come to a
complete rest. Equivalent values of the Capture Point have been analysed by Hof as the ‘extrapolated
center of mass’ in [34] and DCM by Takenaka et al. in [35]. The Capture Point is comprised of the
horizontal CoM position, velocity, and the natural frequency of the pendulum. It can be expressed as:[

ξx

ξy

]
=

[
x
y

]
+

1
w

[
ẋ
ẏ

]
(18)

The equation of the Capture Point can be rewritten as[
ẋ
ẏ

]
=− w

([
x
y

]
−
[

ξx

ξy

])
(19)

We find that x and y has a stable first-order open loop dynamics with a time constant 1
w .

Inserting Equations and (19) in Equation (17) then gives[
ξ̇x

ξ̇y

]
= w

([
ξx

ξy

]
−
[

px

py

])
(20)

The Capture Point ξ=
[
ξx ξy

]T
has an unstable first-order open loop dynamics. The CoM

naturally follows the Capture Point, and the Capture Point dynamics is pushed away by the

P =
[

px py

]T
with an unstable first-order dynamics. If the Capture Point dynamics is controlled to

be stable, the CoM dynamics are naturally stabilized. The equation of (20) can be solved into the time
domain in the form of (21) to calculate the Capture Point value in the futures to produce a Capture
Point trajectory, which corresponds to a constant position of the virtual foot of the pre-planned future
foot positions Pd,i by shifting the Capture Point during a step from one footprint to the next.

ξ(t) = Pd,i + ewt (ξini,i − Pd,i) (21)

The desired Capture Point locations at the beginning of each step ξd,ini,i are found via recursion,
which was proposed by Englsberger [28].

ξd,eos,i−1 = ξd,ini,i = Pd,i + e−wt (ξd,eos,i−1 − Pd,i) (22)

Given a desired set of time series of quadruped robot footstep positions Pd of a virtual leg,

the Capture Point trajectory can be obtained from Equation (21). The desired velocity v =
[

ẋ ẏ
]T

of
the CoM can be obtained by Equation (19).
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2.3.2. Desired Centroidal Momentum for Motion Control

The motion of the robot is determined by the desired linear and angular momentum rate change.
For angular momentum, we employ the PD feedback control policy to regulate the CoM orientation.
When the robot is walking in a straight line, qd,b is set to zero.

k̇G,d = ĪG [−KP,k (qb − qd,b)− KD,k q̇b] (23)

To encode a whole-body rotation given the desired motion plan, ĪG can be found from the mass
matrix by computing the centroidal composite-rigid-body inertia of the system IG about the CoM.

IG = 1XT
G

[
RH

∑
i=RF

H11
i (θi)

]
1XG

=

[
M 0
0 ĪG

] (24)

For linear momentum, a commanded l̇G,d is formed from the PD control on the desired CoM

l̇G,d = M
[
−Kx

D,l

(
ṙx

b − ṙx
b,d

)
,−Ky

D,l

(
ṙy

b − ṙy
b,d

)
,−Kz

P,l

(
rz

b − rz
b,d

)
− KD,l ṙz

b

]T
(25)

The desired velocity of the CoM ṙx
b,d and ṙy

b,d is the output of the walking pattern, which is
described in Section 2.3.1. The CoM height rz

b,d is often assumed to be constant.

2.3.3. QP Formulation

Given a admissible momentum rate change ḣG,d =
[
l̇T
G,d k̇T

G,d

]T
, we design a QP to solve for a

vector χd =
[
θ̈T

d f T
d

]T
∈ R18+k of the desired joint accelerations and GRFs for the full robot dynamics

that minimizes Equation (27), which is a quadratic motion cost to track the reference rate of change
of the centroidal momentum as closely as possible while satisfying the dynamic, input, and contact
constraints of the full quadruped robot dynamics.[

A 0
]

︸ ︷︷ ︸
E

χ = ḣG,d − Ȧθ︸ ︷︷ ︸
b

(26)

Minimize
(Eχ− b)TQ (Eχ− b) + f TW f (27)

Subject to [
H11 H1∗ −JT

body

]
χd = C1q̇ + G1 (28)[

Jstance 0K×24−K

]
χd = −

[
J̇stance 0K×12−K

]
θ̇ − α

[
Jstance 0K×12−K

]
θ̇ (29)[

Jswing 018+K×18+K

]
χd = −

[
J̇swing 0K×K

]
θ̇+pswing (30)

f z
i,d ≥ 0,

∣∣∣µ f z
i,d

∣∣∣ ≥ f x
i,d,
∣∣∣µ f z

i,d

∣∣∣ ≥ f y
i,d (31)

τmin − C∗ q̇− G∗ ≤
[

H*1 H** −JT
leg

]
χd ≤ τmax − C∗ q̇− G∗ (32)

The matrices Q and W are weighting matrices. The relationship between the accelerations θ̈ and
the GRFs f can be found though the floating base system dynamics equation constraint (28). Since legs
in contact with the ground are not allowed to move, Equation (29) is a no-slip constraint on the foot
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contacts, requiring that their acceleration be negatively proportional to the velocity. To improve the
track of the desired motion determined by the high level controller, we constrain the joint accelerations
and by implementing operational space controllers with feed-forward reference acceleration and a
motion dependent feedback state in the constraint in Equation (30). Where

p̈swing=p̈swing,d + kp(pswing,d − pswing) + ki

∫
(pswing,d − pswing)dt + kd( ṗswing,d − ṗswing) (33)

To avoid slipping, the constraint ensures that contact forces should be constrained to lie in the
friction cone, which is aligned normal to the contact surface, where µ is the friction coefficient. To write
these as linear constraints, we approximate the friction cones with pyramids, which was proposed
by Dario Bellicoso in [36]. Equation (32) ensure that the joint actuation torques cannot exceed the
rated torques.

The formulation is solved based on Active-set method. This QP is solved for every controller
time step for the joint acceleration and the GRFs. Given the desired joint acceleration and the GRFs,
we compute the reference joint torques though

τ =
[

H*1 H** −JT
leg

]
χd + C∗ q̇ + G∗ (34)

2.3.4. Whole Body Control System

A feedforward and feedback control system is designed to generate a robust walking gait in
Figure 3. From a set of time series of quadruped robot footstep positions, a target Capture Point
reference ξ is calculated. The desired velocity of the CoM can be obtained by Equation (17) based
on the current robot state x (Section 2.3.1). The desired momentum rate of change is provided by
Equations (23) and (25) (Section 2.3.2). Meanwhile, the swing foot trajectory based on quintics order
polynomials will be generated. Given a desired rate of change of the centroidal momentum, and taking
the swing foot motion, floating base system dynamics equation, limitations on the GRF, joint torque
limits and contact motion as constraints, we set up a QP (Section 2.3.3). The QP solver outputs the
joint accelerations and GRFS, which are then used to calculate the desired joint torques using an
inverse dynamics algorithm via Equation (34). While in simulations it is possible to directly apply the
joint torques computed by the whole-body control system, the physical quadruped robot can only be
controlled through motor current commands. Because of the errors between the multibody model and
the real robot, during the swing motion we increase the PD gains of the swing leg joints to improve the
tracking capabilities. Overall, we compute the desired torques τswing,d though:

τswing,d = KP, f f τswing f f + τswing f d (35)

τswing f d = −KP,swing(θswing − θswing,d)− KD,swing(θ̇swing − θ̇swing,d) (36)

where τswing f f is the swing leg inverse dynamics feed-forward term computed using Equation (34)
and τswing f d is the swing leg joints PD feed-back term computed via a standard PD controller using
Equation (36), where KP, f f > 0, KP,swing > 0 and KD,swing > 0 are the feed-forward proportional
gain, feed-back proportional gain and differential gain, respectively. The desired swing leg joint angle
positions and velocities θswing,d and θ̇swing,d can be computed though inverse kinematics. This control
law is a trade-off between the torque control and joint position control. The torque control provide
compliant motions and robustness to external perturbations but is sensitive to dynamics model errors
(usually uses a mix of CAD-based data and estimated parameters) and forces from joint friction,
whereas the velocity control results in a high impedance behaviour that is insensitive to dynamics
model errors. By the use of the inverse dynamics feed-forward term and the joint position control
gains, we were able to strike a compromise between the tracking capabilities of the desired swing leg
motion and being reasonably compliant to external disturbances that let the quadruped robot to move
on a variety of terrains.
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3. Experimental Results and Discussion

The method described in the previous sections was tested in simulations and on physical
prototype. We demonstrate successful trotting in simulation and with a physical prototype.

A high level behaviour defines the sequence of the swing and stance modes for each leg with
respect to time, such as a trotting gait, as demonstrated in Figure 5. The dark areas indicate the fraction
of the stride when a leg is in the swing phase, which is characterized by the relative timing of the lift-off
and touch-down events. A dark line indicates that a leg is in swing mode. It is interesting to note that a
short with four contact points phase is planned to be allowed, since trotting in double support is truly
under-actuated and over-constrained at the same time (rank (B) = 5) and five of the floating base’s
six degrees of freedom can be controlled though the GRFS. An over-constrained situation is the result
of a short four contact points support phase, which provides compliant motions and stable walking
over rough terrain. When the robot is in over-constrained situation, there are many ways to adapt
the robot motion behavior to track the motion task [37]. In this paper, with all kinds of constraints are
satisfied, the highest priority was assigned to track the desired rate of change of centroidal momentum.
We address the highest priority task and try to minimize the GRFs.

0 0.5T T

RH

LH

RF

LF

swing leg

supporting leg

 

Figure 5. Gait graph for a walking trot: the black bars defines the stance phase of the left hind (LH),
left front (LF), right front (RF), and right hind (RH) leg.

During all phases except the double support state, only the diagonal elements of the weighting
matrices Q in the QP in Equation (27) are set to 1. During the double support state, the weighting
matrices Q = diag [1, 0, 1, 1, 1, 1] so that the whole-body control system will not take the lateral
component of linear momentum rate of change into account. The weighting matrices for the GRFs
W = 0.01I.

3.1. Simulation

The method described in the previous sections has been performed in simulation. The robot
walks forward. The desired step length was set to 10cm and the desired time per step to 0.25 s. (blue
curve depicted in Figure 6). The simulation results are displayed in Figure 6. The method described
in this paper show a reasonably good tracking of the desired Capture Point trajectory (yellow curve
in Figure 6). While walking steadily, the robot is able to robustly trotting with an average speed of
0.4 m/s, as shown in Figure 7. We note that while the robot trots in place the disturbance to its attitude
is very small; the pitch, the roll and the yaw of the robot oscillate with an amplitude less than 0.01 rad
in Figure 8.
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Figure 6. Comparison of the desired Footprint from a high planner, the desired and the actual Capture
Point trajectory.

Figure 7. Comparison of the desired and actual CoM horizontal speed trajectories.

Figure 8. The attitude of the robot in the simulation.

Snapshots of the robot trotting in the simulation are shown in Figure 9. The joint torques of the
left front leg of the quadruped robot during a forward velocity of 0.4 m/s are shown in Figure 10.

According to Equation (9), τm = τ∗ − Jleg
stance

T
f , where τ∗ =

[
H∗1(θ) H∗∗(θ)

] [θ̈b
q̈

]
+ C*(θ, θ̇) + G*(θ).

When the left front leg is in the swing phase, τm=τ*.When the left front leg is in the stance phase, It is

observed that τ* provides a minority of the total torque whereas −Jleg
stance

T
f (torque against the GRFs at

the foot) play a prominent role, indicating that the torque is insensitive to the dynamics model errors.
This is why we chose to use a PD feed-back joint position control only for legs in swing mode.
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Figure 9. Snapshots of the robot trotting in the simulation.

Figure 10. Joint torques of the quadruped robot during a forward velocity of ~0.4m/s. τm is the torque
at the joint, τ* is the torque to move the robot that are in contact with the ground. The torques stay well
below the physical torque limit of 30 Nm.

Figure 11 show the phase portraits of the states. It is clear that the solution converges to a
limit cycle.

(a) (b)

Figure 11. (a) Phase portrait of the hip joint in the simulation; (b) Phase portrait of knee joint in the
simulation.

In order to test the controller is robust to errors in the inertial parameters (such as mass) of the
robot, we changed the mass of the robot and the controller remains the same. Figure 12 summarizes
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the results. The results show a very good tracking of the reference Capture Point trajectories which
indicated that the centroidal momentum-based controller based on centroidal momentum is robust to
the robot mass errors.

Figure 12. ξx error of different mass error.

3.2. Experiment

The developed control algorithms were tested on a physical prototype of a quadruped robot.
Table 1 lists the detailed Physical Robot Parameters. The physical prototype has three degrees of
freedom per leg actuated by electric motors. Each actuator can be controlled at 200 Hz by a torque
control loop from a Linux host computer through EtherCAT communication. Four contact sensors
(one on each foot), positioned in each foot, and an IMU is fixedly installed for measuring the body
orientation and angular velocity. The CoM position and linear velocity is currently estimated by means
of the robot’s kinematics.

Table 1. Physical Robot Parameters.

Parameter Size Mass

Body 0.5 × 0.37 × 0.24 12 Kg
Hip Length 0.07 m 1.5 Kg

Thigh Length 0.2 m 0.9 Kg
Shank Length 0.2 m 0.75 Kg

The task for the robot was exactly the same as in the simulations: walking forward with a stride
of 10 cm and a step time of 0.25 s. The results of the experiments are shown in Figures 13–16.

Figure 13. Physical prototype actual trotting forward velocity.
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Figure 14. The attitude of the robot on the physical prototype experiment.

Figure 15. Snapshots of trotting at 0.4 m/s on the physical prototype experiment.

(a) (b)

Figure 16. (a) Phase portrait of the hip joint on the physical prototype; (b) Phase portrait of the knee
joint on the physical prototype.

Several limitations of the the physical prototype affect the performance of the control framework.
Communication latency is one of the main sources of limitations, which allowed us to tune down the
gains for controller. State estimation is another sources of limitations. Now, linear velocity is currently
estimated by means of the robot’s kinematics. We use low-pass filters to process the sensor noise from
the joint velocities, which lead to phase delay. In the future, we may employ a state estimator based on
an extended Kalman filter.
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4. Conclusions

This paper has demonstrated a whole-body control method based on centroidal momentum
dynamics and its successful application to a quadruped robot for walking tasks. Our method explored
using QP by controlling both the rates of change for the linear and angular momenta of the robot.

The characteristic features of the presented method are as follows:

1. We use the concept of a virtual leg when the quadruped robot performs dynamic gaits, such as a
trot. Therefore, one-leg algorithms can provide control. The desired motion of the quadruped
robot from the walking pattern is based on Capture Point methodology, which describes the
natural dynamics of a simplified dynamic model (LIPM).

2. The controller based on centroidal momentum dynamics tracks the reference motion from the
walking pattern. Our method relies on a QP that solves an optimal control problem to track the
reference rate of change of the centroidal momentum as closely as possible while satisfying the
dynamic, input, and contact constraints of the full quadruped robot dynamics.

3. During the double support state, the weighting of the lateral component of the linear momentum
rate of change is set to 0 so that the controller will not take the lateral CoM motion of the
quadruped robot into account, since the quadruped robot in this state is underactuated.

We have demonstrated the execution of dynamic gaits, such as a trot, in simulation and in a
physical prototype. The simulation and experiment results show that the quadruped robot trotted
forward at a speed of ~0.4 m/s with a low amplitude oscillation.
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