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Abstract: Singing melody extraction essentially involves two tasks: one is detecting the activity of a
singing voice in polyphonic music, and the other is estimating the pitch of a singing voice in the detected
voiced segments. In this paper, we present a joint detection and classification (JDC) network that conducts
the singing voice detection and the pitch estimation simultaneously. The JDC network is composed of
the main network that predicts the pitch contours of the singing melody and an auxiliary network that
facilitates the detection of the singing voice. The main network is built with a convolutional recurrent
neural network with residual connections and predicts pitch labels that cover the vocal range with a
high resolution, as well as non-voice status. The auxiliary network is trained to detect the singing voice
using multi-level features shared from the main network. The two optimization processes are tied with a
joint melody loss function. We evaluate the proposed model on multiple melody extraction and vocal
detection datasets, including cross-dataset evaluation. The experiments demonstrate how the auxiliary
network and the joint melody loss function improve the melody extraction performance. Furthermore,
the results show that our method outperforms state-of-the-art algorithms on the datasets.

Keywords: melody extraction; singing voice detection; joint detection and classification; convolutional
recurrent neural network

1. Introduction

Melody extraction is estimating the fundamental frequency or pitch corresponding to the melody
source. In popular music, the singing voice is commonly the main melodic source; thus, extracting the
pitch of the singing voice in polyphonic music is the most common task. The extracted melody is useful
in many ways. For example, the result can be directly applied to melody-based retrieval tasks such
as query-by-humming [1] or cover song identification [2]. The pitch contour that contains the unique
expressiveness of individual songs can be used as a feature for high-level tasks such as different music
genre classification [3] or singer identification [4].

Singing voices are usually mixed to be louder than background music played with musical
instruments in music production [5]. Furthermore, singing voices generally have different characteristics
from those of music instruments; they have expressive vibrato and various formant patterns unique to
vocal singing. A number of previous methods exploit the dominant and unique spectral patterns for
melody extraction leveraging prior knowledge and heuristics. For example, they include calculating the
pitch salience [6–10] or separating the melody source [11–13] to estimate the fundamental frequencies
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of melody. In contrast, a data-driven approach using machine learning [14] has also been proposed.
Recently, deep learning has been the main approach, as it has proven to be very successful in a wide
variety of fields. Researchers have attempted various deep neural network architectures for melody
extraction. Examples include fully-connected neural networks (FNN) [15,16], convolutional neural
networks (CNN) [17,18], recurrent neural networks (RNN) [19], convolutional recurrent neural networks
(CRNN) [20], and encoder-decoder [21,22].

Singing melody extraction involves detecting voice segments because the melodic source is not
always active in the music track. Voice detection is a very important task that affects the performance of
melody extraction. The methods for singing voice detection can be roughly divided into three approaches.
One approach is detecting the voice segments by thresholding the likelihood of pitch estimation [15,17,18].
This method is very simple, but more inaccurate because the optimal threshold value may vary depending
on the level ratio between the voice and background sound. Another approach is constructing a separate
model for singing voice detection [10,16]. Since the model is dedicated to the voice detection, it can achieve
better performance. However, it is obvious that it takes more effort to train the model separately, and the
complexity of the whole melody extraction algorithm increases. The last approach is adding an explicit
“non-voice” label to a list of target pitch outputs. This is particularly valid in classification-based melody
extraction methods [19,20,23]. When singing voice is present, one of the target pitches is chosen as an
output class. Otherwise, the “non-voice” label is chosen as another output class. This “none of the above”
labeling method is also known to have a regularization effect [24].

Our proposed melody extraction model is based on the last approach. However, we pay attention to
the discrepancy of the abstraction level between voice detection and pitch classification. Voice detection is
mainly based on vibrato or formant modulation patterns that distinguish it from other musical instruments.
This requires a much wider context than identifying pitch from voice segments, which can be estimated
even from a single frame of audio. That is, the voice/non-voice discrimination is a higher-level task than
the pitch classification. We handle this dual-target problem using a joint detection and classification (JDC)
network. JDC can be regarded as multi-task learning [25]. It has been shown to improve generalization by
combining task-specific information contained in network parameters for each related task. In the area of
music or audio, it has been applied to tasks such as source separation [26,27] and bird audio detection [28].
In both tasks, detecting the source of interest, that is vocal or bird sound, is an important subtask that
affects the performance of the main task. An additional network was built to detect vocal or bird sound
and was integrated with the main network to improve the performance. Likewise, we also added an
auxiliary network (AUX) trained to detect singing voice on top of the main melody extraction network.

In summary, the contributions of this paper are as follow: first, we propose a CRNN architecture
with residual connections and bi-directional long shot-term memory (Bi-LSTM) as the main network
so that the model classifies the pitch with a high resolution. Second, beyond the melody classification
model, we propose a JDC network that can perform two tasks in melody extraction (singing voice
detection and pitch classification) independently. The auxiliary network that detects the singing voice is
trained using multi-level features shared from the main network. Third, we propose a joint melody loss
designed to combine the two tasks together for the JDC network and to be effective for generalization
of the model. Finally, by comparing the results on public test sets, we show that the proposed method
outperforms state-of-the-art algorithms. Code and the pre-trained model used in this paper are available
at https://github.com/keums/melodyExtraction_JDC.

2. Proposed Method

Figure 1 illustrates the overall architecture of the proposed singing melody extraction model.
This section describes the details.

https://github.com/keums/melodyExtraction_JDC
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2.1. The Main Network

2.1.1. Architecture

The main network is the central part that extracts singing melody from polyphonic music audio.
The architecture was built with 1 ConvBlock, 3 ResBlocks, 1 PoolBlock, and a bi-directional long short-term
memory (Bi-LSTM) layer. The diagram of the architecture is shown in Figure 1a. The parameters
and output sizes of the modules are listed in Table 1. ConvBlock is a module consisting of two 3 × 3
convolutional (Conv) layers, with a batch normalization (BN) layer [29] and a leaky rectified linear unit
(LReLU) between them [30].
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Figure 1. Overview of the architecture and joint melody loss (a) CRNN architectures of the main network
and joint detection and classification (JDC) network for melody extraction. ConvBlock is organized
in the order of ‘Conv-BN-leaky rectified linear unit (LReLU)-Conv’, and PoolBlock is in the order
of ‘BN-LReLU-MaxPool’. We denote max-pooling and concatenation as “MP” and “C”, respectively.
The max-pooling is applied only to the frequency axis while preserving the time-wise dimensionality.
(b) The diagram of the ResNet block (c) The block diagram of joint melody loss. om is the softmax output of
the melody from the main network. omv and ov are the softmax output of the singing voice activity from the
main network and auxiliary network, respectively. “V” and “NV” indicate voice and non-voice, respectively.
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Table 1. Model configurations of the main and joint networks. ConvBlock and ResBlock have two
convolutional layers; [n× n, k] denotes a convolutional operator of n filters and a kernel size of k.

Components Output Size

Main Main + AUX Main Main + AUX

Input - 31 × 513
Conv block [3 × 3, 64] × 2 31 × 513, 64

ResNet Block 1 [3 × 3, 128] × 2 31 × 128, 128
ResNet Block 2 [3 × 3, 192] × 2 31 × 32, 192
ResNet Block 3 [3 × 3, 256] × 2 31 × 8, 256

Pool block - 31 × 2, 256
Bi-LSTM 256 256 + 32 31 × 512 31 × (512 + 64)

FC 722 722 + 2 31 × 722 31 × (722 + 2)

ResBlock is a variation of ConvBlock that has an additional BN/LReLU, a max-pooling (MaxPool)
layer with a pooling size of four, and a skip connection, inspired by ResNet of a full pre-activation
version [31]. The max-pooling was only conducted in the frequency axis throughout all blocks; therefore,
it preserved the input size (31 frames) in the time axis. The skip connection had an 1 × 1 convolution layer
to match the dimensionality between two feature maps. PoolBlock was another module that consists of
BN, LReLU, and MaxPool. The dropout rate of 50% was added in the end of the PoolBlock to alleviate
overfitting. Finally, the Bi-LSTM layer took 31 frames of features (2 × 256) from the convolution blocks
(note that the max-pooling preserved the input size) and predicted pitch labels via the softmax function in
a sequence-to-sequence manner.

We experimented with different kernel sizes of 1D or 2D convolution, but 2D-convolution with
3 × 3 filters was the most effective for melody extraction. Veit [32] showed that residual networks can be
viewed as a collection of many paths. The skip connection allowed the output of each layer to be input into
all subsequent blocks connected, and it made a residual network ensemble system. In our experiments,
ResNet model achieved better results compared to the VGGNet [33] model. We used a total of three
ResBlocks in this model. Reducing the number of ResBlocks resulted in lower performance. On the
other hand, when we increased the number of ResBlocks, we could not see any noticeable performance
improvement. This shows that very high-level features are not required to predict the pitch of the frame in
the spectrogram.

The pitch labels ranged from D2 (73.416 Hz) to B5 (987.77 Hz) with a resolution of 1/16 semitone (i.e.,
6.25 cents). Furthermore, “non-voice” (or “zero-pitch”) was added to the pitch labels. This special label
was active when the singing voice was not present. Therefore, the total number of labels (the size of the
output layer) became 722. The main network used spectrograms as input data. Specifically, we merged
audio files into a mono channel and down-sampled those to below 8 kHz, in which the majority of the
singing voice spectrum is distributed. We used a 1024-point Hann window and a hop size of 80 samples
(10 ms) to compute the spectrogram and compressed the magnitude in a log scale. Finally, we used 513 bins
from 0 Hz–4000 Hz and 31 consecutive frames as the input of the main network.

2.1.2. Loss Function

We quantized the continuous scale of the pitch range into a discrete set of values to form the output
layer in a classification setting. They are often represented as a one-hot vector to incorporate it into the
categorical cross entropy (CE) loss function [15,16]. One problem of the loss function is that, unless the
predicted pitch is close enough to the ground-truth pitch within the quantization size (6.25 cents in our
case), it is regarded as the “wrong class”. In order to mitigate excessive loss for neighboring pitches of the
ground truth, a Gaussian-blurred version of one-hot vector was proposed [17,34]. We also adopted this
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version, so the loss function of the main network (Lpitch) was defined between the prediction ŷ and the
Gaussian-blurred labels yg as below:

Lpitch = CE(yg, ŷ) (1)

yg(i) =

exp(− (ci−ctrue)
2

2σ2
g

) if ctrue 6= 0 and |ci − ctrue| ≤ M,

0 otherwise,
(2)

where CE(yg, ŷ) is the cross-entropy loss for the pitch prediction. ctrue is the constant index of the true
pitch, and ci is a variable index. M determines the number of non-zero elements. We set M to three and σg

to one in our experiment.

2.2. Joint Detection and Classification Network

2.2.1. Architecture

The output layer of the main network was formed with pitch labels and a special non-voice label.
These labels were handled as a set of classes in the same level. Although voice detection and pitch
estimation in the melody extraction task have a close relationship, they require different levels of
abstraction, as mentioned in Section 1. In pitch estimation, the network predicts a continuously-varying
value of pitch at each frame, although it uses contextual information from neighboring frames. In voice
detection, the network predicts the sustained binary status of voice from textures that can be obtained
from a wider context, such as vibrato or formant modulation. Therefore, simply adding a non-voice label
to the target pitch labels has limitations in extracting the characteristics of voice activity.

In order to address the discrepancy between the pitch estimation and voice detection, we propose a
joint detection and classification (JDC) network. We set up the JDC network so that the two tasks shared
the modules. Instead of building it with new modules, we maintained the existing main network and
added a branch for dedicated singing voice detection. As shown in Figure 1a, the JDC network shared
ConvBlock, ResBlock, and PoolBlock in the bottom, but had a separate Bi-LSTM module for each task.
In particular, the voice detection task took the combined features of the shared modules from the main
network. The use of multi-level features stemmed from the idea that voice detection may require observing
diverse textures in different levels of abstraction. The outputs of ResBlock were max-pooled to match the
output size, and then, they were concatenated. The Bi-LSTM layer predicted the probabilities that there
was a singing voice from the concatenated features in a sequence-to-sequence manner via the softmax
function. We call this an auxiliary network. The features from convolutional blocks were learned jointly
using the main and auxiliary network, and the loss function was combined with that derived from the
main network to form the final loss function. The detail is described in the next section.

2.2.2. Joint Loss Function

The JDC model was optimized by minimizing a joint melody loss that combines the two loss functions
from the main network and the auxiliary network, respectively, as illustrated in Figure 1c. We detected
the singing voice using both networks. That is, we summed the 721 pitch predictions in the output of the
main network, om, and converted them to a single “voice” prediction. This resulted in the voice detection
output from the main network, omv. We then added this to the output of the auxiliary network, ov, to make
a decision for voice detection as below:

osv = omv + ov (3)



Appl. Sci. 2019, 9, 1324 6 of 17

Then, the loss function for voice detection was defined as the cross-entropy between the sum of the
voice output and the ground truth vgt:

Lvoice = CE(so f tmax(osv), vgt) (4)

Finally, the joint melody loss function was given by combining the loss function for voice detection
(Lvoice) and the loss function for pitch estimation (Lpitch):

Ljoint = Lpitch + αLvoice (5)

where α is a balancing weight, and we used α = 0.5 in our experiment (In our initial experiment, we tried
three different values of α (0.1, 0.5, and 1) and achieved the best overall accuracy with 0.5 on the test
datasets. Then, we fixed α = 0.5 in the rest of the experiments. This might not be optimal, and selecting an
optimal value could improve the result.).

3. Experiments

3.1. Datasets

3.1.1. Train Datasets

We used the following three datasets to train the models. The songs were carefully selected so that
genres and singer genders were evenly distributed for each split and songs from the same singer were not
included in the other splits.

• RWC [35]: 80 Japanese popular songs and 20 American popular songs with singing voice melody
annotations. We divided the dataset into three splits: 70 songs for training, 15 songs for validation,
and the remaining 15 songs for testing.

• MedleyDB [36]: 122 songs with a variety of musical genres. Among them, we chose 61 songs that are
dominated by vocal melody. We divided the dataset into three splits: 37 songs for training, 10 songs
for validation and 12 songs for testing. For a comparison of results under the same conditions, we
selected the training sets according to [18].

• iKala [37]: 262 Chinese songs clips of 30 s performed by six professional singers. We divided the
dataset into two splits: 235 songs for training and 27 songs for validation.

We augmented the training sets by conducting pitch-shift on the original audio files by±1, 2 semitones
to obtain more generalized models. Pitch-shifting has proven to be an effective way to increase data
and improve results for singing voice activity detection [38], as well as melody extraction [15]. To this
end, we used an algorithm based on a phase vocoder that conducts pitch-shifting independent of
time-stretching [39].

3.1.2. Test Datasets

Four datasets (ADC04, MIREX05 (http://labrosa.ee.columbia.edu/projects/melody/), MedleyDB,
and RWC) to evaluate the performance of melody extraction were used. Non-vocal audio clips were
excluded to focus on vocal melody extraction. To compare the voice detection performance, our models
were also evaluated using Jamendo [40], a public dataset that is mainly used for singing voice detection.

• ADC04: 20 excerpts of 20 s that contain pop, jazz, and opera songs, as well as synthesized singing
and audio from MIDI files. Jazz and MIDI songs were excluded from the evaluation.

http://labrosa.ee.columbia.edu/projects/melody/
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• MIREX05: 13 excerpts that contain rock, R&B, pop, and jazz songs, as well as audio generated from a
MIDI file. We used 12 songs out of a total of 20, excluding jazz and MIDI files for evaluation.

• MedleyDB: 12 songs not included in the training set. For a comparison of results under the same
conditions, we selected the test sets according to [18].

• RWC: 15 songs not included in the training set. This was used internally to evaluate the performance
of the proposed models.

• Jamendo: 93 songs designed for the evaluation of singing voice detection. Among them, only 16 songs
designated as a test set to measure the performance of singing voice detection were used.

3.2. Evaluation

We evaluated the proposed method in terms of five metrics, including overall accuracy (OA), raw pitch
accuracy (RPA), raw chroma accuracy (RCA), voicing detection rate (VR), and voicing false alarm rate
(VFA). The measures are defined as below:

RPA, RCA =
#{voice frames for which (pitches, chromas) are predicted correctly}

# of voiced frames
(6)

OA =
#{frames for which pitches and voicing are predicted correctly}

# of all frames
(7)

VR =
#{voiced frames for which voicing are predicted correctly}

# of voiced frames
(8)

VFA =
#{frames that are predicted as voiced, but not actually voiced}

# of voiced frames
(9)

The evaluation consists of two main parts: voice detection determining whether the voice is included
in a particular time frame (VR and VFA) and pitch estimation determining the melody pitch for each time
frame (RPA, RCA). OA is the combined accuracy of pitch estimation and voice detection. We converted
the quantized pitch labels in 6.25 cents (1/16 semitone) to frequency scales (Hz) to compare them with the
ground truth.

f = 2(m−69)/12 × 440 (Hz) (10)

where m is the MIDI note number estimated by the main network for melody extraction. The pitch at each
frame was considered correct if the difference between the estimated pitch and the ground-truth pitch was
within a tolerance of ±50 cents. We computed them using mir-eval, a Python library designed for objective
evaluation in MIR tasks [41].

3.3. Training Detail

We randomly initialized the network parameters using He uniform initialization [42] and trained
them with the Adam optimizer. We repeated it over all the training data up to 45 epochs. The initial
learning rate was set to 0.002. If the validation loss did not decrease within three epochs, the learning rate
was reset to 80% of the previous value. Furthermore, if the validation loss did not decrease during seven
epochs, the training stopped. For fast computing, we ran the code using Keras [43], a deep learning library
in Python, on a computer with two GPUs.

3.4. Ablation Study

We conducted an ablation study to verify the effectiveness of the proposed model. We experimented
with the following settings to investigate the model. The architectures of each model used in the
experiments are illustrated in Figure 2.
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• The effect of the auxiliary network: The proposed JDC network model was compared to the main
network only (without the auxiliary network). They are denoted by JDCS and Main, respectively.

• The effect of the combined voice detection in calculating the loss function: The proposed model
used the sum of the outputs from both the main and auxiliary networks (Equation (3)) in calculating
the voice loss function. This was compared to the case where only the output of auxiliary network, ov,
was used in calculating the loss function, which is denoted by JDCA.

• The effect of the combined voice detection in predicting singing voice: The JDC network can
detect singing voice with three possibilities in the test phase: omv from the main network, ov from the
auxiliary network, and osv the sum of the two outputs. We compared the performance of the three
melody extraction outputs and evaluated them for each of the two loss functions above. As a result,
we had a total of six outputs, which are denoted by JDCS(omv), JDCS(ov), JDCS(osv), JDCA(omv),
JDCA(ov), and JDCA(osv).

To demonstrate the effectiveness of the JDC network, we also examined the performances of the
model Main(AUX) and Main(SVD). In both models, the networks for pitch estimation and singing voice
detector (SVD) were trained separately. Both networks for melody extraction were identical to Main,
but only the labels corresponding to the pitches were used as the target labels. The architecture of SVD
for Main(AUX) was identical to the auxiliary network. Following [38], we implemented the SVD for
Main(SVD). For fair comparison, the same training datasets were used in all training phases.

m +
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OvOm

J D CS(omv)
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M a i n

Om Ov

2C
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Figure 2. Architectures of melody extraction used for performance comparison in this paper. In the
model name, the subscript refers to the type of JDC network, and parentheses refer to the source of voice
detection output. The black and red solid arrows indicate the paths used for training and training/testing,
respectively. The red dotted arrows indicate the path used for the test, although it was not used for training.

The models and voice detection outputs on the four test datasets were evaluated for melody extraction
as mentioned in Section 3.1.2. We carried out five runs of training with different initializations and analyzed
the results across different metrics of melody extraction evaluation and different test sets, respectively.
To further validate the effectiveness of the models, a t-test between the Main and each JDC network to
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compute the statistical significance on the results (the results were normally distributed (Shapiro–Wilk
test: p > 0.05)) of the five trials was performed.

In addition, we examined their singing voice detection capability using the Jamendo dataset, which
was dedicated to the voice detection task (there was no annotation on the pitch of the melody). Because
this was for the voice detection task, we report only VR and VFA. In addition to the models and voice
detection outputs in the ablation study, we also compared out best model to other state-of-the-art singing
voice detection algorithms [38,44,45].

4. Results and Discussion

4.1. Comparison of Melody Extraction Performance

Figure 3a shows the results of the five melody extraction evaluation metrics for the compared models
and outputs. In general, JDC networks were superior to Main in terms of OA, and among the JDC
networks, JDCS networks that used the sum of the two outputs in the loss function were more accurate
than JDCA that used only the output of the auxiliary network.

Both RPA and RCA increased significantly in all JDC networks, especially JDCS(ov) and JDCS(osv).
This is mainly attributed to the increase in VR. That is, the JDC networks detected the activity of singing
voice more responsively, having fewer missing errors. The average RPA and RCA of Main were 76.1%
and 78.1%, respectively, while those of JDCS(ov) were 84.7% and 86.0%, respectively (p-value < 0.01).
However, both VR and VFA were high due to their aggressiveness, and this led to degradation in OA. On
the other hand, JDCS(omv) predicted the voice activity more reliably by significantly reducing VFA. The
average VFA of JDCS(osv) was 17.7%, but that of JDCS(omv) was 9.0%. As a result, JDCS(omv) achieved
the highest average OA (85.7%, p-value < 0.01), outperforming the two networks.

This result indicates that the voice detection output of the main network was more conservative
than the output of the auxiliary network. This is true because the main network had more classes (i.e.,
pitch labels) with which to compete. However, comparing JDCS(omv) to JDCA(omv), the main network
in JDCS(omv) became more sensitive to voice activity due to the influence of the auxiliary network. This
reveals that combining omv with ov in calculating the voice detection loss function (Equation (4)) contributed
to driving more tightly-coupled classification and detection, thereby improving the performance of
melody extraction.

The overall performance of Main(AUX) was generally higher than that of Main, but it did not
outperform JDCS(omv). The average OA of Main(SVD) was comparable to Main, and the performance
was lower than that of Main(AUX). Experimental results also showed that the deviations of RPA and
RCA of the proposed models were high, except for Main(AUX) and Main(SVD). Since the proposed
models were trained for both pitch estimation and voice detection at different levels of abstraction, they
were sensitive to initialization.

Figure 3b shows the results of overall accuracy (OA) on the four test sets for the compared models and
outputs. The performance gap varied by up to 10% depending on the dataset, indicating that the models
were affected by the characteristic that each test set had (e.g., genre). Again, we see that the performances
of the JDC networks were generally superior to that of Main for all test datasets.

Comparing JDCA to JDCS in each of the three cases (omv, ov, and osv), the average of OA for three
JDCA and JDCS networks were 83.5% and 84.9%, respectively. JDCS networks were generally superior to
JDCA networks. The average OA of JDCS(omv) was improved by 3.17% over that of Main. With regard to
OA, a t-test revealed a statistical significance between Main and JDCS(omv). The results are as follows:
ADC04 (0.025), MIREX05 (0.01), MedleyDB (0.027), and RWC (0.043). JDCS(omv) increased the average OA
with respect to Main for ADC04, which is an especially challenging dataset. The average overall accuracy
of JDCS(omv) is 83.7%, which was 6.1% higher than that of 77.6% of Main.
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Figure 3. Performance of melody extraction on the Main, Main(AUX), Main(SVD), and JDC networks.
The reported results were averaged across five training runs with different initializations. The “average”
was calculated as the average score of all songs in all datasets. The band inside the box is the median, and
the black triangle indicates the mean. RPA, raw pitch accuracy; RCA, raw chroma accuracy; VR, voicing
detection rate; VFA, voicing false alarm rate.

To summarize, in the training phase, the most effective models were JDCS networks that used both the
main and auxiliary outputs for voice detection in the loss function. In the inference stage, the most effective
output was omv, which used only the output of the main network. As a result, the best performance was
obtained by JDCS(omv). The overall performances of Main(AUX) and Main(SVD) were lower than the
JDC networks. The JDC network had only 3.8 M parameters, while Main(AUX) and Main(SVD) had
7.6 M and 5.3 M parameters, respectively. It also shows that the JDC network is an efficient architecture for
melody extraction.



Appl. Sci. 2019, 9, 1324 11 of 17

4.2. Comparison of Voice Detection Performance

Figure 4 shows the average performances of singing voice detection for the Main, Main(AUX),
JDCA, and JDCS networks evaluated on the four test sets. JDCS(Omv) achieved the best voice detection
performance, leading to improved melody extraction performance. The F1 score of Main was 91.0%, and
that of JDCS(Omv) was 93.3% (p-value < 0.05). F1 scores of other JDC networks were higher than Main,
but there were no significant differences. For Main(AUX), Main(SVD), voice detection performance was
significantly lower (the F1 scores were 87.5% and 88.9%, respectively). This seems to be due to the fact that
the used training set had a higher percentage of voice segments than non-voice segments. If enough data
can be used for model training, there is a possibility that the performance of SVD may be further improved.

Figure 5 displays the performances of the proposed networks evaluated on the Jamendo dataset,
which is dedicated to singing voice detection and unseen in training the models. As observed in the
melody extraction results, the voice detection output of the main network was more conservative. This led
to a low VR and VFA. On the other hand, the JDC networks that had the separate singing voice detector
became more responsive, having higher VR and VFA. When comparing the two families of JDC networks,
JDCS was more conservative than JDCA as the voice loss function contained the voice output from the
main network. A similar result was found among the voice detection outputs. That is, JDC with omv had
lower VR and VFA than JDC with ov or osv. While the JDC networks returned comparable results, the best
performance in terms of accuracy was obtained by JDCS(osv). The average of VR of JDCS(osv) was 18.3%
higher than that of Main, maintaining a low VFA of 22.6%.

In Table 2, we compare the voice detection result with other state-of-the-art algorithms. Lee et al. [46]
reproduced each algorithm using the Jamendo dataset as the training data under the same conditions,
and we used the results for comparison. The performance of JDCS(osv) was lower; however, considering
that the compared models were in fact trained with the same Jamendo dataset (by using different splits
for training and testing), the result from our proposed model was highly encouraging, showing that it
generalized to some extent.

ACC VR PR F10.75
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Main(SVD)

JDCA(omv)
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JDCS(ov)
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Figure 4. Performance of singing voice detection for different evaluation metrics. “ACC” indicates the
overall accuracy of voice detection. “PR” and “F1” indicate precision and F1 score, respectively.
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Figure 5. Result of singing voice detection on Jamendo.

Table 2. Comparison of results of existing algorithms, Main(SVD), and JDCS(osv) (average accuracy of
5 runs). Note that Jamendo is not included in the training set of Main(SVD) and JDCS(osv).

Accuracy VR Precision F1 Score

Lehner [44] 87.9 91.7 83.8 87.6
Schlüter [38] 86.8 89.1 83.7 86.3

Leglaives [45] 87.5 87.2 86.1 86.6
Main(SVD) 77.4 79.7 76.2 78.3

JDCS(osv) 80.0 80.2 79.1 79.2

4.3. Comparison with State-of-the-Art Methods for Melody Extraction

We compared our best melody extraction model, JDCS(omv), with state-of-the-art methods using deep
neural networks [17,18,21,22]. For a comparison of results under the same conditions, the test sets were
ADC04, MIREX05, and MedleyDB for comparing other methods as mentioned in Section 3.1.2. Table 3
lists the melody extraction performance metrics on three test datasets. The pre-trained model and code
of Bittner et al. [17] are publicly available online, and the results in Table 3 were reproduced by [21] for
vocal melody extraction. The results show that the proposed method had high VR and low VFA, leading
to high RPA and RCA, and it outperformed the state-of-the-art methods. In addition, we confirmed that
the proposed method had stable performance over all datasets compared to other state-of-the-art methods.
It also showed that combining two tasks of melody extraction, i.e., pitch classification and singing voice
detection, through the proposed JDC network and loss function was helpful for performance improvement.

Table 3. Comparison of vocal melody extraction results. The best score in each column is highlighted in bold.

(a) ADC04 (Vocal)

Method VR VFA RPA RCA OA

Bittner et al. [17] 92.9 50.5 77.1 78.8 70.8
Su [18] 90.1 41.3 74.7 75.7 72.4

Lu and Su [21] 73.8 3.0 71.7 74.8 74.9
Hsieh et al. [22] 91.1 19.2 84.7 86.2 83.7

Proposed 88.9 11.4 85.0 87.1 85.6
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Table 3. Cont.

(b) MIREX05 (Vocal)

Method VR VFA RPA RCA OA

Bittner et al. 93.6 42.8 76.3 77.3 69.6
Su 95.1 41.1 83.1 83.5 74.4

Lu & Su. 87.3 7.9 82.2 82.9 85.8
Hsieh et al. 84.9 13.3 75.4 76.6 79.5

Proposed 90.9 2.4 87.0 87.5 90.7

(c) MedleyDB (Vocal)

Method VR VFA RPA RCA OA

Bittner et al. 88.4 48.7 72.0 74.8 66.2
Su 78.4 55.1 59.7 63.8 55.2

Lu & Su 77.9 22.4 68.3 70.0 70.0
Hsieh et al. 73.7 13.3 65.5 68.9 79.7

Proposed 80.4 15.6 74.8 78.2 80.5

(d) RWC

Method VR VFA RPA RCA OA

Proposed 92.4 5.4 85.4 86.2 90.0

4.4. Case Study of Melody Extraction on MedleyDB

We evaluated the models with a tolerance of one semi-tone, following the standard melody extraction
evaluation rule. However, we should note that our proposed model can predict the pitch with a higher
resolution (1/16 semi-tone). Figure 6a shows the spectrogram of an audio clip (top) and the corresponding
melodic pitch prediction along with the ground truth (bottom). Our proposed model can track nearly
continuous pitch curves, preserving natural singing styles such as pitch transition patterns or vibrato.

While the proposed model achieved improved performance in singing melody extraction, the overall
accuracy was still below 90%. We found that errors occurred more frequently in particular cases. Figure 6b,c
gives the examples of bad cases where VR and RPA were less than 60%. In both examples, the failures
were mainly attributed to voice detection errors.

In Figure 6b, the harmonic patterns of the vocal melody were not clearly distinguished from
background music because the vocal track was relatively softer than the accompanying music track.
This weak vocal volume was investigated as a cause of bad singing detection in [46]. Since our melody
extraction model was trained in a data-driven way, this could be addressed to some degree by augmenting
the training data, for example adjusting the mixing of vocal gains (if they are in separate tracks).

In Figure 6c, a strong reverberation effect was imposed on the singing voice; thus, the harmonic
patterns of the singing voice appeared even after the voice became silent. The algorithm then detected
the reverberated tone as vocals and predicted the pitch from it. This case is somewhat controversial
because this could be seen as a problem of the ground truth notation. When we excluded these types of
heavily-processed audio clips in MedleyDB (“PortStWillow-StayEven” and “MatthewEntwistle-Lontano”),
we observed a significant increase in performance (about 5% in OA on MedleyDB).
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(b) Bad Example #1
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(c) Bad Example #2

Figure 6. Case examples of singing melody extraction from the MedleyDB dataset: (a)
good example (“MusicDelta-Gospel”) and (b,c) bad examples (“CelestialShore-DieForUs”, and
“MatthewEntwistle-Lontano”).

5. Conclusions

We presented a joint detection and classification (JDC) network that performs singing voice detection
and pitch estimation simultaneously. The main network uses a CRNN architecture that consists of
convolutional layers with residual connections and Bi-LSTM layers. The main network is trained to classify
the input spectrogram into pitch labels quantized with a high resolution or a special non-voice label.
The auxiliary network is trained to detect the singing voice using only multi-level features shared with
the main network. We also examined the joint melody loss function that optimizes the JDC network to
combine more tightly the tasks and the three different voice detection outputs from the two networks.
Through the experiment, we provided a better understanding of how the main network and auxiliary
network work for voice detection. We also showed that the knowledge sharing between two networks
helps perform the melody extraction task more effectively. We showed that the proposed JDC network
has consistently high performance for all test datasets and outperforms previous state-of-the-art methods
based on deep neural networks. Finally, we illustrated failure cases, which may provide ideas for future
work to improve the melody extraction performance further.
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