
applied  
sciences

Article

Analytical Solution and Experimental Validation of
the Electromagnetic Field in an IPT System

Kehan Zhang 1, Xin Ren 1,* , Yuan Liu 2, Shuting Hui 1 and Baowei Song 1

1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China;
zhangkehan210@163.com (K.Z.); 15592002053@163.com (S.H.); 18709281522@163.com (B.S.)

2 Department of Electrical and Computer Engineering, The University of Auckland, Auckland 1023,
New Zealand; yliu962@aucklanduni.ac.nz

* Correspondence: 15596478054@163.com

Received: 14 January 2019; Accepted: 14 March 2019; Published: 29 March 2019
����������
�������

Abstract: This paper introduces the working principle of the inductive power transfer (IPT) system
from the perspective of the electromagnetic field. Using Maxwell’s equations, the analytical solution
for the electromagnetic field, synthesized by the primary and secondary circular coils in an IPT system,
is deduced in detail to obtain the electric field in the IPT system, and the derivation process is easy to
understand for researchers engaged in IPT. The final solutions are obtained by combining analytical
derivation and the numerical integration method to find the induced voltage in the secondary coil.
Finally, by comparison, the simulation results from the finite element software are in a good agreement
with those from the analytical analysis. Moreover, an IPT system is set up to validate the analytical
and simulation results, and the maximal relative error is under 6% in different working conditions,
which shows that it is feasible to understand the working principle of IPT systems from the viewpoint
of the electromagnetic field.
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1. Introduction

Inductive power transfer (IPT) technology is a new type of energy transfer method by which
energy is transferred from source to load wirelessly, according to the electromagnetic induction theory.
In recent years, IPT has developed rapidly and been used for electric vehicles [1,2], biomedical implantable
devices [3,4] and wireless charging in intelligent mobile phones [5]. An adaptive four-coil structure was
used to improve the power transfer efficiency of the whole system [3]. A square coil was utilized to
maximize the power received by the load and the resonant frequency was adjusted to maximize the coil’s
quality factor [4]. A mobile phone shell and the coil in the secondary side were used as the resonance
bodies, which proposed a novel way to provide electrical energy for a mobile phone [5].

There are many applications for IPT systems, but the power transfer mechanism in between the
coupled coils in an IPT system is indistinct. Therefore, research on the mechanism of energy transfer of
the coil coupler is very important for IPT technology. Currently, research methods for IPT systems can
mainly be classified into two categories: The coupled-mode theory and the equivalent circuit method.
These have been proven to be equivalent through analysis with a 4-coil IPT system [6]. In 2007, the team
led by Soljačić in MIT (Massachusetts Institute of Technology) elaborated on the analysis and modelling
method of the system from the perspective of the coupled-mode theory, which laid a theoretical
foundation for the further development and popularization of IPT technology [7]. Coupled-mode
theory is used to study the coupling principle of power transmission. The power transfer process from
one resonant body to another can be expressed as a first-order partial differential equation according
to it. This equation provides an accurate and effective modelling method for IPT systems, as well as
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an analytical tool to understand the power transfer mechanism in strongly coupled systems. In IPT
systems, when the two resonant coils are close, strong coupling exists between them. Under these
conditions, with the help of coupled-mode theory, it was found that the energy loss in the primary
coil was much slower than the power transferred from the primary coil to the secondary coil [8],
thus, the energy transmission was quite efficient. From the perspective of circuit theory and practical
applications, the mutual inductance model was used to obtain the relationship between system transfer
efficiency and parameters. The mutual inductance model can also be utilized to analyze the power
transfer capability as well [9,10].

Although the mutual inductance model is mature, its accuracy depends on the accurate acquisition
of the coil parameters. In high-frequency cases, the coil impedance characteristic varies greatly with
the operating frequency. Coupled-mode theory has been widely adopted in recent years, but in
the analysis process, the state quantities are employed instead of electrical parameters. In addition,
the coupled-mode theory model is relatively abstract, and it is difficult to build the mathematical
model with lumped circuit parameters. By using the Biot–Savart law, the analytical solution of
the electromagnetic field in the IPT system was calculated through the magnetic vector potential.
However, the derivation process of the analytical solution of the electric field and magnetic field in IPT
systems and the experimental verification were not introduced [11].

In [12], the derivation of the magnetic field, based on the analysis of a current-carrying conductor,
is accurately calculated and a good approximation has been done when the far-field is calculated.
The mutual inductance and self-inductance of two coaxial coils in a multilayer media have been
introduced, and the frequency limitations of magnetic substrates are also established [13]. The far-field
solution of a loop of any size is deduced in [14], and the far-field of a square loop is also discussed,
finally proving that when the circular and square loops are the same in area and small in size with
respect to wavelength, their far-field solutions are identical, but they are different when the size is
large in terms of wavelength. From [15], it can be seen that the far-field approximation solution of the
electromagnetic field cannot be used in near-field systems because of the large relative percent error.
The exact integration of vector potentials of thin circular loop antennas is then introduced to solve
this problem.

In this paper, using Maxwell’s equations, the analytical solution for the synthesized electric and
magnetic field, both by the primary and secondary circular coil in an IPT system, are deduced in this
paper, and the electric field is analyzed in detail. The numerical integration method is used to find
the induced voltage in the secondary coil. Finite element software is utilized to compare with the
analytical results, and an IPT system is set up to validate the analytical results experimentally.

2. Mutual-Inductance Model of the IPT System

The system structure is given in Figure 1. The alternating current from the source is first converted
into a direct current through an AC/DC converter and then into a high-frequency alternating current
through another AC/DC converter. Simultaneously, the transmitting coil CoilP converts the electrical
energy into electromagnetic energy, and the receiving coil CoilS absorbs the energy from the near-zone
electromagnetic field, converting it into electrical energy. The electrical energy is then conveyed
through a rectifier to charge the battery. The coupling between the primary and secondary systems is
defined as mutual inductance M.

Figure 1. Inductive power transfer (IPT) system structure.
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The mutual inductance model is shown in Figure 2. The equivalent series impedances on CoilP
and CoilS are RP and RS, respectively. The load impedance is RL. In this paper, the series-series
compensation network is used in the IPT system, and compensating capacitors in the primary and
secondary side are CP and CS, respectively. The primary side is powered by a voltage source U and the
primary circuit current and the secondary circuit current are IP and IS, respectively. According to the
KVL equation, the following equations can be obtained:

[RP + j[ωLP − 1/ωCP]]IP − jωMIS = U, (1)

− jωMIp + [RS + RL + j[ωLS − 1/ωCS]]IS = 0, (2)

Figure 2. An IPT system model by mutual inductance.

When the primary and secondary circuits are resonant, ω = ω0 = 2π f 0 = 1/
√

LSCS = 1/
√

LPCP.
The system efficiency and load power are derived as follows [16]:

η =
(ω0M)2RL

(RS + RL)
[

RP[RS + RL] + [ω0M]2
] , (3)

PL =
I2
P(ω0M)2RL

(RS + RL)
2 , (4)

Figure 3 shows a schematic of the electromagnetic field around the primary and secondary coil.
The sine alternating current in the primary side coil generates the time-harmonic electromagnetic field.
We assume that the time-harmonic electric field induced at the position of CoilS is EP0 . Then, the integral
of EP0 on the secondary loop is equal to the induced voltage US. Combined with Figures 2 and 3,
the following expression is obtained:

US = jωMIP = −
∮

CoilS
EP0 dlS, (5)

where dlS is a directional micro-element on the secondary side coil. In this paper, the bold symbols
represent space vectors.

Figure 3. Schematic of field distribution around the primary and secondary coil.
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Similarly, the corresponding time-harmonic electric field ES0 will be generated around
CoilP by the induced current in the secondary coil. The corresponding induced voltage is
UP = jωMIS = −

∮
CoilP

ES0 · dlP. Therefore, the working principles of an IPT system can be
understood from the perspective of an electromagnetic field. In Section 3, Maxwell’s equations
are used to calculate the electric fields generated by the primary and secondary coil in detail, and the
derivation process is easy to understand for researchers engaged in IPT.

3. Analytical Solution of the Time-Harmonic Electromagnetic Field around One Current-Carrying Coil

In this section, the electromagnetic field generated by the primary and secondary coil in an IPT
system is deduced in detail by Maxwell’s equations.

3.1. Maxwell’s Equations in the Complex Domain

Maxwell’s equations in the complex domain can be written as follows:

∇×H = J + JS + jωD, (6)

∇× E = −jωB, (7)

∇·B = 0, (8)

∇·D = ρ, (9)

where H, B, E, D, J, JS, ρ and are the magnetic field strength, magnetic flux density, electric field,
electric displacement field, polarization current density, free current density in space and free electric
charge density, respectively.

The following relationships exist in an isotropic linear medium:

D = εE, (10)

B = µH, (11)

J = σE, (12)

where ε, µ and σ are the permittivity, permeability and conductivity of the medium, respectively.
By comparison of Equations (6) and (7), it can be found that the forms of Maxwell’s equations in the
complex domain are simpler.

3.2. Current Density of a Current-Carrying Coil

Due to the circular structures of the primary and secondary coils in the IPT system, a cylindrical
coordinate was adopted to analyze the system. The three directions of the cylindrical coordinate
system are denoted as eρ, eφ and ez, as shown in Figure 4. The radius of the coil is a and the height is h.
Fields 1 and 2 are the regions above and below plane Г, respectively.

Figure 4. Schematic of a coil.
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Because the direction of the free current density is the same as eφ and current only exists in the
coil, the current density at any point P(ρ,φ,z) can be expressed as follows:

JS(P) = C2δ(ρ− a)δ(z− h)eφ, (13)

where C2 is an undetermined coefficient affected by the external current.
Therefore, with a directional micro-section dS = dρdzeφ as shown in Figure 4, the integral form of

current I of the coil is shown as follows:

I =
∫
S

JS·dS = C2

∫
S

δ(ρ− a)δ(z− h)dρdz = C2, (14)

where S is a hypothetical surface through which the current density of a circular coil passes vertically.
Thus, the current density of the coil is JS = Iδ(ρ − a)δ(z − h)eφ. When the number of coil turns are

N, ignoring the radius of the wire, the current flowing through the directional micro-section dS is NI,
and the current density at the corresponding location is JS(P) = NIδ(ρ − a)δ(z − h)eφ.

3.3. Analytical Solution of the Electric Field

The following relationships exist in the cylindrical coordinate system:

∇·P =
1
ρ

∂

∂ρ

(
ρPρ

)
+

1
ρ

(
∂Pφ

∂φ

)
+

∂Pz

∂z
, (15)

∇× P = (1/ρ) ·
[

∂Pz

∂φ
−

∂
[
ρPφ

]
∂z

]
eρ +

[
∂Pρ

∂z
− ∂Pz

∂ρ

]
eφ + (1/ρ)

[
∂
[
ρPφ

]
∂ρ

−
∂Pρ

∂φ

]
ez, (16)

∇Ψ =
∂Ψ
∂ρ

eρ +
1
ρ

∂Ψ
∂φ

eφ +
∂Ψ
∂z

ez, (17)

∇2Ψ = ∇·(∇Ψ) =
∂2Ψ
∂ρ2 +

1
ρ

∂Ψ
∂ρ

+
1
ρ2

∂2Ψ
∂φ2 +

∂2Ψ
∂z2 , (18)

where P represents a space vector and Ψ is a scalar value.
By combining Equations (6), (10)–(12), and by rearranging Equation (7), then

∇2E + k2E = jωµ

[
JS +

1
k2∇[∇·JS]

]
, (19)

where k2 = −jωµ(σ + jωε).
Meanwhile, JS·eρ = JSρ = JS·ez = JSz = 0 and ∂JSφ/∂φ = 0, so the divergence of the current density is

∇·JS = 0, (20)

Therefore, Equation (19) can be written as

∇2E + k2E = jωµJS, (21)

If there is no free current density, then Equation (19) can be expressed as

∇2E + k2E = 0, (22)

Replacing the space vector P by Ei in Equation (15) yields

∇·Ei =
1
ρ

Eiρ +
∂Eiρ

∂ρ
+

1
ρ

∂Eiφ

∂φ
+

∂Eiz
∂z

, (23)
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where i = 1 and 2, representing fields 1 and 2.
By defining A = ∇

(
Eiρ/ρ

)
, B = ∇

(
∂Eiρ/∂ρ

)
, C = ∇

[
[1/ρ] · ∂Eiφ/∂φ

]
, and D = ∇(∂Eiz/∂z),

substituting Equation (23) into Equation (17), the gradient of the divergence of Ei can be expressed as
A + B + C + D, where

A =

(
− 1

ρ2 Eiρ +
1
ρ

∂Eiρ

∂ρ

)
eρ +

1
ρ2

∂Eiρ

∂φ
eφ +

1
ρ

∂Eiρ

∂z
ez, (24)

B =
∂2Eiρ

∂ρ2 eρ +
1
ρ

∂2Eiρ

∂ρ∂φ
eφ +

∂2Eiρ

∂ρ∂z
ez, (25)

C =

(
− 1

ρ2

∂Eiφ

∂φ
+

1
ρ

∂2Eiφ

∂ρ∂φ

)
eρ +

1
ρ2

∂2Eiφ

∂φ2 eφ +
1
ρ

∂2Eiφ

∂z∂φ
ez, (26)

D =
∂2Eiz
∂ρ∂z

eρ +
1
ρ

∂2Eiz
∂φ∂z

eφ +
∂2Eiz
∂z2 ez, (27)

Replacing the space vector P by Ei in (16) yields

∇× Ei =

(
1
ρ

∂Eiz
∂φ
−

∂Eiφ

∂z

)
eρ +

(
∂Eiρ

∂z
− ∂Eiz

ρ

)
eφ +

(Eiφ

ρ
+

∂Eiφ

∂ρ
− 1

ρ

∂Eiρ

∂φ

)
ez, (28)

Similarly, ∇ × ∇ × Ei can be calculated by applying Equation (16) again.
In cylindrical coordinates,eρ·eφ = 0, eρ·ez = 0 and eρ·eρ = 0. Thus,

∇×∇× Ei·eρ =
1
ρ2

∂Eiφ

∂φ
+

1
ρ

∂2Eiφ

∂ρ∂φ
− 1

ρ2

∂2Eiρ

∂φ2 −
∂2Eiρ

∂z2 +
∂2Eiz
∂ρ∂z

, (29)

Rearranging Equations (24)–(27) yields

∇(∇·Ei)·eρ = − 1
ρ2 Eiρ +

1
ρ

∂Eiρ

∂ρ
+

∂2Eiρ

∂ρ2 −
1
ρ2

∂Eiφ

∂φ
+

1
ρ

∂2Eiφ

∂ρ∂φ
+

∂2Eiz
∂ρ∂z

, (30)

The relationship ∇×∇× P = ∇(∇·P)−∇2P exists in any orthogonal coordinate system, so in
the cylindrical coordinate system,

∇2Ei = ∇(∇·Ei)−∇×∇× Ei, (31)

Taking the dot product between both sides of Equation (31) and applying Equations (29) and (30),
the following relationship can be obtained:

∇2Ei·eρ =
∂2Eiρ

∂ρ2 +
1
ρ

∂Eiρ

∂ρ
+

1
ρ2

∂2Eiρ

∂φ2 +
∂2Eiρ

∂z2 −
1
ρ2 Eiρ −

2
ρ2

∂Eiφ

∂φ
= ∇2Eiρ −

1
ρ2 Eiρ −

2
ρ2

∂Eiφ

∂φ
, (32)

According to the symmetry, it is easily derived that the electric field only exists in the φ direction,
and its intensity is angle independent, which means that E = Eφ·eφ and ∂Eiφ/∂φ = 0. Thus,

∇2Ei·eρ = ∇2Eiρ −
1
ρ2 Eiρ, (33)

Similarly,

∇2Ei·eφ = ∇2Eiφ −
1
ρ2 Eiφ, (34)

∇2Ei·ez = ∇2Eiz, (35)
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According to Equation (34), Equation (22) can be written as

∂2Eiφ

∂ρ2 +
1
ρ

∂Eiφ

∂ρ
+

∂2Eiφ

∂z2 +

(
k2 − 1

ρ2

)
Eiφ = 0, (36)

Defining Eiφ = R(ρ)Z(z) and using the method of separation of variables in Equation (36) yields[
1

R[ρ]
∂2R[ρ]

∂ρ2 +
1

ρR[ρ]
∂R[ρ]

∂ρ
− 1

ρ2

]
+

[
1

Z[z]
∂2Z[z]

∂z2 + k2
]
= 0, (37)

By defining the first and second parts of the left side of Equation (37) as H(ρ) and Z(z), respectively,
it can be easily found that H(ρ) and Z(z) are linearly independent. Thus,

ρ2 ∂2R(ρ)
∂ρ2 + ρ

∂R(ρ)
∂ρ

+
(

λ2ρ2 − 1
)

R(ρ) = 0, (38)

∂2Z(z)
∂z2 −

(
λ2 − k2

)
Z(z) = 0, (39)

where λ is a separation variable [17].
R(ρ) can be calculated because the time-harmonic electromagnetic field is bounded and non-zero:

R(ρ) = C1 J1(λρ), (40)

where J1 is a Bessel function of the first kind.
With the formulas of R(ρ) and Z(z), the expression of Eiφ can be finally obtained as follows:

Eiφ(ρ, z) =
∞∫

0

J1(λρ)
[
C1i[λ]euz + C2i[λ]e−uz]dλ, (41)

Because Eiφ is zero at infinity, and E2φ − E1φ = 0 and ∂E2φ/∂z− ∂E1φ/∂z = jωµ× NIδ(ρ − a)
are satisfied on the plane Г, then:

E = − jωµaNI
2

∞∫
0

λ

u
J1(λa)J1(λρ)e−u|z−h|dλeφ, (42)

H = − 1
jωµ
∇×

(
Eφeφ

)
=

aNI
2

∞∫
0

[
sgn[z− h]J1[λρ]eρ +

λ

u
J0[λρ]ez

]
· λJ1(λa)e−u|z−h|dλ, (43)

where

sgn(z− h) =


1, z > h
0, z = h
−1, z < h

,

4. Electric and Magnetic Field in the IPT System

In this section, the analytical solutions for the electric and magnetic field, induced both by the
primary and secondary coil, are deduced, and the numerical integration method is used to acquire
numerical results.
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4.1. Analytical Solution of the Electric and Magnetic Field

As shown in Equation (7), there is a one-to-one correspondence between the electric field E and
the magnetic flux density B. When the analytical solution of E is obtained, the analytical solution of B
can also be uniquely determined. Thus, in this section, the electric field is calculated only.

An electric field illustration of the sampling point in the double-coil system is given in Figure 5.
The radius of each coil is a. The current in the primary and secondary coil is defined as IP and IS,
respectively. NP and NS are the numbers of turns in the two coils, respectively. The distances from
CoilP and CoilS to the point Q are denoted as h2 and h1, respectively.

Figure 5. Illustration of the electric field at a sampling point of the double-coil IPT system.

The electric field only exists along the φ direction. Thus, by combining Equations (2) and (5),
when the system is operated at its resonant frequency, the following equation can be obtained:

IS =

−
∮

CoilS

EP0 dlS

RL + RS +
(

jωLS +
1

jωCS

) =

−
∮

CoilS

EP0 dlS

RL + RS
, (44)

where EP0 is the electric field at CoilS produced by the current in CoilP:

EP0 = − jωµaNP IP
2

∞∫
0

λ

u
J1(λa)J1(λρ)e−u(h1+h2)dλeφ, (45)

The total electric field at point Q is E = EP + ES, and

EP = −ωµaNP IP
2

∞∫
0

λ

u
J1(λa)J1(λρ)e−uh1 dλeφ, (46)

ES = − jωµaNS IS
2

∞∫
0

λ

u
J1(λa)J1(λρ)e−uh2 dλeφ, (47)

where EP and ES are the electric fields produced by the current in the primary and secondary coils,
respectively. Equations (46) and (47) laid the base for the next step numerical calculations to find the
distribution of the E and H field.

4.2. Numerical Integration Method for the Analytical Solution

The integral of the function y = f (λ) = (λ/u)·J1(λa)J1(λρ)e−uh1 in Equation (46) needs to be
calculated and the integration interval is from A to B.
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Since it is difficult to determine the primitive function of the integrand f (λ), the integration method
is used to acquire an approximation result. In the numerical integration method, the integration interval
is divided into parts, and the sum of their areas is the approximation of the integral of the function f (λ)
from A to B.

As shown in Figure 6, by defining the area of each small part as ∆s = f (λn)·(B − A)/m,

B∫
A

f (λ)dx ≈
n=m−1

∑
n=0

B− A
m

f (λn), (48)

Figure 6. Numerical integration method for the analytical solution.

If m tends to infinity, then

B∫
A

f (λ)dx = lim
m→∞

∞

∑
n=0

B− A
m

f (λn), (49)

In Equation (46), A is equal to zero. When a = ρ = 0.1 and λ = 1000, f (λ) tends to zero, so the upper
limit of the integral, (i.e., B) can be set to be 1000. To ensure accuracy, the number of tiny intervals was
defined as m = 1 × 105.

The final solutions are obtained by combined analytical derivation and numerical calculations.
In the next section, the analytical solution is verified by simulation.

5. Simulation Verification

In this section, MATLAB is used to provide the numerical results of analytical solutions and the
simulation results are obtained through use of the finite element software COMSOL. The analytical
solution is coincident with the simulation results, which shows the accuracy of analytical solution
deduced in Section 3.

5.1. Simulation Verification of the Electric Field Produced by a Single-Turn Current-Carrying Coil

As shown in Figure 7, the radius of the coil is a and the coordinates of points A1, A2 and A3 are
(a/2, π/2, 0), (a, π/2, 0) and (3a/2, π/2, 0), respectively. The moduli of the electric field, changing with
z at z1, z2 and z3, are given in Figure 8a–d, where I and f denote the effective current value and the
frequency in the coil, respectively. In Figure 8, MAT represents the results obtained by the analytical
results of electric field using MATLAB, and COM represents the simulation results using the finite
element software COMSOL.
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Figure 7. The three points are in ρ axis.

Figure 8. Electric-field intensity at different positions. (a) is the electric field curve when a = 100 mm, I
= 1 A and f = 500 kHz, (b) is the electric field curve when a = 80 mm, I = 1 A and f = 500 kHz, (c) is the
electric field curve when a = 100 mm, I = 1.5 A and f = 500 kHz, (d) is the electric field curve when a =
100 mm, I = 1 A and f = 800 kHz.

The analysis results coincide with the simulation results and the maximal relative error is
below 1%. This is because the analytical solution was deduced under the assumption that the
current-carrying coil is treated as a wire with no cross section. Since the distance from the test
point to the current-carrying coil is much longer than the coil diameter, the relative error caused by the
coil diameter can be ignored. Similarly, the accuracy of the analytical solution of the magnetic field
strength can be verified also.

5.2. Simulation Verification of the Electric Field in the IPT System

As shown in Figure 9, the radii of the two coils are both a = 100 mm, the distance between them
is h = 100 mm, and they both have N turns. The coordinates of points B1, B2 and B3 are (0, 0, h/3),
(0, 0, 5h/9), and (0, 0, 2h/3), respectively. The circuit topology is shown in Figure 2, and in the circuit,
RL = 5 Ω and the system resonant frequency is f 0 = 500 kHz when the effective value of the current IP
in the primary coil is 1 A. The obtained moduli of the electric field, changing with ρ at ρ1, ρ2 and ρ3,
are given in Figure 10a,b.



Appl. Sci. 2019, 9, 1323 11 of 15

Figure 9. The three points are located in the z-axis.

Figure 10. Analytical and simulated synthesized electric-field intensity with different N values. (a) is
the electric field curve when the number of coil turns on both sides is 4, (b) is the electric field curve
when the number of coil turns on both sides is 8.

The symbols MAT and COM have the same meanings as those in Figure 8. The maximum
deviation between the results obtained with these two methods is 4.3% under the condition that the
number of turns of both coils is 8 and that the test point on ρ3 is the closest point to the secondary
coil. When the number of coils turns increases, the total height of the coil becomes larger compared
with the results when N = 4, and the current distribution in the coil becomes much more complex,
where the relative error turns out to be larger when the test point is nearer to the coil. However, it is
still an acceptable relative error. Hence, Figure 10 verifies that the formula E = EP + ES can be used for
the calculation of total electric field between coupled coils in an IPT system. Similarly, for the magnetic
field strength, H = HP + HS can also be verified. In the next section, an IPT experimental system is set
up to further validate the analytical solution.

6. Experimental Verification

The electric field intensity cannot be measured directly. According to Equation (42), the electric
field generated by the coil is along the φ direction, but the electric field intensity is independent
of φ. For a single-turn measurement coil, when its plane is oriented parallel to the plane of the
current-carrying coil, the electric field intensity can be measured using the relationship U =

∮
l|E|dl.

When current flows in the source coil and the measurement coil is opened, the relationship between the
open-circuit voltage and the circular electric-field strength at the measurement coil can be expressed as
|E| = U/(2πa), in which a is the radius of the measurement coil. The experimental configuration is
shown in Figure 11.

By changing the position and size of the measurement coil, the variation of the electric-field
strength at different positions can be measured, where Q is an arbitrary point on the measurement
coil. To facilitate the experiment, the radius of the measurement coil was set equal to the radius of the
primary and secondary coils.
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When the secondary side is at resonant state, the reflected impedance from the secondary side to
the primary side is purely resistive, while the resonant frequency of the primary side is independent of
the secondary side. The experimental steps were as follows [18]:

Figure 11. Experimental configuration.

Firstly, a compensation capacitor with CS = 1000 pF, a load with RL = 20 Ω and an adjustable
current source were connected in series with the primary coil. The current source frequency was
adjusted to a specific value so that the load current and voltage were in the same phase, which is the
resonant frequency. In the experiment, the measured resonant frequency was set at f 0 = 486.7 kHz.
Then, the current source was removed and the secondary side of the circuit was connected as shown in
Figure 11.

Secondly, to achieve full resonance (i.e., the primary side and secondary side are both resonant),
a compensation capacitor must be connected in series with the primary coil. The experimental circuit
configuration is shown in Figure 11. The experimental set up is shown in Figure 12, and the frequency
of the power amplifier shown in Figure 12 was maintained at f 0 = 486.7 kHz, and the compensation
capacitance CP was adjusted until the voltage and current of the power source were in the same phase,
at which point the circuit achieves full resonance.

Figure 12. Experimental set-up.

The relevant parameters are listed in Table 1.
Finally, different values of h1 in Figure 11 were chosen, and the output current of the power

amplifier was changed. The corresponding induced voltages of the measurement coil at different
positions were measured. The voltage was divided by the perimeter of the measurement coil to obtain
the electric field intensity at that point.

Figure 13 shows waveforms of the experiment result, measured by Tektromix DPO4104B when
the effective current on the primary side was 0.499 A and h1 = 52 mm. The purple line is the primary
side current ip, the dark blue line is the output voltage of the power amplifier up, the green line is
the induced current in the secondary side coil is and the light blue line is the induced voltage of the
measurement coil um.
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Table 1. Experimental parameters.

Parameter and Symbol Value

Radius of primary coil, aP 100 mm
Radius of secondary coil, aS 100 mm

Wire radius, wire 0.6 mm
Number of turns of primary coil, NP 5

Number of turns of secondary coil, NS 5
Distance between both coils, h1 + h2 100 mm

Load impedance, RL 20 Ω
Compensation capacitor in primary side, CP 1000 pF

Compensation capacitor in secondary side, CS 1000 pF
Inductance of primary coil, LP 105.8 µH

Inductance of secondary coil, LS 105.8 µH
Resonant frequency, f 0 486.7 kHz

Radius of measurement coil, a 100 mm

Figure 13. Waveforms of primary voltage up, primary current ip, secondary current is and induced
voltage um of the measurement coil.

The experimental results of electric field intensity at different h values are shown in Figure 14.
H1, H2 and H3 represent values of h1 at 27 mm, 52 mm and 80 mm, respectively. The largest relative
error, which is below 6%, happens under the experimental condition that h1 = 80 mm, and the maximal
relative error is below 2% at the other two positions. The reason why the analytical solution is always
larger than the experiment data is that during the numerical integration, the coil resistance is not
considered. It can be found that near the primary side, the analytical solution is just a little higher
than the experiment data, the reason for this is that near the primary side the electric field intensity is
determined dominatingly by the current in primary side. It is reasonable to believe that the experiment
has validated the analytical solution.

Figure 14. Electric field intensity at different h1 values.
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7. Conclusions

To reveal the energy transfer mechanism in the IPT system, it is important to study the distribution
of the time-harmonic electric and magnetic fields in the IPT system. In this paper, the analytical solution
of the time-harmonic electric and magnetic fields in an IPT system was deduced in detail, and the
numerical integration method was used to find the distribution of the E and H fields on the basis of
the analytical solution.

Firstly, based on the Maxwell’s equations, the Laplacian of the electric field and the magnetic
field strength around the current-carrying coil were derived theoretically. The analytical expression
of the electric field was calculated in an integral form, and the result can be obtained by the simple
trapezoidal integration method. The final solutions were obtained by combined analytical derivation
and numerical calculations.

Secondly, the correctness of the analytical results for the electromagnetic field in the IPT system
was verified utilizing the finite element software COMSOL.

Finally, an IPT system was set up, and the electric-field strength between the primary and
secondary coils was measured. The experimental results further verify the correctness of the analytical
solution. The analytical solution developed in this paper can be applied to analyze electric and
magnetic fields in any uniform medium.
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