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Abstract: An optimal design model for residential photovoltaic (PV) systems in South Korea was
proposed. In the optimization formulation, the objective function is composed of three costs,
including the monthly electricity bill, the PV system construction cost (including the government’s
subsidy), and the PV system maintenance cost. Here, because the monthly electricity bill is not
differentiable (it is a stepped piecewise linear function), it cannot be solved by using traditional
gradient-based approaches. For details considering the residential electric consumption in a typical
Korean household, consumption was broken down into four types (year-round electric appliances,
seasonal electric appliances, lighting appliances, and stand-by power). For details considering the
degree of PV generation, a monthly generation dataset with different PV tilt angles was analyzed.
The optimal design model was able to obtain a global design solution (PV tilt angle and PV size)
without being trapped in local optima. We hope that this kind of practical approach will be more
frequently applied to real-world designs in residential PV systems in South Korea and other countries.
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1. Introduction

South Korea is in the world’s top 10 energy-consuming countries, and it heavily depends on
imports of fossil fuels (natural gas, coal, and oil) [1–3]. Due to recent public awareness regarding
the issue of polluted air, pressure to reduce its dependency on fossil fuels has increased. In addition,
the Fukushima disaster that occurred in Japan has caused the present government to support the
nuclear phase-out policy.

Therefore, various renewable energies (photovoltaics (PV), wind, geothermal, hydro, biomass,
fuel cells, etc.) have been currently developed, which also helps in the country’s pledge at the 2015
Paris Climate Conference to cut its carbon emissions by 37% below the business-as-usual (BAU) level
by 2030.

In addition, the Korean government has recently declared a national project aiming for power
generation by renewable energies to account for 20% of the total generation output by 2030 (85,905 GWh
(13.6%) by 2025 and 134,136 GWh (20%) by 2030) [4]. This project especially focuses on PV and wind
energies (more than 75% with respect to the generation capacity, and more than 50% with respect to the
generation amount). The Korean government plans to provide urban-type self-sufficient PV systems
to 760,000 residential houses by 2022, and 1,560,000 houses by 2030 [5].

To this end, as one of practical efforts, Korean government already ruled that 5% of total
construction cost should be invested in renewable energy system for large public buildings (total floor
area is greater than or equal to 3000 m2), and it also subsidizes 60% of the construction cost if private
residential buildings install PV renewable systems [6].
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Korean government also plans to promote rural-area PV systems using low-interest loans and
higher-weighted RECs (Renewable Energy Certificate). The REC is a market-tradable and non-tangible
instrument that certifies that the owner possesses one megawatt-hour (MWh) of electricity generated
from any renewable energy resource [7]. RPS (Renewable Portfolio Standard) required for large power
producers (≥500 MW) also works well after FIT (Feed-In Tariff) system ends. In order to enhance the
social receptivity to PV systems, the Korean government has approved private enterprisers, to gather
individual private investors, to join in PV development projects.

The objective of this study is to propose an optimal model for residential PV system design. In this
model, the construction and management costs will be minimized, while considering various practical
design factors such as PV generation amounts with different tilt angles, the Korean progressive electric
rate, the unit cost of a PV panel, the interest rate, the project period, the electrical usage of general
electric appliances, and seasonal appliances, lighting appliances, and stand-by power.

The rest of this paper is organized as follows. The optimal design model for the residential PV
system is proposed in Section 2. Residential electricity demand is broken down in detail, and the
monthly electrical generation amounts with varying tilt angles are proposed in the form of polynomial
functions in Section 3. The optimal design solution is obtained by using an evolutionary algorithm,
and compared with that from previous gradient-based methods in Section 4. Finally, in Section 5,
we conclude our paper with some future directions.

2. Optimization Formulation

The objective function to be minimized in this residential PV design optimization is the total
cost (CT), which consists of the electric bill from grid (CElectric), the PV-related construction cost (CCst),
and the PV-related maintenance cost (CMtn), as shown in Equation (1) [6]:

MinimizeCT = CElectric + CCst + CMtn (1)

where the annual electric bill (CElectric) is the sum of the monthly bills, and each monthly bill (Cm
Eelctric) is

calculated based on the monthly grid-supplied amount (Dm
Electric − PVm

Electric) when monthly residential
demand (Dm

Electric) is greater than the monthly PV generation amount (PVm
Electric), as in Equation (2):

CElectric =
12

∑
m=1

Cm
Electric(Dm

Electric − PVm
Electric) (2)

For the monthly bill (Cm
Electric), Korea adopts a six-stage progressive electric rate system,

which charges a higher rate for higher electricity usage, as shown in Table 1.

Table 1. Korean progressive electric rate (US$1 ≈ 1100 KRW).

Range Base Rate (KRW) Progressive Rate (KRW/kWh)

Up to 100 kWh 370 55.1
101~200 kWh 820 113.8
201~300 kWh 1430 168.3
301~400 kWh 3420 248.6
401~500 kWh 6410 366.4

More than 500 kWh 11,750 643.9

For example, if one household consumes 50 kWh for a certain month, the monthly electric bill
will be 3125 KRW (=370 + 50 × 55.1); if it consumes 150 kWh, the monthly electric bill will be 12,020
KRW (=820 + 100 × 55.1 + 50 × 113.8). Thus, if we draw a monthly electric bill from 0 to 600 kWh,
we obtain a stepped piecewise linear function, as shown in Figure 1.
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For the PV-related construction cost (CCst), in order to fairly consider this one-time cost alongside
other annual costs (Cm

Electric and CMtn), a capital recovery factor [8], which is the ratio of a constant
annual return amount to the initial construction cost (CIcc) for a given length of time, is introduced as
in Equation (3):

CCst =
r(1 + r)n

(1 + r)n − 1
CIcc (3)

where r is the interest rate (6.5% in this study) and n is number of system operation years (or the
number of annual returns received; 25 years in this study).

The decision variables in this residential PV design optimization are the size of the PV panel
(or module; SPV) and the tilt angle of the PV panel (APV ; horizontal line is 0◦). These two decision
variables have value ranges as constraints:

0 ≤ SPV ≤ 3(kW) (4)

15◦ ≤ APV ≤ 60◦ (5)

3. Application of the Residential PV System

The above formulated PV design model is assumed to be applied to a typical Korean
residential building. For a typical Korean residential building, the monthly demand (Dm

Electric) can
be assessed in four groups of consumption (general electric appliances, seasonal electric appliances,
lighting appliances, and stand-by power) [6].

The first group of consumption occurs in general (year-round) electric appliances such as the
television, refrigerator, and washing machine, as shown in Table 2. For example, a typical Korean
residential building has two TV sets, which consume 270 W (=135 W × 2) over 6.9 hr per day,
and 28 days per month, based on a statistical survey. Interestingly, a Korean house also possesses
a special refrigerator which preserves only Kimchi, because it is an essential dish for every meal in
Korean daily life.
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Table 2. Power consumption of general electrical appliances.

Appliance Power
Consumption (W)

Daily Usage
Hours (hr)

Monthly Usage
Days (days)

Two TV sets 270 6.9 28.0
Refrigerator 67 24.0 30.0

Refrigerator for Kimchi 30 24.0 30.0
Washing Machine 515 1.5 17.5
Vacuum Cleaner 899.1 0.6 21.6

Personal Computer 168 4.2 24.4
Microwave 1010.2 0.4 14.9

Audio System 40 3.0 8.5

The second group of consumption occurs with seasonal electric appliances, such as the electric
fan, air conditioner, humidifier, and electric blanket, as shown in Tables 3 and 4. For example, a typical
Korean residential building has one air conditioner, which consumes 1725 W over 4.65 hr per day.
However, this seasonal appliance is utilized only during the summer season (13 days for June, 15 days
for July, and 27 days for August).

Table 3. Power consumption of seasonal electrical appliances.

Appliance Power
Consumption (W)

Daily Usage
Hours (hr)

Yearly Usage
Days (days)

Electric Fan 60 7.20 95
Air Conditioner 1725 4.65 55

Humidifier 99 5.12 126
Electric Blanket 230 5.42 146

Table 4. Monthly usage of seasonal electrical appliances.

Appliance Days of Use in Each Month

1 2 3 4 5 6 7 8 9 10 11 12

Electric Fan 0 0 0 0 14 16 23 25 16 0 0 0
Air Conditioner 0 0 0 0 0 13 15 27 0 0 0 0

Humidifier 23 21 17 0 0 0 0 0 0 17 23 24
Electric Blanket 27 25 20 0 0 0 0 0 0 20 24 27

The third group of consumption occurs with lighting appliances, such as fluorescent, incandescent,
and halogen lights, as shown in Table 5. For example, a typical Korean residential building has one
stand-alone (stabilizer-included) fluorescent lamp, which consumes 25.86 W over 7.9 hr per day.

Table 5. Power consumption of lighting appliances.

Appliance Power Consumption (W) Daily Usage Hours (hr)

Fluorescent Tube (20 W) 20 7.9
Fluorescent Tube (32 W) 32.09 7.9
Fluorescent Tube (40 W) 40.18 7.9
Fluorescent (Compact) 37.90 8.1
Fluorescent (Circular) 39.85 5.6

Fluorescent (Stand-Alone) 25.86 7.9
Incandescent 71.48 1.7

Halogen 94.17 1.3

The final group of consumption occurs with stand-by power from various appliances, as shown
in Table 6. Normally it accounts for approximately 10% of total household power consumption.
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Table 6. Consumption amount of stand-by power.

Appliance Average Stand-By Power (W) Daily Stand-By Power Amount (Wh)

Two TV sets 8.6 147.1
Audio System 9.1 191.1

DVD 12.2 269.6
Microwave 2.8 66.2

Air Conditioner 2.8 54.2
Personal Computer 3.2 63.4
Computer Monitor 2.6 51.5

If we aggregate the above-mentioned four types of consumption, we can obtain a monthly power
consumption graph, as shown in Figure 2. Here, it should be noted that a consumption amount of
2.2 kWh/day for any additional appliance was added to each monthly amount.
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Figure 2. Monthly power consumption for a typical Korean house.

So far, the monthly power consumption of a typical Korean house has been assessed based on
four different types of consumption. Now let us assess the monthly power generation amount from
the PV system (PVm

Electric).
The monthly PV generation amount is affected by two major decision variables (PV angle, APV ,

and PV size, SPV). The first affecting factor is the tilted angle of the PV panel, as shown in Figure 3.
As seen in the figure, the lowest angle (15◦) generates the highest amount in June, while the highest
angle (60◦) generates the highest amount in December. The highest amounts in March and September
occur in the middle.
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For this study, in order to estimate the energy production of the residential PV system, the PVWatts
calculator [9], which was developed by the National Renewable Energy Laboratory (NREL) in the
U.S. Department of Energy, was utilized. After inputting various PV system specifications such as
the DC system size (unit size (1 kW) in this study), array type (fixed in this study), array azimuth
(180◦ (full south) in this study), system losses (14% in this study), inverter efficiency (96% in this study),
and PV tilt angle (APV) into the software, we could obtain an estimation of the month-average
solar radiation (kWh/m2/day), and the monthly unit-size PV generation amount (kWh) for a
specific location.

For the specific location, this study selected Seoul, the capital city of South Korea. However,
PVWatts provided the PV generation data of Incheon, as the nearest location from Seoul (24 miles west
from the center of Seoul), whose latitude is 37.48◦ N and longitude is 126.55◦ E, as shown in Figure 4.
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The influencing factor, PV size (SPV), can be multiplied by the unit-size generation amount
(kWh/kW) at a certain PV angle (APV), to calculate the monthly PV generation amount (PVm

Electric).
The PV-related construction cost (CCst) in Equation (1) is the function of PV size (SPV). The original

PV construction cost is 7,210,000 KRW/kW in this study. However, after considering the Korean
government’s subsidy (60% of the original cost = 4,326,000 KRW/kW) and the building materials
cost savings ($462,500/kW), the PV-related construction cost (CCst) becomes 2,421,500 KRW/kW
(=7,210,000 − 4,326,000 − 462,500) multiplied by the PV size (SPV).

The PV-related annual maintenance cost (CMtn) in Equation (1) is 12,105.7 KRW/kW (0.5% unit
CCst) multiplied by the PV size (SPV).

4. Computational Results

The residential PV design model is optimized with various practical data, as proposed in the
above sections. Figures 5 and 6 show the total PV design cost, as specified in Equation (1), with different
PV sizes (0 ≤ SPV ≤ 3 kW, by 0.2 kW) and tilt angles (15◦ ≤ APV ≤ 60◦, by 2.5◦). In this resolution,
639,919 KRW, with a PV size of 1.2 kW and a PV tilt angle of 27.5◦ is the minimal design solution for
the system.

When we narrowed down the PV size (0.95 ≤ SPV ≤ 1.3 kW) and the tilt angle (26.4◦ ≤ APV ≤
28.6◦), and then divided them into finer intervals (0.05 kW for the PV size and 0.1◦ for the tilt angle),
Figures 7 and 8 were obtained. At this resolution, we obtained a better solution (639,901 KRW with PV
size of 1.2 kW and PV tilt angle of 28.3◦~28.4◦) than that with coarse resolution (639,919 KRW with PV
size of 1.2 kW and PV tilt angle of 27.5◦).
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In order to find a global optimal solution, we applied a genetic algorithm [10] as a global search
meta-heuristic algorithm [11] to this PV design problem. When this meta-heuristic optimization
algorithm was applied, we obtained an even better solution (639,824 KRW) at different solution spot
(a PV size of 1.1904 kW and a PV tilt angle of 26.7013◦) than those at the previous two resolutions.
This phenomenon means that there exist local optimal solutions within the solution space.

Here, it should be noted that this PV design problem cannot be solved by using calculus-based
approaches, because the monthly electric bill, as a part of the objective function, possesses stepped
piecewise linearity, as shown in Figure 1. At certain stepped points such as 100, 200, 300, 400,
and 500 kW, this cost function is not differentiable. Although a previous research [6] tackled this
problem with a gradient-based approach, named SQP (Sequential Quadratic Programming), it had to
sacrifice the accuracy of the objective function by smoothing out this step function with polynomial
curve fitting.

In order to compare our approach by using a genetic algorithm with the old approach, using SQP,
we first performed a polynomial regression based on the electrical rate data in Table 1, and obtained
the following second-order polynomial function:

Cm
Electric = 0.5632x2 − 76.207x + 7612.3withR2 = 0.9947 (6)

Then, based on Equation (6), the SQP optimization was performed, obtaining an optimal cost
of 617,529 KRW, with a PV size of 1.3935 and a PV tilt angle of 29.7229◦. It appears that the solution
(617,529 KRW) from SQP was better than that (639,824 KRW) of our approach. However, when we
verified the SQP solution with a real cost table (Table 1), we obtained 644,252 KRW, which is worse
than our solution.

5. Conclusions

This study proposes a design optimization model for the residential PV systems in South Korea,
where the objective function to be minimized consists of three costs, such as the monthly electric bill,
the PV-related construction costs, and the PV-related maintenance cost. Here, the monthly electric bill
has six ranges in the form of a stepped piecewise linear function. The PV-related construction costs
also include the government’s subsidy and the building-material cost savings. The initial construction
costs, and the annually occurring maintenance costs are fairly compared by introducing the capital
recovery factor.

Regarding residential electrical consumption, four consumption types, such as year-round electric
appliances, seasonal electric appliances, lighting appliances, and stand-by power, were considered.
Also, regarding residential PV generation, the monthly generation amount was calculated by
considering different solar altitude angles.

While local optimal solutions, this model could find the global optimal solution by using a genetic
algorithm. We hope that this optimization model will be practically used in residential PV system
designs in South Korea.

For future study, we plan to construct more detailed PV design optimization models by
considering discrete PV size variables [12–14], ESS (energy storage systems) [15,16], AC–DC
conversion [17], and more energy-efficient lighting devices (light-emitting diodes). Normally, the size
of PV is discrete, because a PV system consists of an integer number of panels. Thus, we would like
to consider this discrete nature of the PV size after gathering sufficient data in the future. In order to
efficiently utilize surplus energy from the PV system, we may install an ESS and optimally schedule
it [15].

The climate change cast over in Korea has made its summers hotter than before, which has
led to more energy consumption in the summer months, and higher energy bills. Thus, the Korean
government is about to reform the multi-stage progressive electric rate, in order for lower-income
groups to be able to afford to pay it. Once all-new data, including billing, panel capacity and costs,
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ESS capacity & costs, etc., are obtained, we will correspondingly construct a more detailed and
up-to-date model design.
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