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Abstract: The point-to-point quantum key distribution (QKD) system is limited by the transmission
distance. So, the wide area QKD network with multiple endpoints is the research focus of this
study. The relay-node scenario and key relay protocols provide the solutions to the QKD network.
The early key relay protocols require the relay nodes to be reliable. Once the relay nodes become
compromised, the whole network is insecure. In this paper, we extend the chain structure of the
public-XOR(exclusive OR)-key scheme with two endpoints to the complex network with multiple
endpoints. The relay nodes in our scheme do not need encryption actions, decryption actions, or
storage XOR keys, which simplifies the system compared with other key distribution schemes based
on trusted relay nodes. Our scheme not only improves the practical performance and simplifies the
system’s complexity, but it also ensures that the security is not reduced. Specifically, we rigorously
demonstrate that an eavesdropper can never access the key shared by the users of the network
as long as the process of generating XOR keys and destroying the original keys is secure. In
addition, we discuss the information leakage of the practical QKD network from the perspective of
the unicity distance.
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1. Introduction

To ensure the security of communications on the internet, an effective solution is to use
cryptographic techniques. The security of the most classical cryptosystems depends on the
computational complexity of the algorithms. With the fast development of quantum computation and
quantum algorithms, communication security based on the above algorithms is greatly compromised.
In conventional cryptography, a typical cryptosystem not based on the computational assumptions is
the one-time-pad, which is unconditionally secure and free from the threat of quantum computing. In
one-time-pad, the length of the keys and the messages is the same, and the keys can only be used once.
Both communicating parties need to share the keys in advance. The security of one-time-pad should
be completely dependent on the confidentiality of the pre-shared keys. It is too expensive to realize
and too difficult to apply in practice. Thus, how to realize the unconditionally secure key distribution
becomes a critical problem, which motivates the development of quantum key distribution (QKD).
In 1984, Bennett and Brassard proposed the concept of QKD [1], which achieves the unconditionally
secure key distribution based on quantum mechanics. It enables both parties of communication to
generate and share a random and secure key. Then a series of QKD protocols have been proposed [2–5].
More importantly, the unconditional security of QKD protocol has been strictly proved [6–9].
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The early implementations of QKD systems mainly focus on the communication between two
endpoints. The point-to-point QKD system is limited by the transmission distance, which is limited
by the key rate. So, the development of a wide area QKD network is a challenging issue. Some
countries and regions have deployed QKD networks for last years. The first experiment of QKD
network was designed by Townsend [10]. Some QKD network projects [11–18] have been completed
successfully, such as the defense advanced research projects agency (DARPA) quantum network [11] set
up by the USA in 2004, secure communication based on quantum cryptography (SECOQC) designed
by the European project [13], the commercial telecommunication fiber network in China [12], the
SwissQuantum QKD network project launched in Geneva [14], and the live video conference through
a high-speed QKD network in Tokyo [16]. Satellite communications are also building QKD networks,
such as the international QKD channel created by the QUESS space mission [19,20] and the world’s
first space-ground quantum network [21,22]. These projects supported by different underlying devices
can be divided into three categories: (1) satellite communications; (2) quantum relaying; (3) classical
trusted relay. In the light of the present situation, the satellite-based method is not realistic, and the
research of quantum relay equipment is not perfect. Thus, determining how to establish a practical
and secure QKD network based on the trusted relay is the key problem.

The approach of using trusted relays in QKD networks was proposed in 2002 [23]. This allows
both endpoints to access a series of trusted relays to expand the arbitrary distance. The BBN key relay
protocol has been operating continuously in the DARPA quantum network since 2003 [24]. In the
protocol, the endpoints create a new random number R and send R through the trusted relay nodes
by one-time-pad encryption. Each trusted relay node of the chosen path decrypts the ciphertext with
the QKD keys shared with the upstream node and encrypts R with the QKD keys shared with the
downstream node. In 2012, Los Alamos National Laboratory set up a trusted hub-and-spoke QKD
network [18]. To communicate, each node sends a one-time pad to the hub, which it then uses to
communicate securely over a classical link. The entire network is secure only if the central hub is secure.
In these relay nodes-based key distribution schemes, if one of the relay nodes gets compromised,
the whole network is insecure. Additionally, the relay nodes need encryption actions, decryption
actions and storage of function, which increase the complexity of the system. In [25], Schartner and
Rass proposed a re-encryption key distribution scheme for relay QKD system, which is introduced in
Section 2.1. Compared with BBN key relay protocol, the re-encryption scheme reduces the damage in
case of the compromised node and reduces the storage memory of keys for relay nodes. However, in
re-encryption scheme, the relay nodes still need to keep the XOR (exclusive OR) value of the QKD keys
secretly, and the successive communications between adjacent relay nodes is also required. In 2013,
“Beijing–Shanghai Line” of quantum secrecy communication is based on the public-XOR-key scheme,
where each trusted relay node publicly announces the XOR key it holds, enabling the endpoints to
share a key. Compared with the re-encryption scheme, the scheme simplifies the system’s complexity
and eases the traffic of the relay nodes. In 2014, William Stacey et al. proposed a simplified trusted
relay (STR) protocol for point-to-point [26]. It is similar to public-XOR-key scheme. The two endpoints
of STR are connected by a series of trusted relays that announce the XOR keys, but the rest of the
classic QKD post-processing needs to be performed based on data from its original terminal, which
comes at the cost of a low key rate.

Contributions: considering the key rate and the requirements of the long-distance communications
with multiple endpoints, the public-XOR-key scheme is more efficient and practical than the BBN
protocol, re-encryption protocol and STR. We extend the chain structure of the public-XOR-key scheme
with two endpoints to the complex network with multiple endpoints. Our contributions are as follows.

• Our scheme can reduce the memory complexity and heavy traffic of communications for relay
nodes in real implementation. It is appropriate for the remote communications of the complex
networks with multiple endpoints. Compared with other key distribution schemes based on relay
nodes, our scheme reduces the complexity of the system and eases the traffic of the relay nodes.
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• Compared with the re-encryption schemes that does not announce the XOR value, our scheme not
only improves the actual performance and simplifies the complexity of the system, it also does
not weaken the security of the system. To analyze the security, we build the threat model and the
security model of the public-XOR-key scheme. We rigorously demonstrate that the scheme is as
secure as the re-encryption scheme under the same adversary model. In addition, we analyze the
information leakage of practical QKD network from the perspective of Shannon’s ciphertext-only
attack model by exploring the theory of unicity distance and applying it to the model of practical
QKD networks.

2. Preliminaries

In this section, we review two cryptographic primitives that are necessary for understanding the
proposed complex QKD network scheme, including the re-encryption key distribution scheme and the
theory of unicity distance for discussing information leakage of practical key distribution scheme.

2.1. Re-Encryption Scheme for QKD Network

In re-encryption scheme, a secret message is encrypted by sender’s local random key s. The
delivery of the random key s can be executed by the following protocol. After the protocol, two
endpoints can share the key s. The following is the main steps of the re-encryption protocol with
two endpoints.

Protocol 1: re-encryption scheme for the relay QKD network:

1. Each node executes QKD protocol with its neighbor nodes, which generates n pairs of QKD keys
Qki as shown in Figure 1.

2. Alice encrypts the random key s with her QKD key Qk1, which is shared with the first relay node.
Calculate the first ciphertext c1 = s⊕Qk1, where ⊕ denotes bitwise module-2 addition.

3. The relay nodes do the XOR operation with the QKD keys, which are shared with the upstream
relay nodes and the downstream relay node, to obtain the XOR keys ai, i.e., ai = Qki ⊕ Qki+1,
then immediately dismiss the QKD keys, Qki, Qki + 1. When relay node i receives the incoming
ciphertext, it calculates ci+1 = ci ⊕ ai. It is easy to see that ci = s⊕Qki.

4. When Bob receives the incoming ciphertext, cn = s⊕ Qkn, he decrypts the ciphertext with his
QKD key Qkn to obtain s. Then Alice and Bob share the common key s. Alice can transmit the
message secretly to Bob with the key latter.

Figure 1. The model of re-encryption key distribution scheme for the relay QKD system. The dotted
arrow stands for the quantum key distribution (QKD) process. The solid arrow stands for the
re-encryption process. Relay node i re-encrypts the ciphertext ci and transfers ci+1 = ci ⊕ ai to
the next node.

2.2. The Theory of Unicity Distance

In order to discuss the information leakage of the practical QKD network, we study it from a
perspective of the unicity distance. Shannon laid the foundations of communication theory of secrecy
system in [27]. In the second part of the paper, he put forward the concept of unicity distance, which
gave a way of calculating approximately how many ciphertexts are required to obtain the key of a
secrecy system. The adversary tries each possible key to decrypt the intercepted ciphertexts, and
records the keys which make the deciphered messages meaningful in the original language. Only one
of the record keys is the correct one, others are spurious keys.
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In Shannon’s ciphertext-only attack model, suppose there is a symmetric cryptosystem
(M, C, K, E, D), where |C| = |M|. In the cryptosystem, M denotes plaintext space, C denotes ciphertext
space, K denotes key space, E denotes the encryption algorithms and D denotes the decryption
algorithms. For m ∈ M, k ∈ K, the encryption algorithm is Ek(mi) = ci. Suppose the plaintexts are in
language L, the rate(entropy) is

HL = lim
n→∞

H(An)

n
. (1)

The redundancy of the language L is defined as

RL = 1− HL
log2 |A|

, (2)

where A is the word set, |A| is the number of words in language L, An is the totality of all plaintext
n-alphabets, and HL denotes the average information bits of the each word in language L. RL measures
the degree of statistical constraint imposed by language L.

For Y ∈ Cn, K(Y) is defined as a set of all possible key with the given ciphertext Y, p(Y) is the
probability of the events Y occurring. The expected number of spurious key is

Sn = ∑
Y∈Cn

p(Y) (|K(Y)| − 1) = ∑
Y∈Cn

p(Y)|K(Y)| − 1. (3)

When n is sufficiently large, the relationship between the redundancy of the language RL and the
plaintext M is

H(Mn) ≈ n(1− RL) log2 |M|. (4)

Since H (K|Cn) = H(K) + H (Mn)− H (Cn), H (Cn) ≤ n log2 |C|, where Cn is the totality of all
ciphertext n-alphabets. Then

H (K|Cn) ≥ H(K)− nRL log2 |M|. (5)

According to Jensen’s inequality and Equation (3), the conditional entropy is

H (K|Cn) = ∑
Y∈Cn

p(Y)H (K|Y) ≤ ∑
Y∈Cn

p(Y) log2 |K(Y)|

≤ log2 ∑
Y∈Cn

p(Y)|K(Y)| = log2
(
Sn − 1

)
.

(6)

Therefore, the expected number of spurious key Sn satisfies that

Sn ≥
2H(K)

|M|nRL
− 1. (7)

When the length of the ciphertext is N0, the expectation of the number of spurious key is null. N0

is defined as the unicity distance of the system,

N0 ≈
H(K)

RL log2 |M|
, (8)

where the entropy H(K) measures the uncertainty of the value of k.

3. Public-XOR-Key Scheme for QKD Network

In this section, we extend the chain structure of the public-XOR-key scheme with two endpoints
to the complex network with multiple endpoints. The scheme is secure as long as the XOR keys are
generated securely. In this scheme, there are no re-generation keys and the relay nodes need not
perform the encryption operation or store any key material, which reduces the complexity of the
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system. There is no need to communicate between adjacent relay node, which avoids communication
failure caused by network congestion.

3.1. The Public-XOR-Key Scheme with Chain Structure

First, we introduce the chain structure of two endpoints. In the scheme, each relay node has only
two connections with the upstream node and the downstream node. Assume the whole chain network
contains n + 1 nodes. Each node executes QKD protocol with the neighbor nodes. The n + 1 nodes
make up n point-to-point QKD systems. There are two endpoints, n− 1 relay nodes and n pairs of
QKD keys Qki for i = 1, 2, ..., n.

Protocol 2: public-XOR-key scheme for the relay QKD system:

1. Each node executes QKD protocol with the neighbor nodes, which generates n pairs of QKD keys Qki for
i = 1, 2, ..., n as shown in Figure 2.

2. Each relay node does the XOR operation with the QKD keys, which are shared with the upstream relay node
and the downstream relay node, to obtain the XOR keys. For relay node i, its XOR key is ai = Qki⊕Qki+1,
where Qki is the QKD key shared by relay node i− 1 and relay node i, Qki=1 is the QKD key shared by
relay node i and relay node i + 1. Then each relay node immediately dismisses the QKD keys and publishes
the XOR keys. We assume that the process of dismissing QKD keys is secure.

3. Bob calculates the final key with all of the public-XOR-key and his QKD key Qkn. That is,
⊕n−1

i=1 ai ⊕
Qkn = Qk1. Then Alice and Bob share the common key Qk1. Alice can transmit the message secretly to
Bob with the key Qk1 latter.

Remark 1. There is a security assumption in the protocol that the process of dismissing QKD keys is secure.
For the practical realization of the assumption, we give a kind of method as follows. Use the physical isolation to
protect XOR operation and the process of dismissing the original QKD keys from the outside world to access its
physical devices, so that even if the relay node is compromised, the adversary can not get the original key.

Figure 2. The model of public-XOR-key scheme with two endpoints. The dotted arrow stands for the
QKD process. Relay node i calculates and publishes ai = Qki ⊕Qki+1, then dismisses the QKD keys
immediately. The final key shared by Alice and Bob is Qk1 = a1 ⊕ a2 ⊕ ...⊕ an−1 ⊕Qkn.

Correctness: Bob calculates the final key with ai and Qkn, where ai = Qki ⊕Qki+1. Then he gets

n−1⊕
i=1

ai ⊕Qkn =(Qk1⊕Qk2)⊕(Qk2⊕Qk3)⊕ ...⊕(Qkn−1⊕Qkn)⊕Qkn =Qk1, (9)

which ensures the correctness of the key distribution scheme.

3.2. The Complex QKD Network Scheme with Multiple Endpoints

We have described the public-XOR-key scheme in the chain network with two endpoints. The
following approach is used to solve the key distribution in a wide area network with multiple endpoints.
A communication chain is formed between any two endpoints, and multiple communication chains
constitute all kinds of network structures. No matter how complex the structures are, there will always
be a chain between the two endpoints. As long as the pair of endpoints is in a connected graph, the key
distribution scheme is similar to that of Protocol 2. The difference between the communications in the
chain network and other complex networks is that some relay nodes have more than two connections
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with other nodes. Additionally, the simplest model is the chain structure (each connecting relay node
has only two ports). In general networks, there are not only two ports connecting the relay nodes. Since
there may be various topological structures in the actual network, we abstract the complex network
into simplified model with three-port relay nodes, as shown in Figure 3. The more complex multiple
endpoints models are similar to this, as long as it conforms to the principle of one-time padding.
Firstly, consider a simplified model that a relay node has three connections that are connected with
three endpoints: Alice, Bob and Charlie. Each pair of endpoints is in a chain network. When they
execute the original process of Protocol 2, the communications of Alice and Bob, Alice and Charlie
are shown in Figure 3. QkA is the QKD key shared by Alice and the relay node, QkB is the QKD key
shared by Bob and the relay node, QkC is the QKD key shared by Charlie and the relay node. The
relay node calculates and publishes QkAB = QkA ⊕ QkB, QkAC = QkA ⊕ QkC, QkBC = QkB ⊕ QkC,
then dismisses the QKD keys immediately. Bob calculates QAB ⊕QkB, which is equal to QkA. Then
Bob and Alice share the same key QkA. Charlie calculates QAC ⊕QkC, which is equal to QkA. Then
Charlie and Alice share the same key QkA.

Figure 3. The communications of three endpoints with Protocol 2 with repeated keys. The solid
line stands for the QKD process. The relay node calculates and publishes QkAB = QkA ⊕ QkB,
QkAC = QkA ⊕QkC, QkBC = QkB ⊕QkC, and then dismisses the QKD keys immediately. The dotted
line shows the internal attack, where the shared key is not one-time-pad.

However, a key distribution scheme is secure if and only if the shared keys are not known by
the third party. In the above scenario, Alice, Bob and Charlie share the same key QkA. If Bob or
Charlie is the internal attacker, he can get the keys shared by Alice and the other user, which threatens
the security.

In order to guarantee the security against the internal attacker, all of the QKD keys should be
used only once. The improved key distribution scheme for three endpoints is shown in Figure 4.
QkA1 and QkA2 are the QKD keys shared by Alice and the relay node, QkB1 and QkB2 are the QKD
keys shared by Bob and the relay node, QkC1 and QkC2 are the QKD keys shared by Charlie and the
relay node. Each QKD key is independent of the others. The relay node calculates and publishes
QkA1B1 = QkA1 ⊕QkB1 , QkA2C2 = QkA2 ⊕QkC2 , QkB2C1 = QkB2 ⊕QkC1 , and then dismisses the QKD
keys immediately. Alice calculates QkA2C2 ⊕QkA2 to get the key QkC2 , which is the final key shared
with Charlie. Bob calculates QkA1B1 ⊕ QkB1 to get the key QkA1 , which is the final key shared with
Alice. Charlie calculates QkB2C1 ⊕ QkC1 to get the key QkB2 , which is the final key shared with Bob.
Since all QKD keys are used only once and are independent of each other, the third party can never
access the keys he should not have.
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Figure 4. The QKD network scheme with three endpoints based on the public-XOR-key scheme. The
solid arrow stands for the QKD process. The dotted arrow indicates the key shared by each pair
of endpoints. Relay node calculates and publishes QkA1B1 = QkA1 ⊕ QkB1 , QkA2C2 = QkA2 ⊕ QkC2 ,
QkB2C1 = QkB2 ⊕QkC1 , and then dismisses the QKD keys immediately. Finally, Alice and Bob share
the key QkA1 , Alice and Charlie share the key QkC2 , Bob and Charlie share the key QkB2 .

3.3. The Advantages of the Public-XOR-Key Scheme

The function of wide area key distribution network based on relay nodes is to distribute keys for
multiple endpoints. The relay nodes are set up for helping the pairs of remote endpoints to share keys.
Therefore, the less functions and devices the relay nodes have, the simpler the whole system is. In real
implementation, our scheme has the following practical advantages.

1. The relay nodes do not need to store the QKD keys in our scheme. In the BBN key relay scheme,
each relay node recovers the plaintext with QKD keys shared with the upstream node, encrypts
it with QKD keys shared with the downstream node and then transfers it to the downstream
node. Once the relay nodes have been broken, the adversary can access all plaintext transferred
through this relay node. The relay nodes destroy the original QKD keys securely right after the
QKD keys shared with upstream node and downstream node are immediately sent to the cipher
machine to do XOR operations. The adversary has no chance to access the original QKD keys
or plaintext. Compared with BBN scheme, our scheme reduces the storage of QKD keys and
increases the security of the system.

2. The relay nodes do not need to store the XOR results of the QKD keys secretly in our scheme.
Key buffers and corresponding preventive measures are needed for the secret storage, such as
anti-electromagnetic radiation devices and video surveillance system. In our scheme, the XOR
results are public. The way of publishing depends on the actual network. For example, the XOR
results are saved in the relay nodes without protection, sent to endpoints directly, or broadcast to
the users over the network. It is difficult for the actual networks to ensure the absolute security
of the data storage. The system of our scheme simplifies the defence.

3. There are no re-generation keys in our scheme. In re-encryption scheme and BBN scheme, one of
the endpoints firstly generates a local random number and encrypts the random number with
the help of relay nodes. Finally, the pair of endpoints shares the random number. In our scheme,
the keys shared by endpoints are exactly the QKD keys and there is no need to generate random
numbers from point to point.

4. In our scheme, the shared keys do not need to be encrypted by each relay node over the path.
When two endpoints want to share keys in re-encryption scheme, the ciphertext of the random
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number generated by one endpoint is re-encryption and transferred by one relay node after
another. There are multiple endpoints to communicate simultaneously in reality. Some relay
nodes may be included in plenty of communications. The communications may hang or fail due
to the heavy traffic. In our scheme, the relay nodes no longer participate in the communications
after publishing XOR results. When endpoints want to share keys, either of the endpoints just
calculates the key directly, which eases the traffic of the relay nodes.

4. The Security of the Public-XOR-Key Scheme

We described the complex QKD network scheme with multiple endpoints and analyzed its
advantages in Section 3. Compared with the re-encryption scheme that does not announce the XOR
value, our scheme can improve the actual performance and simplify the complexity of the system.
In this section, we analyze our scheme from the security perspective. We analyze the security of the
scheme by building the threat model of adversaries and strictly demonstrate its security under the
threat model. As described in Section 3.2, there is always a chain between any two endpoints in all
kinds of networks. So, we can use the chain QKD network as an example and build the security
model. In addition, by comparing the security of our scheme with that of the re-encryption scheme,
we prove that our scheme has the same security with that of the re-encryption scheme under the same
assumption of adversary’s capacity, while our scheme achieves simplification in implementation.

4.1. The Security Analysis of the Public-XOR-Key Scheme

Threat model: we model the capacity of the adversary, Eve. Assume the destruction of the
original QKD keys in the relay nodes is secure and Eve cannot access the original QKD keys even
if she compromises the relay nodes. Assume the relay nodes never play the role as the internal
attacker. QKD protocols have been proved to be unconditionally secure in theory. However, limited
by the development of technology, there are attacks on QKD system in practice [28–32]. As a result
of this defense, Eve cannot get all the information about QKD keys. However, there still exists some
leaked information. In the chain network with n point-to-point QKD systems, the amount of leaked
information may be large. Assume leaked information about each point-to-point QKD system is the
same, which is denoted as I0. The information obtained by Eve in the point-to-point QKD system is

I0 ≡ 1− H(p), (10)

where H(p) is the entropy of QKD key QKi in each point-to-point QKD system. For Qki ∈ {0, 1},
Eve knows that it has bias “0” or “1” with the probability of p. To simplify the following calculating,
assume p(Qki = 0) = p for each i = 1, 2, ..., n, where 0 < p < 1.

The amount of information about the shared key Qk1 obtained by Eve is

Ikey = 1− H(Qk1|ai), (11)

where ai is the public XOR value. A new parameter bi ∈ {0, 1} is defined from the public ai,

bi ≡ a1 ⊕ a2 ⊕ ...⊕ ai = Qk1 ⊕Qki+1, i = 1, 2, ..., n− 1. (12)

The number of elements bi is n− 1 and they form a Boolean vector b. The random variable of
bi is defined as Bi, the random variable of b ≡ (b1b2...bn−1) is B ≡ (B1B2...Bn−1), and the random
variable of Qki is QKi. H(Qk1|a1) can be treated as H(QK1|B) for more obvious analysis. That is, the
information obtained by Eve is Ikey = 1− H(QK1|B). From the definition of bi, it can be seen that the
QKD key Qk1 is encrypted by other different QKD keys n− 1 times, which is similar to the random
key s encrypted by QKD keys in the re-encryption scheme.

Analyzing the security of the public-XOR-key scheme is equivalent to calculating how much
information Eve obtains. We first analyze the conditional entropy of QK1 in the threat model.
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Theorem 1. In the assumption model of key distribution network using public-XOR-key scheme, the value of
the conditional entropy H (QK1|B) is

H(QK1|B)=
n−1

∑
w=0

{
Cw

n−1
[
pn−w(1− p)w+(1− p)n−w pw]H[ pn−w(1− p)w

pn−w(1− p)w+(1− p)n−w pw

]}
. (13)

where p is the probability of Qki = 0 for all i = 1, 2, ..., n, and Cw
n−1 is the binomial coefficient.

Proof of Theorem 1. According to the definition of conditional entropy,

H(QK1|B)
=∑

b
p(B = b)H(QK1|B = b)

=−∑
b

[
p(B = b) ∑

Qk1

p(QK1 = Qk1|B = b) log p(QK1 = Qk1|B = b)

]
.

(14)

Then we analyze the properties of the terms in the sum. For Qk1 ∈ {0, 1}, the corresponding
random variable satisfies that

p(QK1 = 0) = p, p(QK1 = 1) = 1− p. (15)

For B ∈ {0, 1}n−1, there are 2n−1 values of B. Consider classifying B by the number of zeros
or ones. This kind of classification is exactly the hamming weight of the B, which is creative in
cryptanalysis. Then Equation (14) becomes

H(QK1|B)

=−∑
b

[
p(B = b) ∑

Qk1

p(QK1 = Qk1|B = b) log p(QK1 = Qk1|B = b)

]
(16)

=−
n−1

∑
w=0

[
Cw

n−1 p(B = bw)∑
Qk1

p(QK1 = Qk1|B = bw) log p(QK1 = Qk1|B = bw)

]
,

where bw denotes a particular vector with hamming weight w. According to Bayesian formula, the
conditional probability of QK1 = 0 in Equation (16) is

p(QK1 = 0|B = bw) =
p(B = bw|QK1 = 0) · p(QK1 = 0)

p(B = bw)
. (17)

According to the formula of total probability,

p(B = bw)= p(B = bw|QK1 = 0)p(QK1 = 0)+p(B = bw|QK1 = 1)p(QK1 = 1). (18)

Since bi = Qk1 ⊕ Qki+1, the distribution of bi depends on Qki+1 and Qk1. When the random
variable QK1 = 0, there is Bi = QKi+1. Then

p(B = bw|QK1 = 0) = p(QK′ = bw|QK1 = 0) = p(QK′ = bw), (19)

where QK′ ≡ (QK2 QK3 ... QKn) is a random variable with the length of n− 1. The difference between
the random variables QK and QK′ is that QK′ does not contain QK1. Therefore, the random variables
QK′ and QK1 are independent of each other and the second equality of the above equation holds.
Similarly, when QK1 = 1, there is Bi = QKi+1 ⊕ 1. Then

p(B = bw|QK1 = 1) = p(QK′ = bw|QK1 = 1) = p(QK′ = bw), (20)
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where b ≡
(

b1 ... bi ... bn

)
, bi = bi ⊕ 1. According to Equation (18),

p(B = bw) = p · p(QK′ = bw) + (1− p) · p(QK′ = bw). (21)

When QK′ = bw, there is w number of ones, and n−w− 1 number of zeros in the random variable
QK′. When QK′ = bw, there are w zeros and n− w− 1 ones. Then

p(B = bw)

=p · p(QK′ = bw) + (1− p) · p(QK′ = bw)

=pn−w(1− p)w + pw(1− p)n−w.

(22)

Therefore, the conditional probability of QK1 = 0 is

p(QK1 = 0|B = bw) =
pn−w(1− p)w

pn−w(1− p)w + pw(1− p)n−w . (23)

Similarly, the conditional probability of QK1 = 1 is

p(QK1 = 1|B = bw) =
pw(1− p)n−w

pn−w(1− p)w + pw(1− p)n−w . (24)

Then the conditional entropy H (QK1|B) is

H(QK1|B)=
n−1

∑
w=0

{
Cw

n−1
[
pn−w(1− p)w+(1− p)n−w pw]H[ pn−w(1− p)w

pn−w(1− p)w+(1− p)n−w pw

]}
. (25)

The equivocation H(QK1|B) measures the uncertainty of the QKD key Qk1 when given the public
XOR keys. If and only if p = 0 or p = 1, the conditional entropy is null. Actually the security of
point-to-point QKD systems guarantees that 0 < p < 1. Therefore, H(QK1|B) cannot be null and Eve
can never confirm the value of Qk1. The public-XOR-key scheme is secure against the adversary under
the above assumption.

4.2. Comparison of the Security of the Public-XOR-Key Scheme and Re-Encryption Scheme

We have already analyzed the security of the public-XOR-key scheme. Now we contrast its
security with that of re-encryption scheme. We first model the re-encryption scheme and analyze the
information obtained by Eve in the scheme, then contrast it with the result in Section 4.

The endpoint transfers the message encrypted by local random key s. We denote the cryptosystem
of QKD network using the re-encryption scheme as (S, C, QK, E′′, D′′). A local random key s is
encrypted n times with Qki by Alice and the relay nodes. To simplify the model, suppose the local
random key, QKD keys, ciphertexts are all binary words with the length of 1. The encryption algorithm
is the simplest XOR, that is

E′′Qki
(s) = s⊕Qki = ci. (26)

The ciphertexts ci, for i = 1, 2, ..., n are available to Eve. The assumption of the capacity of Eve about
the QKD keys is the same as the decryption of the threat model in Section 4.

For a chain network, which contains n point-to-point QKD systems, the local random key s is
encrypted n times with Qki. The QKD keys can be analyzed as a Boolean vector Qk with the length
of n. The ciphertext can be analyzed as a Boolean vector c with the length of n. Let QK, C ∈ {0, 1}n,
S ∈ {0, 1} denote the random variables of the vectors of QKD keys, ciphertexts and local random key,
respectively. The equivocation of the local random key H(S|C) measures the uncertainty of the local
random key s when given ciphertexts. When H(S|C) is null, Eve gets the random key s.
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Theorem 2. In the assumption model of key distribution network using re-encryption scheme, the value of the
conditional entropy H(S|C) is

H(S|C)= 1
2

n

∑
w=0

{
Cw

n
[
pn−w(1− p)w+(1− p)n−w pw]H[ pn−w(1− p)w

pn−w(1− p)w+(1− p)n−w pw

]}
. (27)

Proof of Theorem 2. According to the definition of conditional entropy,

H(S|C)
=∑

c
p(C = c)H(S|C = c)

=−∑
c

[
p(C = c)∑

s
p(S = s|C = c) log p(S = s|C = c)

]
.

(28)

Then we analyze the properties of the terms in the sum. In order to guarantee the randomness of
the local random key s, there is

p(S = 0) = p(S = 1) =
1
2

. (29)

For the Boolean vector C ∈ {0, 1}n, there are 2n values. Classify C by the hamming weight.
Equation (28) becomes

H(S|C)

=−∑
c

[
p(C = c)∑

s
p(S = s|C = c) log p(S = s|C = c)

]

=−
n

∑
w=0

[
Cw

n p(C = cw)∑
s

p(S = s|C = cw) log p(S = s|C = cw)

]
,

(30)

where cw denotes a particular vector of length n with hamming weight w. According to Bayesian
formula, when C = cw, the conditional probability of S = 0 in Equation (30) is

p(S = 0|C = cw) =
p(C = cw|S = 0) · p(S = 0)

p(C = cw)
. (31)

Since ci = s⊕ Qki, the distribution of ci depends on Qki and s. When random variable S = 0,
there is QKi = Ci. Then

p(C = cw|S = 0) = p(QK = cw|S = 0) = p(QK = cw) = pn−w(1− p)w. (32)

When random variable S = 1, there is QKi = Ci ⊕ 1. Then

p(C = cw|S = 1) = p(QK = cw|S = 1) = p(QK = cw) = pw(1− p)n−w. (33)

In Equations (32) and (33), the second equality holds because the random variables QK and S are
independent of each other. According to the formula of total probability,

p(C = cw)

=p(C = cw|S = 0)p(S = 0) + p(C = cw|S = 1)p(S = 1)

=
1
2

pn−w(1− p)w +
1
2

pw(1− p)n−w.

(34)
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From Equations (32) and (34), the conditional probability of S = 0 is

p(S = 0|C = cw) =
pn−w(1− p)w

pn−w(1− p)w + pw(1− p)n−w . (35)

Similarly, the conditional probability of S = 1 is

p(S = 1|C = cw) =
pw(1− p)n−w

pn−w(1− p)w + pw(1− p)n−w . (36)

Therefore, the conditional entropy H(S|C)

H(S|C)= 1
2

n

∑
w=0

{
Cw

n
[
pn−w(1− p)w+(1− p)n−w pw]H[ pn−w(1− p)w

pn−w(1− p)w+(1− p)n−w pw

]}
. (37)

In this model, the information about the Alice’s random key s obtained by Eve is Is = 1− H(S|C).
Then we contrast the information leakage of the public-XOR-key scheme and re-encryption scheme.

Theorem 3. For the adversary with the same capacity, the information leakage of re-encryption scheme and
public-XOR-key scheme are the same, i.e., Ikey = Is.

Proof of Theorem 3. Define two functions ∆ and fp(w) as follows,

∆ ≡ Ikey − Is = H(S|C)− H(QK1|B),

fp(w) =
[
pn−w(1− p)w + (1− p)n−w pw] · H [ pn−w(1− p)w

pn−w(1− p)w + (1− p)n−w pw

]
.

It can be seen that fp(i) = fp(n− i). The difference between Ikey and Is is

∆ =H(S|C)− H(QK1|B)

=
n

∑
w=0

[
1
2

Cw
n fp(w)

]
−

n−1

∑
w=0

[
Cw

n−1 fp(w)
]

=

(
1
2

C0
n − C0

n−1

)
fp(0) +

n−1

∑
w=1

(
1
2

Cw
n − Cw

n−1

)
fp(w) +

1
2

Cn
n fp(n)

=− 1
2

fp(0) +
1
2

fp(n) +
n−1

∑
w=1

(
1
2

Cw
n − Cw

n−1

)
fp(w)

=
n−1

∑
w=1

(
1
2

Cw
n − Cw

n−1

)
fp(w)

(38)

Sum the ith term and the (n− i)th term in Equation (38),

∑
w=i,n−i

(
1
2

Cw
n − Cw

n−1

)
fp(w)

=

(
1
2

Ci
n − Ci

n−1

)
fp(i) +

(
1
2

Cn−i
n − Cn−i

n−1

)
fp(n− i)

=

[(
1
2

Ci
n − Ci

n−1

)
+

(
1
2

Cn−i
n − Cn−i

n−1

)]
fp(i).

(39)
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It is easy to check that

1
2

Ci
n − Ci

n−1 =
1
2

(
Ci−1

n−1 − Ci
n−1

)
,

1
2

Cn−i
n − Cn−i

n−1 =
1
2

(
Cn−i−1

n−1 − Cn−i
n−1

)
. (40)

Therefore Equation (39) is

∑
w=i,n−i

(
1
2

Cw
n − Cw

n−1

)
fp(w)

=
1
2

[(
Ci−1

n−1 − Ci
n−1

)
+
(

Cn−i−1
n−1 − Cn−i

n−1

)]
fp(i)

=
1
2

[(
Ci−1

n−1 − Cn−i
n−1

)
+
(

Cn−i−1
n−1 − Ci

n−1

)]
fp(i) = 0.

(41)

Substitute Equation (41) into Equation (38), if n is an odd number, there is ∆ = 0. If n is an even
number, there is

∆ =

(
1
2

C
n
2
n − C

n
2
n−1

)
fp

(n
2

)
=

1
2

(
C

n
2−1
n−1 − C

n
2
n−1

)
fp

(n
2

)
= 0.

(42)

Therefore, for all values of n, there is ∆ = 0, i.e., Ikey = Is.

Accordingly, for the same assumption of Eve’s capacity, the security of the key distribution scheme
we proposed is equivalent to that of the re-encryption scheme. The public-XOR-key scheme can not
only improve the practical performance and simplify the system’s complexity, but also ensure that it
does not reduce the security.

5. Discussion about Information Leakage of the Key Distribution Network from the Perspective
of Unicity Distance

In the model of key distribution network using re-encryption scheme or public-XOR-key scheme,
a secret key s or Qk1 is encrypted with other QKD keys several times. In Shannon’s ciphertext-only
attack model, the plaintexts are encrypted with the same key multiple times. In this section, we analyze
the practical QKD networks from the perspective of Shannon’s ciphertext-only attack model, which is
an in-depth discussion of unicity distance. Since the security of the re-encryption scheme is equivalent
to that of public-XOR-key scheme, we only analyze one of them.

In the simplified model of re-encryption scheme with parameters (S, C, QK, E′′, D′′), the
encryption algorithm is the simplest XOR, i.e., E′′Qki

(s) = s⊕ Qki = ci. In the model of Shannon’s
ciphertext-only attack model, the simplest encryption algorithm is Ek(mi) = mi⊕ k = ci. Therefore, the
local random key s could be treated as the key in Shannon’s model, the QKD keys Qki can be treated
as the plaintext in Shannon’s model. The unicity distance N′0 is the number of ciphertext required to
obtain the local random key s, according to Equation (8),

N′0 ≈
H(S)

RL
=

1
RL

. (43)

The adversary Eve attacks each point-to-point QKD system. Assume the information about the value
of Qki that Eve obtains from each point-to-point QKD system is the same, and that it is equal to
I0 = 1− H(p), where H(p) is the entropy of the QKD key in each point-to-point QKD system. It seems
that the physical interpretation of H(p) and HL, I0 and RL are equivalent. When n is sufficiently large,
according to Equation (4), the relationship between H(p) and the quantum keys with the length of n is

H(Kn) ≈ nH(p). (44)
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The unicity distance N′0 of the relay QKD system is

N′0 ≈
1
I0

=
1

1− H(p)
, (45)

which means that if Eve attacks N′0 point-to-point QKD systems and gets N′0 ciphertext, she can obtain
the random key s. The contrast between the parameters of Shannon’s model and those of the model of
the QKD network is shown in Table 1.

Table 1. The contrast between Shannon’s model and the model of the quantum key distribution
(QKD) network.

Parameters Shannon’s Model Model of QKD Network

Keys K S
Plaintext M QK

Ciphertext C C
Rate of language HL H(p)

Redundancy of language RL I0
Unicity distance 1/RL 1/I0

However, in Sections 4 and 5 we show that the conditional entropy H(S|C) cannot be null as long
as 0 < p < 1, which reflects that Eve cannot obtain the exact key s no matter how many ciphertexts
she has in the real world. This result conflicts with the unicity distance that was analyzed above.

We hold the view that there are two reasons for the difference. Firstly, although H(p) and HL,
I0 and RL have very similar physical interpretation, actually they are not equivalent. In Shannon’s
model, HL denotes the rate of each word in language L, which is an average value with a sufficiently
large n. In the model of QKD network, H(p) is the real entropy of the QKD key in each point-to-point
QKD system rather than an average value. Since each QKD key encrypts the same random key s, with
the known ci each point-to-point QKD system is not completely independent. Suppose the rate of each
point-to-point QKD system is HK,

HK = lim
n→∞

H(Kn)

n
6= H(p). (46)

The second reason is that the unicity distance N0 is an approximate and minimum value in theory.
In the derivation of the value of unicity distance, there are some approximations and inequalities.
When n is sufficiently large, Equation (4) holds. In practical QKD network, n cannot be large enough,
the value of which is usually just several dozens. Equation (8), denoting the approximation of N0,
actually is its minimum value. Even if Eve gets the ciphertext with the length of H(K)/RL log2 |M|,
there still exist spurious keys and she cannot get the real key.

Through the above analysis, we find the reasons why the unicity distance of the practical QKD
network is different from that in theory. It indicates that the theoretical value of unicity distance has
a certain gap with the practical system. In addition, the unicity distance of the relay QKD system is
infinity, which indicates the adversary in the model can never obtain the entire secret message.

6. Discussion and Conclusions

Considering the key rate and the requirements of multiple-endpoint long-distance communication,
the public-XOR-key scheme is more efficient and practical than the BBN protocol, re-encryption
protocol and STR. In this paper, we extend the chain structure of the public-XOR-key scheme with two
endpoints to the complex network with multiple endpoints. In the complex network with multiple
endpoints, the practical contributions are as follows: (1) The relay nodes do not need to store the
QKD keys. (2) The relay nodes do not need to store the XOR results of the QKD keys secretly, which
reduces the storage. (3) The relay nodes do not participate in the transmission of the key, which
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reduces the communication traffic to a certain extent. A particularly important contribution is the
proof of the security of the scheme. On the one hand, compared with the security of re-encryption
key distribution scheme whose XOR keys are not announced, the security of the key distribution
scheme we proposed and the re-encryption scheme is equivalent. Our scheme can not only improve
the practical performance and simplify the system’s complexity, but also ensure that the security is not
reduced. Even though the adversary obtains partial information about the QKD keys in our scheme,
she cannot confirm the shared key. On the other hand, we discuss the information leakage of the
practical key distribution networks from the perspective of the unicity distance. The unicity distance
of the practical QKD network is infinity, which bears out that our scheme is secure and Eve can never
obtain the shared key.

The major advantages of our scheme are as follows.

• The superiority of the practical performance: (i) The relay nodes need not store the QKD keys.
Even if Eve attacks the relay nodes, she cannot access the QKD keys and plaintext. The scheme
reduces the storage of QKD keys and increases the practical security of the system. (ii) The relay
nodes need not store the XOR results of the QKD keys secretly, which reduces the storage. It is
difficult for actual network to ensure the absolute security of the data storage. The secret storage is
avoided in our scheme. (iii) There is no re-generation keys in our scheme. In our scheme, the keys
shared by endpoints are exactly the QKD keys and it is no need to generated random numbers
from point to point. (iv) The relay nodes do not participate in the transmission of the key, which
reduces the communication traffic to a certain extent.

• The superiority of security: (i) we analyze the information leakage of public-XOR-key scheme and
re-encryption scheme in the threat model and prove the security of the schemes. Even though
the adversary obtains partial information about the QKD keys, she cannot confirm the shared
key. (ii) We discuss the information leakage of the practical key distribution networks from the
perspective of the unicity distance. The unicity distance of the practical QKD network is infinity,
which bears out that our scheme is secure and Eve can never obtain the shared key. The security
analysis of complex network structures are worthy for the further study.

In addition, we analyze the reason why the unicity distance of the practical system is different
from that in theory. In fact, this system is a typical example of that the same plaintext is encrypted with
different keys. It can be analyzed as Shannon’s ciphertext-only attack model because the encryption
and decryption algorithms are XOR, where the order of operations can be exchanged. The unicity
distance of the systems with other complicated encryption and decryption algorithms is left as an open
question for future work.
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