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Abstract: This paper presents a new model of fuel cells for two different modes of operation: constant
fuel utilization control (constant stoichiometry condition) and constant fuel flow control (constant flow
rate condition). The model solves the long-standing problem of mixing reversible and irreversible
potentials (equilibrium and non-equilibrium states) in the Nernst voltage expression. Specifically,
a Nernstian gain term is introduced for the constant fuel utilization condition, and it is shown that
the Nernstian gain is an irreversibility in the computation of the output voltage of the fuel cell.
A Nernstian loss term accounts for an irreversibility for the constant fuel flow operation. Simulation
results are presented. The model has been validated against experimental data from the literature.

Keywords: fuel cell model; constant fuel utilization; constant fuel flow; hydrogen; proton exchange
membrane fuel cell (PEMFC); solid oxide fuel cell (SOFC)

1. Introduction

Fuel cells [1–4] convert chemical energy into electrical energy and are fast emerging as one of
the major alternatives to fossil-fuel-based sources of energy. Modeling is often an integral part of
fuel cell research, spanning areas from new material investigation [5] to system integration [6] to
control of the plant [7]. Even though many models of fuel cells and fuel cell systems have already
been proposed in the literature, new models continue to be developed, improving upon the state of
the art. This paper presents an improved fuel cell model for two operating conditions: constant fuel
utilization and constant fuel flow (with the constant fuel flow operation being analyzed in the context
of two different modes for the oxidant—the constant oxygen flow mode and the constant oxygen
stoichiometry mode). The need for a new model arose because of a recently identified problem [8] in a
family of commonly used models in the literature. The problem involves the (erroneous) mixing of
reversible and irreversible potentials in the computation of the cell output voltage. The present paper
seeks to solve the problem by separating the irreversibilities from the reversible (equilibrium) potential
of the fuel cell. The solution is achieved by introducing a novel “Nernstian gain” term and establishing
it as an irreversibility for the constant fuel utilization condition. A Nernstian loss term, somewhat akin
in spirit to traditional fuel cell losses, is used to analyze the constant fuel flow operation.

The remainder of this paper is organized as follows. A brief survey of previous work on fuel cell
modeling is presented in Section 2. Section 3 describes the problem. Section 4 develops a model for
the constant fuel utilization mode of operation of the cell. The constant fuel flow mode is modeled in
Section 5. Conclusions are drawn in Section 6.

2. A Brief Review of the Literature

Typical classifications of fuel cells are based on the type of electrolyte used in the cell, the operating
temperature range, the fuel used, and other factors [9,10]:
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• Direct methanol fuel cell (DFMC), about 60 ◦C
• Proton exchange membrane (or polymer electrolyte membrane) fuel cell (PEMFC), less than

120 ◦C, typically about 80 ◦C
• Alkaline fuel cell (AFC), about 100 ◦C or less
• Phosphoric acid fuel cell (PAFC), about 150–200 ◦C
• Molten carbonate fuel cell (MCFC), about 600–700 ◦C
• Solid oxide fuel cell (SOFC), about 600–1000 ◦C

Reversible fuel cells [11] represent another class of fuel cells that, in addition to producing
electricity from hydrogen and oxygen, can use electricity to produce, by electrolysis, hydrogen and
oxygen from water. Microbial fuel cells [12] are yet another category of fuel cells where biological
organisms (bacteria, for example) act as the electrocatalyst.

The literature on the modeling of fuel cells is expansive (see, for example, [9,13–21]). The fuel
cell is a complex, non-linear system, and not all aspects of the physics, chemistry and engineering
of the system are completely understood yet. Given the enormity of the problem, a single model
typically focuses on one particular aspect (e.g., liquid water removal from a PEMFC [22] or real-time
simulation [23]) of the system.

Fuel cell models are usually characterized by the number of physical dimensions (number
of different geometrical axes) they consider. Clearly, this number can vary from zero to three.
Zero-dimensional (0-D) models (e.g., [24–26]) employ a concentrated (as opposed to distributed)
or lumped representation of the parameters or metrics (e.g., voltage, current, temperature or species
partial pressures) under consideration and therefore make more use of mathematical abstraction than
the spatial geometry of the cell. In other words, the variation of parameters along/within the cell is
ignored, that is, the “local” and “global” values are the same in such models. This type of modeling is
particularly useful when the interaction of the cell with other components of the (integrated) system is
to be investigated (e.g., the modeling of SOFC-based hybrid power generation systems) [27]. A simple,
lumped, dynamic model of an integrated SOFC plant is developed for power system simulation in [28],
building upon which a large number of fuel cell models have been proposed in the literature (see,
e.g., [6,7,29–55]).

One-dimensional (1-D) models (e.g., [23,34,35,56,57]) take into account the variation of the relevant
metrics (electrochemical, physical, or thermal) along only one dimension of the cell, ignoring the other
two dimensions. For instance, a 1-D model can compute local changes in current density in axial
directions of tubular fuel cells [58]. Zero- and one-dimensional models are often quite effective for
control purposes.

Two-dimensional (2-D) models (e.g., [59–61]) consider a two-dimensional cross-section of the cell
geometry, ignoring the variations along the third dimension.

Three-dimensional (3-D) models (e.g., [62–67]) use distributed (not lumped) metrics or parameters
and are the closest to the physical geometry of the cell, describing spatial properties in each of the
three coordinates. Because of their high computational costs, 3-D models are somewhat more esoteric
than 2-D or 1-D models; in Reference [68], we find an example of the reduction of a 3-D model to 2-D
without significant compromises with the quality of results.

Zero-dimensional or lumped models are also referred to as macro-models [27]. Because
models in two or three dimensions look at finer levels of granularity, they are sometimes called
micro-models [69]. Length-scales and time-scales are important issues in the modeling of fuel cells;
for a review of multi-scale modeling of SOFCs from quantum (sub-atomic) to atomistic to continuum,
see Reference [70].

On top of the dimensional categories, fuel cell models can also be broadly classified as:

• mechanistic (theoretical)
• empirical (experimental)
• semi-empirical
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• data-driven (machine-learning-based)

Mechanistic models are obtained (derived) theoretically, using theories from, e.g., electrochemistry,
thermodynamics, fluid dynamics and engineering; well-known examples include the use of fundamental,
phenomenological equations such as the Butler–Volmer equation for voltage, the Stefan–Maxwell
equation for diffusion, and the Nernst–Plank equation for species transport [71,72].

Empirical models (e.g., [73,74]), on the other hand, use data obtained from actual experiments on
physical fuel cells to propose relationships among the variables of interest, especially relationships
that would otherwise be difficult to arrive at from theory alone.

Semi-empirical models (e.g., [61,75]) employ a mix of theory and experimentation. The line
between the theoretical and the semi-empirical is sometimes blurred.

Data-driven (or data-oriented) models are a relatively recent development in the field.
This approach is capable of creating predictive models for fuel cells and fuel cell systems by using
statistical and algorithmic analysis of experimental (or simulated) data. Data-driven models, sometimes
referred to as “black-box” models, employ techniques from the machine learning [76] or artificial
intelligence [77] paradigm. Examples of data-driven models include Reference [38], where genetic
programming [78] is used in a supervised learning setting for static and dynamic (load-following)
modeling of SOFCs, and Reference [79] where differential evolution [80] is used to optimize seven
parameters for modeling the polarization curve of a PEMFC stack. Given the rather loose connection
between theoretical (mechanistic) principles and the data-driven approach, it can be argued that
data-driven models verge on the empirical or the semi-empirical.

In Reference [8], a critique of a major class of models was presented. By developing a
zero-dimensional (lumped) model, the present paper solves the problem discussed in Reference [8].

3. The Problem

The Nernst equation, which is the cornerstone of fuel cell thermodynamics, provides an expression
for the reversible thermodynamic potential, also known as the equilibrium voltage or the open-circuit
electromotive force (EMF), of the fuel cell [1]:

ENernst = E0 +
RT
nF

ln

∏i aci
reactanti

∏j a
cj

productj

 (1)

where E0 is the reference (standard) EMF at unit activity and atmospheric pressure, i and j are the
numbers of reactant and product species, a represents the activity, ci is the stoichiometric coefficient
of species i, R is the universal gas constant, F is Faraday’s constant, n is the number of electrons
transferred for each molecule of the fuel participating in the reaction, and T is the temperature. For a
hydrogen–oxygen fuel cell (e.g., solid oxide fuel cell (SOFC) or proton exchange membrane fuel cell
(PEMFC)), hydrogen and oxygen are the reactants, and the product is water (or steam). The reference
EMF, E0, depends on temperature T:

E0 = E0
0 + (T − T0)

∆s
nF

(2)

where E0
0 is the standard EMF at temperature T0, and ∆s is the change in entropy. The activity a of an

ideal gas is expressed in terms of its pressure (or partial pressure) p:

aH2 =
pH2

p0 , (3)

aO2 =
pO2

p0 , (4)
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where p0 is the standard-state pressure (1 atm). At high temperatures, such as 1000 ◦C (as in solid
oxide fuel cells), steam can be assumed to behave as an ideal gas, and therefore

aH2O =
pH2O

p0 . (5)

Using p0 = 1 atm, and noting that n = 2 for a hydrogen fuel cell, we have the following version of
the Nernst equation for solid oxide fuel cells:

ENernst = E0 +
RT
2F

ln
( pH2

√pO2

pH2O

)
. (6)

If the fuel cell is operated below 100 ◦C, so that liquid water is produced (as in proton exchange
membrane fuel cells), the activity of water can be taken to be unity (aH2O = 1). In that case, the Nernst
equation takes the form

ENernst = E0 +
RT
2F

ln
(

pH2

√
pO2

)
. (7)

The terminal (load) voltage is generally obtained by subtracting from ENernst the following types
of losses (or “irreversibilities”):

• activation loss
• concentration loss
• ohmic loss
• losses due to fuel crossover and internal current.

The practice of expressing—either directly or indirectly via the partial pressures—the Nernst
EMF as a function of cell current is rather common in the literature (e.g., [33,34]). Building upon
References [28,29], a major piece of work [7] on control strategies for SOFC operation developed a
model for the constant fuel utilization condition using the following form of the Nernst equation:

ENernst = E0 +
RT
2F

{
ln

(
KH2O

KH2

√
Kr

rHOKO2

)
+

1
2

ln

(
IFC

(
1
u
− 1
)2 ( 2

u
− rHO

))}
(8)

where KH2 , KO2 , and KH2O are valve molar constants [28], Kr = 1/(4F) [28,38,39], rHO is the ratio of
hydrogen to oxygen input molar flow rates [7], u is the fuel utilization ratio [7,28], and IFC is the load
current. This model, or one of its variants, has been used in many papers in the fuel cell literature
(e.g., [6,38]). (A detailed re-derivation of Equation (8) can be found in, for example, Reference [8].)
Of the four types of losses mentioned above, the models in References [7,28] consider only the ohmic
loss and obtain the output (load) voltage, V, as

V = ENernst − rIFC (9)

where ENernst is given by Equation (8), and r is the ohmic resistance of the cell.
As explained in Reference [8], the problem with Equation (8) is that it mixes equilibrium and

non-equilibrium expressions. The Nernst voltage (EMF) is the reversible thermodynamic potential
that applies only to the equilibrium condition of the cell; the equilibrium is lost when current is drawn
from the cell. In other words, the Nernst voltage is by definition the open-circuit EMF and cannot
therefore be expressed in terms of the load current [8].

To alleviate the aforementioned problem presented by Equation (8), we present an improved
model in the following two sections.

All fuel cell models in the literature make simplifying assumptions and approximations;
the present model also makes the standard set of assumptions that includes the following:

• The gases used in the chemical reactions are ideal and uniformly distributed.
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• The fuel cell is considered a single “lumped” system; the species enter the cell through one end
and exit through the other end.

• The only reaction that contributes to voltage takes place between hydrogen and oxygen. There is
no parasitic reaction.

• All reactants generate their ideal number of electrons.
• No fuel or oxidant crosses the electrolyte.
• The gases have a uniform concentration in the supply channels; there are no pressure losses.
• The flows are incompressible.
• The fuel and oxidant are available as soon as they are needed (no delays).
• The partial pressures of the gases in the bulk of the anode and the cathode channels are assumed

to be the same as those at the triple-phase-boundaries.
• The temperature is fixed (stable) at all times, and temperature variations across the cell are ignored.
• The operating voltage is uniform over the cell.
• Heat losses are negligible (the fuel cell is well insulated).
• There is no gas leakage.
• The Nernst equation can be applied.

4. Constant Fuel Utilization

Following Reference [7], the following two parameters are kept constant in this section:
u (Equation (11)) and rHO (Equation (17)). This corresponds to the operating condition known as
constant fuel utilization ratio/factor condition or, equivalently, constant stoichiometry condition.

Hydrogen partial pressure is given by [28,38]

pH2 =
1

KH2

(
qin

H2
− qreact

H2

)
(10)

where KH2 is a valve molar constant [28], qin
H2

represents the input molar flow rate (mol/s) of hydrogen
fuel, and qreact

H2
is the hydrogen flow rate (mol/s) that takes part in the reaction.

Using the definition of fuel utilization ratio u,

u =
qreact

H2

qin
H2

(11)

we have

pH2 =
1

KH2

(
1
u
− 1
)

qreact
H2

. (12)

The ratio of two different hydrogen partial pressures is then given by

p f inal
H2

pinitial
H2

=
qreact, f inal

H2

qreact,initial
H2

. (13)

Since the reaction rate is given (from electrochemistry) by

qreact
H2

=
IFC
2F

, (14)

the pressure ratio reduces to
p f inal

H2

pinitial
H2

=
I f inal
FC

Iinitial
FC

. (15)



Appl. Sci. 2019, 9, 1066 6 of 24

Next, the partial pressure for oxygen is expressed as

pO2 =
1

KO2

(
qin

O2
− qreact

O2

)
(16)

where KO2 is a valve molar constant [28], qin
O2

denotes the oxygen input molar flow rate, and qreact
O2

is
the oxygen flow rate that reacts. Noting that rHO is the ratio of hydrogen-to-oxygen input flow rates,

rHO =
qin

H2

qin
O2

(17)

and that
qreact

H2
= 2qreact

O2
(18)

we have

pO2 =
1

KO2

(
1

rHO
qin

H2
− 1

2
qreact

H2

)
. (19)

Now, by using the definition of u, we obtain

pO2 =
1

KO2

(
1

urHO
− 1

2

)
qreact

H2
. (20)

Two different oxygen partial pressures, then, have the following ratio:

p f inal
O2

pinitial
O2

=
I f inal
FC

Iinitial
FC

. (21)

Water (steam) partial pressure is expressed as

pH2O =
1

KH2O

(
qreact

H2O

)
(22)

=
1

KH2O

(
qreact

H2

)
(23)

=
1

KH2O

IFC
2F

(24)

where KH2O is a valve molar constant [28], and qreact
H2O is the flow rate of the water vapor (steam) that is

produced in the reaction. The final and initial pressures are then related by

p f inal
H2O

pinitial
H2O

=
I f inal
FC

Iinitial
FC

. (25)

The change in the voltage corresponding to the changes in the pressures is given by

∆V =
RT
2F

ln


p f inal

H2

√
p f inal

O2

p f inal
H2O

pinitial
H2

√
pinitial

O2
pinitial

H2O

 (26)
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which, by Equations (15), (21) and (25), yields

∆V =
RT
2F

ln


√√√√ I f inal

FC

Iinitial
FC

 (27)

=
RT
4F

ln

(
I f inal
FC

Iinitial
FC

)
. (28)

The above expression for voltage change shows that, for an increase in the cell current, ∆V is
positive, representing a gain. (Following the present approach, an expression for ∆V is derived in the
next section for the constant fuel flow condition. For an increase in current, ∆V for the constant fuel
flow case is negative, representing a loss.) Now, setting I f inal

FC = IFC, and calling

I f inal
FC

Iinitial
FC

=
IFC

Iinitial
FC

= Iratio
FC ,

where Iratio
FC is a unit-free number, we can express the output voltage as follows:

V ≈ ENernst +
RT
4F

ln Iratio
FC − rIFC (29)

where ENernst, determined from the initial cell conditions at open circuit, is given by Equation (6),
Iratio
FC > 1 (corresponding to an increase in current), and Iinitial

FC is small (ideally zero, corresponding
to the open-circuit condition). A zero value of Iinitial

FC , however, will render Iratio
FC undefined. Since

“it must be borne in mind that the logarithmic model does not work at very low currents, especially
at zero” [1], for practical purposes, we set Iinitial

FC = 1 A. This allows us to be “lazy” ([4], p. 50) and
“simplify” ([1], p. 37) Equation (29) to

V ≈ ENernst +
RT
4F

ln IFC − rIFC (30)

where IFC in expressed in Amperes. (Mathematically, the argument of logarithm is dimensionless
(unitless). The propriety of taking the logarithm of a dimensioned quantity has long been
debated [81–84]. In the fuel cell literature, however, it seems standard practice to do so (see, for
example, References [1,3,4,85]). A classic example of the logarithm of a dimensioned quantity is the
famous Tafel equation [86], which expresses the activation loss as a + b log(J), where J stands for the
current density.)

Equation (30) holds for IFC > 1 A and Iratio
FC > 1, and smoothes out, by approximation, the

transition from IFC = 0 to IFC = 1 A.
The second term in Equation (30), which is positive for IFC > 1 A, represents a “Nernstian” gain.

This can be given a physical interpretation. The fact that both u and rHO are constant implies a constant
fuel (hydrogen) utilization ratio and a constant oxidant (oxygen) utilization ratio. This means that:
(a) hydrogen and oxygen are replenished as soon as they are consumed in the fuel cell; and (b) as
current increases, so do hydrogen and oxygen supplies, causing the reactant concentrations to go up,
thereby producing a higher potential according to the Nernst equation. The product (water or steam)
concentration also increases with current under the constant-u-and-constant-rHO condition, but any
decrease in potential brought about by the increase in the product concentration is more than offset
by the increase in potential caused by the corresponding increase in the reactant concentrations. This
Nernstian gain is irreversible, much the same way that the traditional concentration loss (or mass
transport loss or Nernstian loss) is irreversible.

Figures 1 and 2 present polarization curves for the constant fuel utilization condition using fuel
cell parameters shown in Table 1. The data in Table 1 were taken from References [7,28]. ENernst, to be
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found from Equation (6) by plugging in the initial partial pressures and the E0, is taken to be 1 V in
Figures 1 and 2. Figure 1 shows the two irreversibilities—Nernstian gain and ohmic loss—separately.
The magnitude of the ohmic loss is plotted, ignoring the sign. The Nernstian gain, being a logarithmic
function, is monotone increasing. The shape of the output voltage curve is determined by how much
of the Nernstian gain is offset by the ohmic loss for a given current. The effect of the Nernstian gain can
be seen rather conspicuously in the hump in the output voltage at low currents. The output voltage
equals the Nernst voltage at the point where

RT
4F

ln IFC = rIFC, (31)

an equation that is difficult to solve analytically. Figure 2 shows, for low currents, how the polarization
plot’s hump varies for different values of the cell resistance. (An r of 3.28125 × 10−3 Ω is used in
Figure 1.)

Table 1. Numerical values of parameters and constants.

Parameter Value

T 1273 K
u 0.8

KH2 0.843 mol/(s·atm)
KH2O 0.281 mol/(s·atm)
KO2 2.52 mol/(s·atm)

r 3.28125 × 10−4 Ω
rHO 1.145

n 2
Constants

F 96,485 Coulombs/mol
R 8.31 J/(mol K)
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It can be argued that, in theory, in the constant hydrogen and oxygen utilization condition, the
concentration loss (mass transport loss) is mitigated or almost eliminated. (Of course much depends
on the physical characteristics of the reactant supply systems, reformer and control mechanisms,
time-delays in the diffusion process between the channel and the three-phase-boundary, etc.) Under
the assumption of the ideal conditions in our lumped model, the concentration loss is negligible or
zero in Equation (30).

For the constant fuel utilization operation, Equations (11), (12), (20) and (23) show that pH2 , pO2 ,
and pH2O all are directly proportional to (i.e., increase linearly with) the input fuel flow rate. This is
shown in Figure 3, where the straight lines have been obtained using the parameter values in Table 1.
All three lines have a zero intercept, and their slopes are given by

pH2 :
1

KH2

(1− u)

pO2 :
1

KO2

(
1

rHO
− u

2

)
pH2O :

u
KH2O

The polarization characteristics produced by the constant fuel utilization model are similar in
nature to those in the literature.
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Figure 3. Linear dependence of the three partial pressures on the input fuel flow rate (under the
constant fuel utilization condition).

The constant fuel utilization model is validated with experimental data, taken from Reference [87],
on a Siemens-Westinghouse high-power-density solid oxide fuel cell with ten channels (APS HPD10).
The data were obtained graphically (as in References [88–91]) from the results of Test 1018 in Figures 9
and 10 of Reference [87]. Figure 4 presents a model-versus-experimental comparison. The average
absolute relative error was found to be 3.74%, a figure that is generally considered in the literature
to indicate good agreement between theory and practice. Since the experimental current reported in
Figures 9 and 10 of Reference [87] starts at 87 A for Test 1018, the Nernst voltage was estimated, by
an approximate extrapolation (as in Figure 7-17 of Reference [85]), to be 0.74 V. The temperature was
1273 K, and the cell area was 870 cm2 [87]. The resistance was estimated (following Reference [61]),
from the slope of the (approximately) linear part of the experimental polarization (current-voltage)
curve, to be 0.0006 Ω. The slope was obtained from the equation of the straight line derived by a
least-squares linear regression fit of all but the first five experimental data points.

Voltage transients (dynamics) due to hydrogen concentration changes are an important issue in
fuel cell operation and are investigated in References [92,93], where the constant fuel utilization mode
is used to implement a current-based fuel control strategy (changing the fuel flow rate in proportion
to the cell current) to keep voltage transients under check. Constant fuel utilization is also shown
to be beneficial for control purposes of SOFC systems in Reference [94], where it is reported that a
suitably chosen constant fuel utilization operation leads to nearly maximum-efficiency performance
for variable loads.
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5. Constant Fuel Flow

This section considers a constant input fuel flow rate; that is, qin
H2

does not vary with IFC. The two
operating modes—constant fuel utilization (the preceding section) and constant fuel flow (the present
section)—are summarized in Figure 5 where the line parallel to the current axis represents a constant
input fuel flow rate. The line starting at the zero current point represents a constant fuel utilization

ratio and has a slope of
1

2uF
, a fact that is easily established from Equations (11) and (14). (Figure 5

uses data from Table 1.)
While the fuel flow rate is held constant, oxygen flow control can be done in one of two ways:

either maintain a constant ratio of hydrogen-to-oxygen input flow rates or maintain a constant
stoichiometric ratio for oxygen. We analyze these two modes in the following two subsections.

5.1. Constant Hydrogen-Oxygen Input Flow Ratio

This subsection treats the operating condition of rHO (Equation (17)) being held constant.
The constancy of both qin

H2
and rHO means that the oxygen input molar flow rate, qin

O2
, is also constant.

From Equations (10) and (14), we have

pH2 =
1

KH2

(
qin

H2
− IFC

2F

)
(32)

The ratio of two different partial pressures, corresponding to two different current values,
is obtained as

p f inal
H2

pinitial
H2

=
qin

H2
− I f inal

FC
2F

qin
H2
− Iinitial

FC
2F

(33)
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Next, substituting Equation (14) into Equation (19), we have

pO2 =
1

KO2

(
1

rHO
qin

H2
− 1

2
IFC
2F

)
(34)

=
1

KO2 rHO

(
qin

H2
− rHO

IFC
4F

)
(35)

Two different oxygen partial pressures, corresponding to Iinitial
FC and I f inal

FC , are then related by:

p f inal
O2

pinitial
O2

=
qin

H2
− rHO

I f inal
FC
4F

qin
H2
− rHO

Iinitial
FC
4F

(36)

From Section 4, we know that the final and initial steam pressures have a ratio given by Equation (25).
The change in voltage corresponding to the changes in the three pressures is given by

∆V =
RT
2F

ln


p f inal

H2

√
p f inal

O2

p f inal
H2O

pinitial
H2

√
pinitial

O2
pinitial

H2O

 (37)

which, by Equations (25), (33) and (36), becomes

∆V =
RT
2F

ln

 Iinitial
FC

I f inal
FC

×
qin

H2
− I f inal

FC
2F

qin
H2
− Iinitial

FC
2F

√√√√√√ qin
H2
− rHO

I f inal
FC
4F

qin
H2
− rHO

Iinitial
FC
4F

 (38)
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The above expression shows that, for an increase in the cell current, ∆V is negative, representing
a loss. As in Section 4, expressing all currents in units of Amperes, and setting Iinitial

FC = 1 A and

I f inal
FC = IFC in the above equation, we have

∆V =
RT
2F

ln

 1
IFC
×

qin
H2
− IFC

2F

qin
H2
− 1

2F

√√√√ qin
H2
− rHO

IFC
4F

qin
H2
− rHO

1
4F

 (39)

The output (load) voltage, V, for the constant fuel flow mode is then given by

V ≈ ENernst +
RT
2F

ln

 qin
H2

/IFC − 1
2F

qin
H2
− 1

2F

√√√√ qin
H2
− rHO

IFC
4F

qin
H2
− rHO

1
4F

− rIFC (40)

where ENernst, the reversible (equilibrium) potential, is given by Equation (6), and the second term
on the right side represents an irreversible loss (Nernstian loss). (Equation (40) holds for IFC > 1 A.)
This Nernstian loss is explained by the fact that, with qin

H2
and rHO held constant (note that the

constancy of both qin
H2

and rHO implies that of qin
O2

, too), reactant concentrations decrease and product
concentration increases with increasing current. Equation (32) shows that, for a fixed qin

H2
, hydrogen

pressure pH2 decreases linearly with increasing current. Similar is the behavior of pO2 with respect
to current, when the two input flow rates are kept fixed (see Equation (35)). The behavior of pH2O is
opposite; as shown by Equation (24), pH2O grows linearly with current. Interestingly, given current,
pH2O is (conditionally) independent of qin

H2
. Figure 6 shows an example of how the three pressures

change with current when the flow rates are held constant (the plots are produced with the parameter
values in Table 1 and a fixed qin

H2
= 0.1 mol/s).
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Figure 6. Linear dependence of the three partial pressures upon current (hydrogen and oxygen input
flow rates are held constant).

The polarization curve for the constant flow rate condition (see Equation (40)) is shown in Figure 7
where the Nernst loss and ohmic loss are shown separately. The positive magnitudes of the two
losses are shown; their signs are accounted for in the output voltage calculation. This figure uses
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the parameter values in Table 1 along with ENernst = 1 V, qin
H2

= 0.004 mol/s and r = 3.28125 × 10−3 Ω.
The polarization plot shows the same trend that is generally seen in constant flow polarization in
the literature.
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Figure 7. Polarization curve when hydrogen and oxygen input flow rates are held constant; the Nernst
loss and the ohmic loss are plotted separately.
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The effect of the (constant) input fuel flow rate on the polarization behavior is presented in Figure 8,
where three different qin

H2
values are used: 0.02 mol/s, 0.004 mol/s, and 0.001 mol/s. The figure shows

that a higher input flow rate leads to a higher voltage for the same load current, an observation that
fits in with the concept of a higher reactant concentration leading to a higher potential. Figure 9 shows
the variation in power characteristics corresponding to different (constant) fuel flow rates (the fuel
flow rates in this figure are the same as the ones in Figure 8); a higher fuel flow rate results in higher
power, as expected. Figures 8 and 9 use ENernst = 1 V and r = 3.28125 × 10−3 Ω.
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Figure 9. Power-versus-current behavior (both input flow rates are held constant, with the oxygen flow
rate proportional to the hydrogen flow rate).

Results of model validation are shown in Figure 10, where the experimental polarization data (on a
planar single SOFC at ENEA laboratories) were graphically obtained from Reference [61]. The results
show reasonably good agreement, with an average absolute relative error of 3.96%. The validation
was done under the following operational condition [61] for both the model and the experiment:
temperature: 923 K; pressure: atmospheric; qin

H2: 0.00112 mol/s; qin
O2: 0.00038 mol/s; anode: 96%

hydrogen, 4% water; cathode: 21% oxygen, 79% nitrogen; cell area: 121 cm2. The calculated value
of the model ENernst was 1.122 V, with the value of E0 in Equation (2) estimated from the following
relationship [61,95,96]:

E0 ≈ 1.253− 2.4516× 10−4 × T

Given the “systematic error of about 0.018 V” in Reference [61] between the theoretical Nernst
voltage and its experimental counterpart, the experimental ENernst in the present validation was taken
as 1.122 V− 0.018 V = 1.104 V. A resistance of 0.0043 Ω was used for validation; this value was obtained
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as the approximate slope of the (nearly) linear part of experimental polarization plot, as computed
from a least-squares linear fit to the experimental data points (excluding the first four points).
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Figure 10. Validation results for the constant fuel flow operation; mean absolute relative error = 3.96%.

5.2. Constant Oxygen Stoichiometry Ratio

We consider a stoichiometric ratio, S, for oxygen:

S =
qin

O2

qreact
O2

(41)

where S is held constant (unlike Section 5.1 where rHO is kept constant). The fuel flow rate is kept
constant, as before.

Using the stoichiometric ratio, we can express oxygen partial pressure as:

pO2 =
1

KO2

(
qin

O2
− qreact

O2

)
(42)

=
1

KO2

(S− 1)qreact
O2

(43)

=
1

KO2

(S− 1)
IFC
4F

(44)

Two different oxygen partial pressures have the following ratio:

p f inal
O2

pinitial
O2

=
I f inal
FC

Iinitial
FC

(45)
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From Equations (25), (33) and (45), we obtain the following expression for ∆V for the
constant-S mode:

∆V =
RT
2F

ln

 qin
H2
− I f inal

FC
2F

qin
H2
− Iinitial

FC
2F

√√√√ Iinitial
FC

I f inal
FC

 (46)

The above equation shows that for I f inal
FC > Iinitial

FC , the change in voltage is negative, implying a

loss. As before, expressing currents in Amperes and setting Iinitial
FC = 1 A and I f inal

FC = IFC, we have for
IFC > 1 A the following expression for the output voltage:

V ≈ ENernst +
RT
2F

ln

(
qin

H2
− IFC

2F

qin
H2
− 1

2F

√
1

IFC

)
− rIFC (47)

where ENernst is given by Equation (6).
The polarization plot for the constant oxygen stoichiometry (and constant fuel flow) condition is

shown in Figure 11 where the Nernstian loss is plotted separately (the Nernstian loss is plotted as a
negative value). The polarization curve shows characteristics similar to those in the literature: after
the initial drop, the voltage shows an approximately linear decay for much of the operating range
before dropping heavily at high currents. In Figure 11, qin

H2
= 0.0009 mol/s. Figure 12 shows the effect

of the (constant) fuel flow rate on the polarization performance. Power-versus-current behavior for the
constant-fuel-flow-constant-oxygen-stoichiometry condition is presented in Figure 13. Figures 11–13
use the relevant data from Table 1 and ENernst = 1 V. Figures 12 and 13 use the following qin

H2
values:

0.004 mol/s, 0.002 mol/s, and 0.0009 mol/s.
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6. Conclusions

An improved fuel cell model for constant fuel utilization control and constant fuel flow control
was developed in this paper. By deriving expressions for two irreversibilities—a Nernstian gain (for the
constant fuel utilization mode) and a Nernstian loss (for the constant fuel flow mode)—the model
solves the problem of mixing up of reversible and irreversible potentials in the Nernst EMF expression.
To our knowledge, the concept of the Nernstian gain and the characterization of the Nernstian gain as
an irreversibility has not yet been presented in the fuel cell literature. The model thus eliminates the
(flawed) need in previously published models for the open-circuit Nernst voltage to be expressed as a
function of the load current. The model was validated against experimental data from the literature,
with the average absolute relative error being less than 4%.
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Abbreviations

The following abbreviations are used in this manuscript:

SOFC Solid oxide fuel cell
PEMFC Proton exchange membrane fuel cell
EMF Electromotive force
Nomenclature
ENernst Nernst potential (open-circuit EMF) of a single cell, V
E0 Standard (reference) EMF of a single cell, V
E0

0 Standard (reference) EMF of a single cell at temperature T0, V
V Output terminal voltage of a single cell, V
T Temperature, K
n Number of electrons transferred
a Activity
aH2 Activity of hydrogen
aO2 Activity of oxygen
aH2O Activity of water vapor (steam)
∆s Change in entropy, J/(mol K)
p Pressure or partial pressure, atm
p0 Standard-state pressure, atm
pH2 Partial pressure of hydrogen, atm
pO2 Partial pressure of oxygen, atm
pH2O Partial pressure of water vapor, atm
IFC Fuel cell current, A
u Fuel utilization ratio
rHO Ratio of hydrogen-to-oxygen input flow rates
KH2 Valve molar constant for hydrogen, mol/(s atm)
KO2 Valve molar constant for oxygen, mol/(s atm)
KH2O Valve molar constant for water vapor, mol/(s atm)
Kr Modeling constant, mol/(s A)
qin

H2
Hydrogen input flow rate, mol/s

qout
H2

Hydrogen output flow rate, mol/s
qreact

H2
Hydrogen flow rate that takes part in the reaction, mol/s

qin
O2

Oxygen input flow rate, mol/s
qout

O2
Oxygen output flow rate, mol/s

qreact
O2

Oxygen reacting flow rate, mol/s
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qout
H2O Water vapor output flow rate, mol/s

qreact
H2O Water vapor flow rate produced in the reaction, mol/s

r Ohmic resistance of a single cell, Ohm
R Universal gas constant, J/(mol K)
F Faraday’s constant, Coulombs/mol
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