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Featured Application: Except for rolling bearings, this method is also used for analysis of the
impact modulation cause by gear localized faults.

Abstract: Periodic impulses and the oscillation response signal are the vital feature indicators of
rolling bearing faults. However, finding the suitable feature frequency band is usually difficult
due to the interferences of other components and multiple resonance regions. According to the
characteristics of non-negative matrix factorization (NMF) on a spectrogram, the feature extraction
method from a sparse envelope spectrum for rolling bearing faults is proposed in this paper. On the
basis of the time—frequency distribution (TFD) of the periodic transient oscillations, the basic matrix
can be interpreted as the spectral bases, and the time weight matrix corresponding to spectral bases
can be extracted by NMF. Because the bases and the weights have a one-to-one correspondence,
the frequency band filtering with the basic component and the time domain envelope of the weight
vector are calculated respectively. Then, the sparse envelope spectrum can be derived by the inner
product of the above results. The effectiveness of the proposed method is verified by simulations and
experiments. Compared with band-pass filtering and spectral kurtosis methods, and considering the
time weights and corresponding the spectral bases for the periodic transient oscillations, the weak
fault-rated feature can be enhanced in the sparse spectrum, while other components and noise
are weakened. Therefore, the proposed method can reduce the requirement of selecting frequency
band filtering.

Keywords: feature extraction; time—frequency distribution; non-negative matrix factorization; rolling
bearing fault

1. Introduction

As an important component in rotating machinery, the rolling bearing is a frequent area in
machinery failure which can bring about economic losses and casualties [1]. Therefore, the condition
monitoring and fault diagnosis of the rolling bearings are important means of health assessment,
and the feature extraction based on vibration signals [2,3] is of significant interest to researchers.

Theoretically, once the rolling bearing has a localized fault (such as pitting, spalling, etc.), which
creates the periodic impulses during the rotation of rotor, the periodic resonance of structures can
be excited in the vibration signal. Thus, the frequency of the transient oscillation is decided by the
natural frequency of the mechanical system, and the repetition frequency of the transient oscillation
corresponds to the fault-related impulses [4]. The periodic vibration response signal is clearly
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non-stationary because the magnitude of oscillations decreases exponentially, and the signal having a
discretized spectrum and wide frequency band of the high rotational speed of bearing is shown in
Figure 1a,b. The discrete interval of frequency is the repetition period of the impact excitation. However,
in incipient stages, due to the lower amplitude of the transient oscillation, the large noise and other
components often interfere with the identification of discrete frequencies [5], as shown in Figure 1c.
Therefore, the feature extraction of periodic impulses is proposed with various detection methods,
such as spectrum analysis, cepstral analysis [6], envelope analysis, and time—frequency analysis.
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Figure 1. Simulation signal of bearing fault. The carrier frequency is 2200 Hz and the fault feature
frequency (f;) is 80 Hz: (a) Simulation signal waveform; (b) Discretized frequency spectrum of

simulation signal; (c) Spectrum of simulation signal with added noise.

According to the frequency representation of the vibration response caused by the fault-related
impulses, the envelope demodulation can be used to extract the repetitive frequency of the transient
oscillations with band-pass filtering and envelope transformation [7]. However, when the impact
excitation has low energy, the magnitude of the exponential decay signal is also small and leads
to difficulty in the selection of a resonance region. Moreover, it often interacts with the frequency
band of other components and the excitation response of random impulses. It is obvious that the
optimal filtering frequency band cannot be obtained easily. Thus, to capture the signature of repetitive
transients, the spectral kurtosis (SK) is proposed [8,9]. SK selects the best band-pass filter based
on spectral kurtosis variation. However, the kurtosis index is susceptible to various outliers that
are independent of the fault [10], so the selected frequency band could be unable to extract valid
fault information.

Unlike the response of random impact excitation, the periodic transient oscillation corresponds to
the discrete components of the resonance frequency band. However, due to the influence of noise and
other components, it is difficult to observe the discretization spectra. In this case, the time—frequency
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analysis provides a localized feature representation for the repetitive transients, and the time—frequency
distribution (TFD) of the signal has been adopted to identify the response of the system, such as the
natural frequency and damping ratio [11-14]. Moreover, due to splitting the signal into different
frequency bands and central frequencies, the wavelet transform is also used for frequency band
optimization. In related research, Qiu [5] constructed a suitable filter for envelope analysis by
selecting the optimal parameters of the wavelet filter, and Su [15] proposed the optimal Morlet
wavelet filter. Yiakopoulos [16] also adopted the wavelet transform of the original signal to envelope
the low-frequency feature. The results denote that the performances are very dependent on the wavelet
basis and the practical applicability is limited.

In addition, the short time Fourier transform (STFT) has also been adopted to represent the
non-stationary information of the vibration signal [17-19]. In view of the non-negative property of the
TFD, the non-negative matrix factorization (NMF) is suitable for the analysis of vibration signals due to
the ability of the parts-based representation. Delong [19] proposed the constrained NMF of the spectral
matrix and used the decomposed basis matrix to extract features. After utilizing the semi-binary
NMF of the spectrum, Wodecki [18] selected the appropriate decomposition frequency band for
slicing analysis based on the principle of maximum kurtosis. Meanwhile, Wodecki [17] also adopted
standard NMF on spectrograms and utilized the basis vector to filter frequency bands. In addition to
vibration signals, the speech signal has also been analyzed while performing NMF [20-22]. Unlike
traditional band-pass filtering, the NMF-based methods can decompose frequency bands according
to time—frequency distribution adaptively, and the interference component in the bands cannot
be eliminated.

By applying NMF to the TFD, the frequency distribution of the vibration response can be
decomposed into the base matrix, which can be interpreted as the spectral bases and the weight
matrix which is the time envelope corresponding to the spectral bases. For the periodic transient
oscillations, the spectral bases can reflect the natural frequency band, while the magnitude change of
the periodic transient oscillations is also represented by the weight matrix. Due to the influence of
noise and the decomposed frequency band, neither the band-pass filtering based on the frequency base
matrix nor the envelope of the time weight matrix can clearly extract the impact features. However,
since the bases and the weights have a one-to-one correspondence, it means that the same feature
component with different amplitudes can exist in the band-pass filtering and the envelope of time
weights. Thus, the inner product of the above results can be used to obtain a sparse envelope spectrum,
which can enhance the components of fault features and weaken interference components.

The rest of this paper is organized as follows. Section 2 gives a brief description of NMF and
provides the characteristics of NMF of time—frequency distribution, and then introduces the principles
and processes of the proposed method. Section 3 verifies the proposed method with simulated signals
and fault bearing data. Conclusions are drawn in Section 4.

2. Materials and Methods

2.1. NMF
With the non-negative constraints, NMF is also widely used in image recognition, data mining
etc. [23-25]. Given a non-negative matrix V = [ v1 vy -+ vy | € R™", where m and n are
the numbers of samples and features respectively, NMF is designed to decompose the matrix V
into the product of two non-negative matrices W = [ wy Wy - Wy } € R™ and H =
T
hi hy --- h, ] € R™", such that Equation (1) holds:

Vixm = WysxrHrxm

st. W>0,H>0 @
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where W and H are the basis matrix and the weight matrix, respectively, and r is the low rank of the
embedding space. Normally, the choice of  is to satisfy (m + n) < mn. W can be regarded as a set of
bases that linearly approximate the observed array V, and H is the non-negative projection weight of
the observed array V on the basis W.

Due to the purely additive expression, NMF provides a good explanation of the local
characteristics of data. In addition, from the perspective of clustering, the decomposition result of NMF
is clustering for the non-negative data [26]. Ding [27] proved the consistency among NMF, K-means
and spectral clustering methods. We can interpret the columns of W as the posterior probabilities for
row clustering and the rows of H as the posterior probabilities for column clustering.

For the solution of Equation (1), the objective function based on Euclidean distance is written as:

2
. 2
min : fyae(VI|WH) = ||V — WHI[}: = 15(V;; — (WH),)) o
if ’
st. W>0,H>0

where ||o| |%_- denotes the Frobenius norm. Using the gradient descent method for this optimization
problem, the classical multiplicative iterative rules are given by:

T
Heng WV 3)
WIWH
T
wew A @)
WHHT

The multiplicative iterative algorithm is simple and easy to use, but the poor performance and
convergence are also pointed out in paper [28,29]. Therefore, improved algorithms are proposed, such
as the alternating least squares algorithm [30], the projected quasi-Newton algorithm [31], the projected
gradient algorithm [28], and the block principal pivoting algorithm [32]. The block principal pivoting
algorithm is developed with the non-negative least squares (NNLS) framework.

in [|[HTWT — VT |3, by fixing H
min | I, by fixing

; 2 o ©)
WH — V||%, by f w
min | [[7, by fixing
To obtain good convergence, the main iterative rules are as follows:
-1
H+« (WTW) wlv, ®)
T T\ !
W« VH (HH ) . @)

Meanwhile, block principal rotation [33] is used to improve the convergence of the algorithm.
Hence, the block principal pivoting algorithm is chosen for analyzing complex vibration signals in
this paper.

2.2. Time Frequency Separation of Time—Frequency Matrix
For the original signal x(t), its STFT coefficient is defined as:
N-1 ,
STFT(t,f) = Y x(t)w(t— k)e 12fKIN, 8)

k=0

where w(t — k) is a window function, f; is the time corresponding to each slip window and N is the
overall number of the computed frames. Considering the frequency band selection and the strong
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noise in vibration signals, the window function with low side-lobes is applied, such as the hanning
window, hamming window;, etc.

From the coefficient STFT(t, f), the TFD is set to V = | STFT(¢, f) |, and then the NMF algorithm
is adopted to decompose V. According to the clustering, the sub-matrix W = [ w, Wy - Wy ]
will be interpreted as spectral bases; that is, the cluster of the frequency domain. Each w; includes
some frequency regions. Meanwhile, the magnitude envelope of signals belonging to the frequency
region is represented by weight vector h;. This correspondence can be explained by the bilinear NMF
model [34]. In this model, the non-negative data matrix is approximately represented by a sum of the
linear combination of rank-one non-negative matrices:

V =wihy + wyhy + - - - + wyh, + E, 9)

where E represents error or noise.

Note that the frequency base vector w; and the time weight vector h; have a one-to-one
correspondence. It can be considered that the feature extraction of signals is realized either by spectral
basis or by the time weight matrix.

Figure 2 depicts the correspondence between w; and h;. The original signal shown in Figure 2 is
mixed with the two non-continuous sinusoidal components of f1 = 1000 Hz and f, = 2300 Hz, where
the component of f1 contains three non-zero segments and the component of f, contains four segments.
Applying NMF with r = 2, two spectral bases and two time weight vectors are obtained from the TFD
of the original signal. It can be clearly seen that wq and hy are the descriptions of the sinusoidal signal
of frequency f1 in the frequency domain and the time envelope respectively. Likewise, the sinusoidal
signal of the frequency f» is described in both the time domain and the frequency domain by the basis
wy and the weight vector hy. Therefore, NMF on a spectrogram is a powerful method to describe each
transient oscillation and its position in time with a set of spectral bases and weights.
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Figure 2. Non-negative matrix factorization (NMF) on time-frequency distribution (TFD). The lower
left part is the basis matrix W, and the upper right part is the weight matrix H.
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2.3. Feature Extraction Based on Sparse Envelope Spectrum

As a spectral basis, each column vector of W represents different frequency regions. Thus,
the original signal x(t) can be filtered with the base w; containing the fault characteristic information,
and the filtered spectrum is given by:

Xr(f) = X(f)w; (10)

This can be followed by performing the inverse Fourier transform (IFT) on the filtered spectrum;
the filtered waveform is calculated as follows:

xp(t) = IFT(Xf(f)) (11)

Next, the envelope signal is obtained from the filtered signal x(t), which is defined as:

xe(t) = \[33(t) + 23 (1) 12)
where x'¢(t) is the Hilbert transform of the signal x¢(t), and x'f(t) = L= e x dT Finally,
removing the zero-frequency component, the spectrum of the envelope 51gnal is computed by Fourier
transform (FT):

Hy (f) = FT(xe(t)). (13)

After computing the envelope spectrum, the feature information of the fault frequency can be
observed. However, the acquired vibration signal includes not only the impact excitation caused by
bearing defects, but also the external impacts. The envelope spectrum usually contains a lot of noise
and other interference components. Therefore, to improve performance, it is necessary to further
analyze the selected filter band.

Generally speaking, each spectral basis w; describes the frequency region of the transient
oscillation, while the weight vector h; indicates its time envelope. Thus, performing Fourier transform
on h; can display the frequency components of the time envelope:

Hu(f) = FT (). (14)

Obviously, the band-pass filtering is realized by the spectral base w; for the transform of the
whole signal. The weight vector h; is obtained from the TFD directly, where the frequency component
of each slip moment is calculated by the local signal. This difference leads to the different amplitude
distributions of the two envelope spectra. However, the periodic impact component, as the main
characteristic, has a larger amplitude in both envelope spectra. Therefore, to enhance the fault-related
frequency, the product of the two squared spectra is defined as:

H(f) = Hyy(f)oH(f). (15)

The squares of the components represent the energy of the frequency component, which can
highlight a larger component than that of the amplitude spectrum [3]. The inner product, denoted
by “e”, can strengthen the common frequency of the envelope spectra and reduce other frequencies.
As a result, the envelope spectrum becomes sparse, and the feature frequency of bearing faults can be
clearly observed naturally. The algorithm of the sparse envelope spectrum extracted by combining W
and H is described as follows.

Step 1: Calculating the STFT coefficients of the vibration signal with a low side-lobes window
function and obtaining its TFD matrix. To better extract the impact response waveform, it is
recommended to use a smaller window length;

Step 2: Applying NMF on the TFD matrix with low rank r. Considering that the frequency
spectrum often contains multiple frequency regions, r is set to k < r < k + 3, where k is the estimated
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number of resonance regions. By properly increasing the value of 7, the similar frequency distribution
in the decomposition results can be avoided;

Step 3: Removing spectral basis with the low frequency region in W;

Step 4: Computing the filtered spectrum according to Equation (9) by the remaining spectral basis;

Step 5: Calculating the filtered signal and its envelope spectrum Hy (f);

Step 6: Obtaining the envelop spectrum Hp(f) of each weight vector’s corresponding
frequency basis;

Step 7: Getting the sparse envelope spectra with Equation (12);

Step 8: Selecting the sparse spectrum with the maximum amplitude at the fault frequency in
H(f) as the final result.

3. Results

3.1. Numerical Experiment

To evaluate the performance of the proposed method, according to the proposed vibration model
of a rolling bearing [35,36], the synthetic signal x(t) is generated by:

x(t) = ZAke_Bkt sin(27t fyt — kT + @) + ZPm sin(m27 fot) + n(t) (16)
k m

The exponentially decaying component usually indicates a localized fault in rolling bearings or
external excitation, such as electromagnetic interference. Ay is the amplitude of impulse. T is the
period of impulse, f;, = 1/T is the fault feature frequency, f; is the natural frequency and By and ¢y are
the damping ratio and phase respectively. It is obvious that the vibration response excited by a bearing
fault is periodic. The second item of Equation (16) corresponds to the rotor fault, which is represented
by the frequency harmonic component f,. Py, is the amplitude of the harmonic, and the last item n(t) is
Gaussian white noise.

Considering the low frequency position for the rotor harmonic fault, the impact excitations are
only computed in an experiment. The outer ring fault-related frequency f; is set to 80 Hz, and the
excited natural frequency is set to 2200 Hz. Meanwhile, three non-periodic transient oscillations are
added, where the carrier frequencies are 1000 Hz, 2600 Hz and 3000 Hz, and the fractional bandwidths
are set to 0.1, 0.3 and 0.1. The phases are all zero. Finally, the Gaussian white noise with signal-to-noise
ratio (SNR) = 0 is added, and the vibration response signal is sampled at 10,240 Hz. The components of
the simulated signal are described in Figure 3, and its waveform and spectrum are shown in Figure 4,
where the red line denotes the envelope of the valid fault component. In Figure 4, because of the strong
background noise and the random transient interference, it is difficult to directly observe the impact
response caused by the local fault and its frequency component.

The Hanning window with 33 samples and 97% overlap rate is used for the STFT of the signals.
Then, NMF is performed on the TFD of the simulated signal, where the low rank dimension r = 5.
Figure 5 illustrates the decomposed spectral basis and the time weight vectors. For the distribution
of spectral basis W, the basis ws has a wide frequency band of about 2000 Hz, which can contain the
periodic transient oscillations of 2200 Hz and the transient impact excitation component of 2600 Hz.
The frequency basis w; focuses on the frequency band around 3000 Hz and corresponds to the
transient oscillation components of natural frequency 3000 Hz. The frequency basis w3 is concentrated
in the frequency band of 1000 Hz, which is the frequency feature of the other transient impact
excitation components. In addition, the bases wq and w4 correspond to the noise components. As
for the distribution of the time weight matrix H, the two peaks h; at approximately 0.14 s and 0.22 s
correspond to the two impulses whose natural frequency is 3000 Hz; the peak h3 at approximately 0.35
s corresponds to the impulse whose natural frequency is 1000 Hz. Useful feature components of other
time weight vectors are difficult to observe.
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Figure 3. The model of simulated signal.
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The spectral bases wy, w3, and ws, which contain the impact excitations, are selected to extract
impulse responses. The sparse envelope spectra constructed with three frequency bases and weight
vectors are given in Figure 6, in which most of the feature components are significantly enhanced and
noise is almost eliminated. In the spectrum of Figure 6¢, the frequency component of 80 Hz (denoted by
the arrow) is effectively extracted in the sparse envelope spectrum constructed with the bases ws and
hs. The envelope spectra extracted by other bases such as wj and w3 do not have the certain feature
components because both point to aperiodic impact. It is noted that the impulsive features are extracted,
which confirms that the sparse envelope spectrum offers huge advantages for the representation of
feature information. To compare the effects of the proposed method, the results of the envelope
demodulation with band-pass filtering [17] are also presented in Figure 7. The feature component
of 80 Hz can be observed by the frequency band filtering with basis ws in Figure. Compared with
Figure 6¢, it can be seen that no clear fault features can be observed due to the influence of in-band noise
although the frequency basis w5 corresponds to the frequency band of 2200 Hz. This illustrates that the
position and bandwidth of band-pass filtering can seriously affect the envelope effect. Considering the
time domain envelope of the impulse series, as shown in Figure 8, the proposed method can obtain a
sparse envelope spectrum. Therefore, the frequency feature of band-pass filtering is greatly enhanced,
and is eliminated for in-band noise.
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Figure 6. Sparse envelop spectrums is obtained with decomposed sub-matrices: (a) Basis w, and
weight vector hy; (b) Basis w3 and weight vector h3; (c) Basis ws and weight vector hs.

For comparison, Figure 9a presents the kurtogram [9] of the same signal, from which the optimal
demodulation band is 960-1280 Hz and the waveform and spectrum of the filtered signal are presented
in Figure 9b,c. The extracted result indicates that the filtered signal with maximum kurtosis still has
noise interference and the transient feature of the waveform is not very clear. When envelope analysis
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is applied to this signal, little fault frequency can be obtained, as shown in Figure 9d. In fact, we know
that kurtosis is a measure of the peakedness, so it easily tends to highlight the outliers of the signal

caused by noise.
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Figure 7. Envelope spectrum by band-pass filtering: (a) Frequency basis w»; (b) Frequency basis w3;

(c) Frequency basis ws.
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Figure 8. Envelope spectrum from weight vector: (a) hy; (b) hs; (c) hs.
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Figure 9. Fault characteristics extracted by the fast spectral kurtosis method: (a) Kurtogram of the
simulated signal, the global maximum is achieved for f. = 960 Hz and Level = 6; (b) Waveform of the
filtered signal; (c) Spectrum of the filtered signal; (d) Envelope spectrum of the filtered signal.

3.2. Experimental Verification

3.2.1. Case 1

To further explore the effectiveness of the proposed method, the data from the Case Western
Reserve University Bearing Data Center [37] is used for the verification. The test stand consists
of a two-horsepower motor with a torque transducer and a dynamometer to apply different loads.
Vibration data was collected using accelerometers, which were attached to the housing with magnetic
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bases. Smith [38] conducted a comprehensive analysis of each type of fault in the data set and
summarized all the data into three types of faults, namely, obvious (Y), weak (P), and cannot be
diagnosed (N). Faults marked as “P” or “N” are recommended for the performance analysis of the
newly proposed algorithm.

The fault of the inner ring bearing numbered 277DE, marked as “P”, is adopted for identification.
The sensor for 277DE data is located at the motor driving end, and far from the fan end of the fault
bearing, which means the test signal is coupled with a large amount of interference components.
The analyzed data set consists of 4096 sampling data with a sampling frequency of 12 kHz, and its
waveform and frequency spectrum are shown in Figure 10. According to the structural parameters of
the bearing and the rotation speed, the characteristic frequency of the fault bearing is f; = 142.9 Hz.
In the frequency spectrum of Figure 10b, distinct frequency bands can be observed except for the
harmonic frequency of the rotation speed, and the high frequency region is located in the range of
1900-4000 Hz.

1
05}
[} [}
e e}
z Z
= 0 =
Q. o
g g
< <
-0.5
-1 . . . i)
0 0.1 0.2 0.3 0 2000 4000 6000
Time [s] Frequency [Hz]
(a) (b)

Figure 10. Inner ring fault bearing: (a) Waveform of the fault signal; (b) Frequency spectrum of the
fault signal.

After STFT is computed with the same parameters in the simulation experiment, the TFD matrix
is decomposed by NMF with low rank r = 5; the basis and weight vectors are shown in Figure 11.
Because the high frequency bands usually have small noise interference, for the five decomposed
frequency regions in Figure 11, the spectral bases w3, wy, ws are located at the frequency band of
19004000 Hz and selected to extract the impulse response. The three selected frequency regions and
the sub-matrix of corresponding weight are adopted to calculate the inner product of the squared
envelope, and the sparse envelope spectra are displayed in Figure 12.

In Figure 12a, constructed by frequency basis w3 and weight vector ks, the fault characteristic
frequency f; can be observed clearly. The sparse envelope spectrum constructed by the spectral bases
wy and ws are shown in Figure 12b,c. Thereinto, an obvious rotational frequency of 29.2 Hz and double
harmonic components are found, while the frequency of the inner ring fault is smaller. Although the
frequency band regions of the three frequency bases are all located in the 1900-4000 Hz region, the three
sparse envelope spectra are different. It can be supposed that w3 corresponds to the vibration response
excited by fault, while ws can be generated by other components, such as motor vibration excitation or
bearing friction. Due to the overlapping of multi-frequency bands, the bases w3 and ws are very close,
as shown in Figure 13. Therefore, except for w3, the sparse envelope spectrum constructed by the basis
ws and the weight ks also contains part of the features of the periodic impact response.
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Figure 13. Position of three frequency band filtering.

To compare the effects, band-pass filtering is also applied. Figure 14 shows the envelope
demodulation results with the three frequency bands. Because of the large in-band noise, the fault
characteristic frequency is influenced by other frequency components. Compared with the result
of Figure 12, due to the combination of the time domain envelope of the impulse response shown
in Figure 15, the proposed method can obtain the sparse envelope spectrum constructed with the
frequency basis w3 and the weight h3, thereby effectively extracting the fault characteristic frequency.
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Figure 14. Envelope spectrum with band-pass filtering: (a) Filtered with ws; (b) Filtered with wy;

(c) Filtered with ws.
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Figure 15. Envelope spectrum from H matrix: (a) h3; (b) hy; (c) hs.

Additionally, the fast spectral kurtosis method is also used to analyze the signal. The results
are shown in Figure 16. The optimal demodulation band is located in the 2625-3125 Hz region,
and the waveform and spectrum of the filtered signal are presented in Figure 16b,c. Compared
with the proposed method, although the envelope spectrum obtained by the fast spectral kurtosis
method contains fault characteristic frequencies, it also contains many interference components, which
increases the difficulty of identification and is not as simple and intuitive as the sparse spectrum.

3.2.2. Case 2

Another experiment is carried out on the test bench of mechanical equipment failure simulation,
and its structure is shown in Figure 17. The rotating shaft is driven by an alternating current (AC)
motor, and fault simulation can be conducted by replacing the fault motors. The motor bearing is
6203. The inner ring peeling fault is simulated on the inner ring of the motor drive end bearing. When
the rotation frequency f, is 20 Hz, the fault characteristic frequency f; is 99.5 Hz. The accelerometer
is installed at the vertical direction of the motor end bearing. The vibration signal is acquired with
the sampling frequency of 20,480 Hz and the sample size of 4096. Figure 18 shows the waveform
and frequency spectrum of the acquired signal. In Figure 18a, weak impulse features are buried in
interference and noise, while it is shown that from the spectrum shown in Figure 18b, there are multiple
resonance frequency bands, and the rotating characteristic frequencies are submerged.
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Figure 16. Fault characteristics extracted by the fast spectral kurtosis method: (a) Kurtogram of the
simulated signal, the global maximum is achieved for f. = 2625 Hz and Level = 4.6; (b) Waveform of
the filtered signal; (c) Spectrum of the filtered signal; (d) Envelope spectrum of the filtered signal.

(b)

Figure 17. (a) Mechanical equipment failure simulation (MFS) test bench; (b) Fault motor.

First, the proposed method is applied to the sampled signal. After computing STFT with the
same parameters, the TFD matrix from the STFT coefficients is decomposed by NMF with low rank
r = 5, and the decomposed bases are shown in Figure 19. The five spectral bases correspond to
different frequency bands of 895-7400 Hz. Afterwards, the corresponding five band-pass filtering with
frequency bases from wq to ws and the time envelope based on the weight matrix H are computed.
The resulting sparse envelope spectra are shown in Figure 20. In Figure 20b, the fault characteristic
frequency f; is effectively extracted, in which the frequency basis w, corresponds to the resonance
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frequency band from 1400-3800 Hz. In addition to the frequency basis w3, the other filtering bands
cannot extract the corresponding fault feature frequency.

02 X10_3
8l
3 2O
£ 0 £
= &°
< -0.1 < 5

0 0.05 0.1 0.15 0.2 0 2000 4000 6000 8000 10000
Time [s] Frequency [Hz]
(a) (b)

Figure 18. Outer ring fault bearing: (a) Waveform; (b) Frequency spectrum of the fault signal.

d ~ S N
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0 2000 4000 6000 8000 10000
Frequency [Hz]

Figure 19. Spectral basis W decomposed by NMF.

Furthermore, the band-pass filtering for the five bands and the fast spectral kurtosis method
are also analyzed. The results are shown in Figures 21 and 22, respectively. In the ranges of the
five decomposed frequency bands, the fault component is not displayed in wj, w3, wy, and ws due
to the noise component, and the feature frequency in wj is also inconspicuous. From the result
extracted by the fast spectral kurtosis method, it is difficult to detect the existence of fault characteristic
frequencies because of its large bandwidth and interference components. Compared with Figure 20d,
the advantage of the proposed sparse envelope spectrum is shown again. Besides the characteristic
frequency, the spectrum of band-pass filtering also contains a large number of other components,
which are easy to interfere with the judgment of fault. Additionally, the inaccurate frequency band
extracts the small amplitude of the characteristic frequency. Obviously, the sparse envelope spectrum
has an excellent visualization effect, so the product of time weight and filtering envelopes also can
reduce the requirement of parameter selection for band-pass filtering.
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Figure 20. Obtained sparse spectrum with decomposed sub-matrix: (a) Basis w; and weight vector h;;
(b) Basis w, and weight vector hy; (c) Basis w3 and weight vector hs; (d) Basis w4 and weight vector hy;

(e) Basis ws and weight vector hs.
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Figure 22. Fault characteristics extracted by fast spectral kurtosis method: (a) Kurtogram of the
simulated signal, the global maximum is achieved for f. = 6400 Hz and Level = 3.6; (b) Waveform of
the filtered signal; (c) Spectrum of the filtered signal; (d) Envelope spectrum of the filtered signal.

4. Conclusions

In this paper, based on the non-negative matrix factorization of the time—frequency distribution
of periodic transient oscillations, we propose feature extraction for the characteristic frequencies of
rolling bearing faults, which takes into account the non-stationary characteristic of impact excitation for
localized faults. The application of simulations and experiments shows that, based on time—frequency
distribution, non-negative matrix factorization not only decomposes the frequency band adaptively,
but also extracts the time domain envelope of the signal of the corresponding frequency band. Using
the inner product of the band-pass filtering and time weight envelopes, the sparse envelope spectrum is
realized to enhance the fault-related frequency component. Thus, the strict requirements of band-pass
filtering on the position and bandwidth of the filter band are reduced. Compared with band-pass
filtering and fast spectral kurtosis methods, the weak fault-rated features are easier to observe
in the sparse spectrum. In practice, the running speed of many pieces of equipment, such as a
wind-powered gearbox, is not stable. Therefore, fault feature extraction under variable speed is the
work of further research.
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