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Abstract: While remarkable progress has been made to pedestrian detection in recent years, robust
pedestrian detection in the wild e.g., under surveillance scenarios with occlusions, remains a
challenging problem. In this paper, we present a novel approach for joint pedestrian and body part
detection via semantic relationship learning under unconstrained scenarios. Specifically, we propose
a Body Part Indexed Feature (BPIF) representation to encode the semantic relationship between
individual body parts (i.e., head, head-shoulder, upper body, and whole body) and highlight per
body part features, providing robustness against partial occlusions to the whole body. We also propose
an Adaptive Joint Non-Maximum Suppression (AJ-NMS) to replace the original NMS algorithm
widely used in object detection, leading to higher precision and recall for detecting overlapped
pedestrians. Experimental results on the public-domain CUHK-SYSU Person Search Dataset show
that the proposed approach outperforms the state-of-the-art methods for joint pedestrian and body
part detection in the wild.

Keywords: joint pedestrian and body part detection; adaptive joint non-maximum suppression;
semantic relationship learning

1. Introduction

Pedestrian and body part (e.g., upper body, head-shoulder and head) detection has wide potential
applications, in person re-identification [1], intelligent surveillance, action recognition from body
parts [2], etc. Most of the existing methods focus on detecting the whole pedestrians. The early
studies on pedestrian detection used hand-crafted features such as Histogram of Oriented Gradients
(HOGQG) [3], Deformable Part Model (DPM) [4] and Integral Channel Features (ICF) [5,6]. HOG has much
better performances than other hand-crafted features at the time. DPM uses mixtures of multi-scale
deformable part models to solve the deformation problem. ICF method achieves competitive results to
previous features result but with low computational complexity due to the oriented gradient and colour
feature (HOG+LUYV) selection by boosted decision forests. However, the hand-crafted features are
intuitively designed based on pedestrian shape characteristics, which limits their ability to distinguish
between pedestrian and complicated backgrounds.

In recent years, deep learning methods, e.g., convolutional neural networks (CNNs) are widely
used for pedestrian detection, such as Faster R-CNN [7], PVANet [8], YOLO [9], SSD [10], etc. The
deep learning based pedestrian detection methods achieve much better results than the traditional
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hand-crafted feature based methods. However, the performance of the existing deep learning based
pedestrian detection methods can drop significantly under unconstrained scenarios. As shown in
Figure 1, the main challenge is that a number of pedestrians in one image can be very small or occluded
in the surveillance scenarios, which leads to insufficient feature map.

Some efforts have been made to handle occlusions or small objects during pedestrian detection.
Repulsion loss was proposed in [11] to improve pedestrian detection performance by utilizing the
repulsion of the surrounding pedestrians in the crowd. Ref. [12] employs an attention mechanism
across channels to handle various occlusions. Ref. [13] computes an occlusion-aware detection score
based on the part detection confidence scores. In order to handle small objects, Ref. [10] utilizes feature
pyramids to enhance the representation of various objects across a large range of scales. Further,
Feature Pyramid Networks [14] builds high-level semantic feature maps from all scales to solve the
problem of detecting small objects that cannot be well captured by the large-scale feature map. Ref. [15]
merges detection results from a set of divided views to improve the detection performance for small
objects. In addition, Refs. [16,17] utilize the relations between objects, and [18-20] utilize a cascaded
network to improve detection performance.

Despite the efforts in improving pedestrian detection robustness against occlusion and small
scale, joint pedestrian and body part detection is seldom studied, which can be more challenging than
detecting pedestrian alone. For example, some pedestrians” heads can be completely obscured, while
the other body parts are still visible as shown in Figure 1. Ref. [21] proposes a HeadNet to jointly
detect pedestrian and the head, head-shoulder, and upper body in a multi-task way [22,23] by utilizing
the body context information. But the performance of joint pedestrian and body part detection in
the case of severe overlap/occlusion, remains unsatisfactory. To this end, we propose a Body Part
Indexed Feature (BPIF) to encode the semantic relationship between individual body parts (i.e., head,
head-shoulder, upper body, and whole body), leading to improved robustness against partial even full
occlusions of the body part. We also propose an Adaptive Joint Non-Maximum Suppression (AJ-NMS)
as a replacement of the original NMS algorithms widely used in object detection, leading to higher
recall for detection overlapped pedestrians.

In summary, the contributions of this work are as follows:

1.  We propose a BPIF representation to encode the semantic relationship between individual body
parts (i.e., head, head-shoulder, upper body, and whole body), providing robustness against
partial even full occlusions of the body part. While BPIF was used in the image space to perform
face landmark detection in [24], our work differs from [24] in that we build BPIF in the feature
space in order to allow feature sharing between different modules.

2. We also propose an AJ-NMS to replace the original NMS algorithms widely used in object
detection. The traditional NMS is operated on each category of foreground object, i.e., NMS
is applied to the head, head-shoulder, upper-body, and body, separately, without considering
their correlations. By contrast, the proposed AJ-NMS treat one person’s head, head-shoulder,
upper-body, and body as a whole unit, leading to higher recall for detecting overlapped
pedestrians, and small part such as pedestrian head. In addition, the proposed AJ-NMS possesses
an additional advantage of knowing which body parts belong to the same pedestrian. This is
useful for succeeding pedestrian analysis applications, such as person re-identification.

3. The proposed approach advances the state-of-the-art in joint pedestrian and body part detection
on the widely used CUHK-SYSU Person Search Dataset [25].
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Figure 1. Some example images from the CUHK-SYSU Person Search Dataset [25] illustrate the

challenges for joint pedestrian and part detection because of image blurring, occlusion, scale
diversity, etc.

2. Related Work

2.1. Pedestrian Detection

Early works [3-6] applied hand-crafted features for pedestrian detection. Dalal et al. [3] proposed
the HOG feature which achieves the promising results in pedestrian detection. Felzenszwalb et al. [4]
proposed DPM to handle the deformation problem of the pedestrian. The ICF was proposed
in [5,6], which shows that oriented gradient and colour feature (HOG+LUYV) selection by boosted
decision forests are very effective for pedestrian detection. In recent years, there are emerging CNN
based methods for pedestrian detection, which achieves great success. Based on the strategy of
repulsion-by-surrounding, two types of repulsion losses [11] were proposed to improve network
robustness in pedestrian detection in the crowd. Attention [12] was utilized to handle occluded
pedestrians by focusing more on non-occluded body parts. Zhang et al. [26] made great efforts on
analyzing the failures for a top-performing detector and provided how to engineer better detectors.
In addition, HeadNet [21] aimed to utilize the body in context information, i.e., the relationship
between individual body parts. Body part detection can be very useful in the succeeding human
analysis tasks, such as action recognition. For example, in [2] given the body parts, all possible
combination of the body parts are pre-computed to improve the action recognition performance.
In addition, HeadNet also introduced beneficial strategies such as Online Hard Example Mining
(OHEM) [27] and region of interest align (Rol Align) [28]. These emerging methods perform well
under constrained scenarios, but cannot handle well under unconstrained scenarios such as severe
overlapped pedestrians detection under surveillance scenarios.

2.2. Non-Maximum Suppression

The success of deep learning based pedestrian detection methods relies on not only the powerful
representation ability of CNNs, but also the non-maximum suppression (NMS) [3] to handle the
duplicated detections. The principle of NMS is that a bounding box with the local maximum score is
selected as the final detection and the other bounding boxes within the pre-defined overlap threshold
are suppressed. According to the algorithm, if a foreground object lies within the pre-defined overlap
threshold of a local maximum score, it will be suppressed and lead to a miss detection. To solve this
problem, Ref. [29] proposed a variant of NMS, named as Soft-NMS, which replaces the suppression
strategy in NMS by reducing the scores of the bounding box, which should be suppressed by NMS,
according to their overlap degrees. Different from NMS which works as a post-processing step, Ref. [16]
implemented a duplicated detection sub-network, making it possible to perform detection and
duplication removal in an end-to-end manner. While these traditional NMS methods have been
widely used in single-class or multi-class object detection tasks, they are not well suited for the joint
detection of pedestrian and its body parts.
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2.3. Object Relation Learning

It is believed that object relationship is helpful for object detection. While most of the early
works [30,31] utilized object relationships for the post-processing, recent works generally use
relationship learning module in the detection network. For example, Ref. [32] uses the early detected
objects to assist in detecting the other objects. Further, Refs. [16,17] learn their relationships by parallel.
In particular, the relation learning model in [17] considers the relations not only between objects but
also between the whole image and individual objects. HeadNet [21] utilized the spatial semantics
of the entire body as contextual information. These methods can utilize the relationship between
individual objects effectively, but not explicitly model the semantic relationship between individual
body parts.

3. Our Approach

3.1. Qverview

The overall architecture of the proposed approach for joint pedestrian and body part detection
is shown in Figure 2. Give an input image, we first extract the features using a backbone network,
such as PVANet [8]. Then the pedestrian region proposals are generated by Region Proposal Network
(RPN) [7], and Rol Align [28] is utilized to get the features per proposal that will be used by the
Body-in-Context (BiC) module for simultaneously regressing the head, head-shoulder, upper body
and pedestrian bounding boxes together with the confidence scores. Based on these initial pedestrian
and body part detections, Rol Align is utilized again to perform feature pooling; but this time, we
obtain a Body Part Indexed Feature (BPIF) which encodes rich semantic relationship information that is
helpful for improving robustness against small object scales or occlusions. Using the BPIF feature, the
refinement module again simultaneously regress the head, head-shoulder, upper body and pedestrian
bounding boxes. The final bounding boxes are expected to have less false positive detections and false
negative detections.
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Figure 2. The overall architecture of the proposed approach for joint pedestrian and body part detection
in the wild, e.g., with big challenges due to paritial occlusions, diverse scales, etc.
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3.2. Body Part Indexed Feature (BPIF)

The aim of BPIF is two-fold: (i) encode the semantic relationship between individual body parts
(i.e., head, head-shoulder, upper body, and whole body), and (ii) highlight the features for each body
part. As shown in Figure 2, BPIF is composed of two components. One component combines the
features from all the body parts and forms a joint feature map, which is inspired by the modified shape
indexed features [24] used for face landmark regression. The second component is the per body part
features at a more detailed scale. We provide the details of how to compute BPIF in Algorithm 1, and
we also give an example of this process in Figure 3. The entire BPIF is followed by two convolutional
layers for feature dimensionality reduction.

Algorithm 1 Compute BPIF

Input: F, Ry, Ry, R3, Ry, Ns
F is the image features using a backbone
R1, Ry, R3 and Ry are the sets of different body parts’ bounding boxes of the BiC results
N is the BPIF scale hyper-parameter
Output: O1,07,03,04
01,02, 03 and Oy are the BPIF, which be used to regress the corresponding bounding boxes in the

refinement module
function G_BPIF(F, Ry, Ry, R3, R4, N;)
R; = Rol Align(F, R;, Ns/2) wherei =1,2,3,4and R; € [512, N;/2, N5 /2]

R' R}
fall = R} R’2 where fall € [5121 NS/ Ns]
3 4

R; = Rol Align(F, R;, Ns) where i = 1,2,3,4 and R; € [512, N;, Ns]
O; = concat(Fy;, R;) wherei = 1,2,3,4 and O; € [1024, Ns, N;]
return O1,0,, 03,04

end function
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Figure 3. An example of how to compute BPIF features based on the preliminary detection of the
pedestrian and body parts.

It is worth noting that unlike HeadNet [21] the Body-in-Context (BiC) and Refinement modules
in our model do not share parameters. Our considerations are as follows. The cascaded object
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detection [33] often shares parameters, but the paper in [16] shows that while iterative bounding
box regression is a post-processing procedure used to improve bounding boxes accuracies, cascaded
regression is a resampling procedure that changes the distribution of hypotheses to be processed by
the different stages. Further, different from normal cascaded object detection, BiC and Refinement
modules in our model have different objectives and inputs. While BiC module uses the Rol features
per proposal to jointly regress the pedestrian and body part bounding boxes, the refinement module
takes the BPIF features to refine the locations of the initial bounding box detections by BiC.

3.3. Adaptive Joint Non-Maximum Suppression

Non-Maximum Suppression (NMS) [3] has been an effective post-processing algorithm in
proposal based object detection framework. In our joint pedestrian and body part detection task, we
notice the traditional NMS could have the issue that it does not treat the individual parts from one
pedestrian as a whole, and thus is not able to leverage the detected body parts with high confidence
scores to recover the body parts with low detection scores due to occlusion, etc. As a result, there are
false positive and false negative detections that can likely be avoided. In order to reduce such false
positive and false negative detections, we propose an Adaptive Joint Non-Maximum Suppression
(AJ-NMS) to replace the original NMS. Specifically, A]-NMS considers individual body parts (i.e., head,
head-shoulder, upper body, and whole body) as a whole and use adaptive threshold per body part.
We provide the details of A]-NMS in Algorithm 2. AJ]-NMS uses the following joint intersection over
union (I0Ujojnt):

Ioujoint =M Ioupedestrian + A210Upeaq + A3IOUpead—shoutder + A4IOUupper7body/ 1

where: IOUj,;; is the joint IoU considering both the holistic pedestrian and the associated body
parts. [OUpedestrians 1OUnged, I0Upeaq—snoutder and IOUypper—pody are the traditional IOU defined
on pedestrian, head, head-shoulder, and upper-body, respectively. A1 — A4 are their weights. We
empirically determine the weights per part on the training set by greedy search algorithms. Finally, we
choose to use A1 = 0.6, A, =0.2, A3 =0.1 and A4 = 0.1, respectively.

A brief analysis why the proposed AJ-NMS should work for the joint pedestrian and body part
detection task is that as shown in Figure 1, although the two pedestrians’ bodies are seriously occluded,
their joint IOU considering both the pedestrian and the body parts according to our AJ-NMS remains
lower than the threshold to be suppressed because the overlap between the two pedestrians” heads
can be very small. As a result, both pedestrian detections can be retained by the proposed AJ-NMS,
avoiding the false negative detections and thus improving the recall rate. We also provide some
statistical analysis based on the testing set of the CUHK-SYSU Person Search Dataset. Specifically, there
are 14,100 ground-truth pedestrian bounding boxes in the whole test set. Among these bounding boxes,
709 pedestrian bounding boxes, for which the IOUs are greater than 0.4 and will be suppressed by the
traditional NMS algorithm (leading to missing detections). By contrast, there are only 454 bounding
boxes of pedestrian for which the IOUs are above the threshold and to be suppressed by our AJ-NMS.
It is worth noting that our AJ-NMS method does not hurt the detection performance while assures
higher recall in detecting overlapped pedestrians. Besides improving the pedestrian detection recall
under occlusion, the proposed AJ-NMS can be very helpful in improving the precision of small body
part detection, such as the head, leveraging the high confident detection for the larger body parts, such
as head-shoulder, upper body, etc.

In the proposed approach, since the head, head-shoulder, upper body, and pedestrian bounding
boxes are jointly regressed based on one proposal by RPN, we can know which body parts belong to
the same pedestrian in the detection results. We maintain this part-pedestrian association information
in our detection framework, so that AJ]-NMS can work correctly for a pedestrian and its parts. The
pedestrian-part association can also be very useful for the succeeding pedestrian analysis applications,
such as holistic and local based person re-identification.
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3.4. Network Training

Our model can be trained end-to-end by minimizing the following loss function:

Lo = AlLRPN_cls + )\ZLRPN_reg + /\SLBiC_cls + )\4LBiC_reg + )\SLRefine_reg/ (2)

where Lrpn s and Lrpn_reg are pedestrian region proposals losses in RPN module, which are the
same as that those in Faster R-CNN [7]. Lp;c s is classification loss (cross-entropy loss) in classifying
the pedestrian region proposals by the BiC module. Lp;c_, is the regression loss (smooth L1 loss [7])
for pedestrian, head, head-shoulder, and upper body regression in BiC module. Similar to Lgic_req,
LRefine_reg 18 also a regression loss in regressing four body parts by the Refinement module. We set the
hyper-parameters of the loss function A1, Ay, A3, A4, and A5 to 1, 1, 0.25, 0.25 and 0.25, respectively.

During the network training phase, we fine-tune an ImageNet [34] pre-trained PVANet using the
training set of the CUHK-SYSU Person Search Dataset [25] with stochastic gradient descent (SGD)
optimization. We train the model with an initial learning rate of 0.001 for the first 50,000 iterations
and then with a decreased learning rate of 0.0001 for another 30,000 iterations. In order to improve
the detection performance for the hard-to-detect objects (occluded pedestrians and small body parts),
we generate 2000 pedestrian proposals in RPN, but only 128 hard proposals identified by OHEM will
participate in the network training in each iteration. In addition, in order to improve the detector’s
robustness in handling pedestrians with big scale diversity, we adopt a multi-scale training strategy.
Specifically, the shorter edge of an input training image is randomly scaled between 416 pixels and 864
pixels, while the longer edge is retained no more than 1440 pixels.

Algorithm 2 AJ-NMS

Input: B = {bl, ey bN}r S = {Sl, ceey SN}, Nt
B is the list of initial detection boxes
S contains corresponding detection scores
N; is the AJ-NMS threshold

Output: B, = {by, ... b}, Sr = {s1, -, Sm}
B, is the list of AJ-NMS results detection boxes
S, contains corresponding detection scores
function AJ-NMS(B, S, Ny)

while B # empty do
m = argmax S
B, = B, U bm
Sy =5:Usm
B=B-—by
S=§5-S5,
for b; in B do
if Ioujoint(bm/ b;) > N; then
B=B-b;
S§5=8§5-— S;
end if
end for
end while
return B;, S,
end function
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4. Experiments

4.1. Datasets and Settings

We use the CUHK-SYSU Person Search Dataset [25] for experimental evaluations, which contains
18,184 images and 99,809 annotated pedestrian bounding boxes. The original dataset does not include
body parts annotations, but Chen et al. [21] provided head, head-shoulder, and upper body bounding
boxes annotations for 16,907 images from CUHK-SYSU Person Search Dataset. Following the protocol
in [21], we use 13,399 and 3508 images as the training and testing sets, respectively.

4.2. Comparisons with the State-of-Art

In this section, we provide evaluations of the proposed approach and a number of state-of-the-art
algorithms such as Faster R-CNN [7], R-FCN-50 [35], R-FCN-101 [35], PVANet [8], and HeadNet [21]
under the same experimental settings, except that Faster R-CNN, R-FCN-50, and R-FCN-101 do not
use OHEM and the image shorter side is scaled between 416 pixels and 768 pixels due to memory
occupation of R-FCN-101. All evaluation results in terms of recall vs. false positives per image (FPPI)
and average precision (AP) are presented in Figure 4 and Table 1. We can observe that although all
methods can perform well for the holistic pedestrian detection, the performance of all the methods
except for the proposed approach and HeadNet [21] drop significantly in detecting the small body
parts. This observation indicates that the spatial semantics of the entire body is useful for a joint
pedestrian and body part detection task. Compared with HeadNet, the proposed approach achieves
0.8%, 0.3%, 0.6%, and 1.0% higher AP, and 0.9%, 0.3%, 1.0%, and 1.8% higher recall rate at 1 false
positive per image (FPPI) in detecting pedestrian, upper body, head-shoulder, and head detection,
respectively. The gain comes from the proposed BPIF which not only encodes the semantic relationship
of individual body parts but also highlights the per part features, as well as the proposed AJ-NMS
algorithm which jointly considers individual parts instead of doing NMS separately for each part.

Figure 5 gives some detection results by the proposed approach, we can see the proposed joint
pedestrian and body part detection approach performs well under the challenging surveillance scenario
with partial occlusions, diverse scales, bad illuminations, etc. In addition, the proposed approach
can output the body part and pedestrian association information, i.e., which body parts belong to the
same pedestrian.

Our approach is implemented using Caffe (https://github.com/BVLC/caffe), with a few layers
in the proposal network implemented in python (the python layers run on CPU). On our platform with
a GeForce GTX 1080 Ti GPU and Intel Xeon(R) E5-2620 v4 CPU, the state-of-the-art method HeadNet
runs in about 10.8 FPS, and our approach without optimization runs in about 4.5 FPS. The increased
computational cost mainly comes from the increased feature map size because of the use of BPIF. In the
future, we will optimize the BPIF module to reduce its computational cost, i.e., through Depthwise
Separable Convolution [36].
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Figure 4. Detection performance (in terms of recall vs. FPPI) by the proposed approach and the
state-of-the-art methods on the CUHK-SYSU Person Search Dataset. (a) ROC curve for head detection,
(b) ROC curve for head-shoulder detection, (c) ROC curve for upper body detection, and (d) ROC
curve for the holistic pedestrian detection.

Table 1. Comparisons of detection performance (in terms of AP) for the whole pedestrian, upper-body,
head-shoulder, and head by different approaches.

Pedestrian AP Upper-Body AP Head-Shoulder AP Head AP

Faster R-CNN [7] 92.1 82.3 56.2 20.3
R-FCN-50 [35] 914 79.7 54.7 17.2
R-FCN-101 [35] 91.8 78.6 55.3 14.3

PVANet [8] 90.8 89.3 85.1 64.6
HeadNet [21] 94.1 92.8 90.8 86.0

Proposed 94.9 93.1 91.4 87.0
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e L ‘l‘
5 |

Figure 5. Joint pedestrian and body part detection results by the proposed approach. Blue, white, red
and green bounding boxes represent the detection results for pedestrian, upper body, head-shoulder,
and head, respectively. The black lines indicate the body parts and pedestrian association information,
i.e., referred four body parts belong to the same pedestrian.

4.3. Ablation Study

In this section, we perform ablation experiments to analyze the impact of individual parts in the
proposed approach, e.g., BPIF and AJ-NMS. We cover three ablation studies: (i) remove both BPIF
and AJ-NMS from the proposed approach (denoted as Proposed w/o BPIF&AJ-NMS), (ii) remove
BPIF only (denoted as Proposed w/o BPIF), and (iii) remove AJ-NMS only (denoted as Proposed w/o
AJ-NMS). All the experiments follow the same experimental setting as our full method. The results of
all methods are shown in Figure 6 and Table 2.

As shown in Figure 6 and Table 2, we can see that under most of the cases, removing either BPIF
or AJ-NMS will lead to degraded detection performance. This indicates the usefulness of the proposed
BPIF and AJ-NMS for the joint pedestrian and body part detection task. It also indicates that it is
reasonable for the BiC and refinement modules to not share parameters.

Compared to ‘Proposed w/o BPIF&AJ-NMS’ and ‘Proposed w/o AJ-NMS’, ‘Proposed w /o BPIF’
and our full method have shown much better detection performance in head and pedestrian. The gain
mainly comes from the improved detections for overlapped pedestrians by the proposed approach,
and reduced false head detection by the proposed approach. Both are attributed to the designed BPIF
and AJ-NMS. Specifically, with traditional NMS a false head detection may not be suppressed because
its IOU with a nearby true head detection can lower the threshold to be suppressed. By contrast,
the proposed AJ-NMS considers the head IOU together with the other three parts (head-shoulder,
upper-body, and whole pedestrian) . As a result, a false head detection can be suppressed with our
AJ-NMS because the joint IOU of a false detection can be larger than the suppression threshold, and
will be suppressed, leading to reduced false detections (high precision). Figure 7 gives an example in
which a false head detection cannot be suppressed by the traditional NMS but can be suppressed by
our AJ-NMS.



Appl. Sci. 2019, 9, 752

1.0 RCI)C Curve

- head

— Proposed wjo BPIF (85.8% recall@1.0FPPI)
— Proposed w/o A]-NMS (85.4% recall@1.0FPPI)
—— Proposed (86.3% recall@1.0FPPI)

0.8

T
= Proposed w/o BPIF&A]-NMS (84.5% recall@1.0FPPI)

0.6

Recall

04

J

0.0
10+ 102 102 107 10° 10*
FPPI
(a)
10 ROC Curve - upper-body
— Proposed w/o BPIF&A]-NMS (91.2% recall@1.0FPPI)
— Proposed w/o BPIF (91.2% recall@1.0FPPI) . /
— Proposed w/o A]-NMS (91.5% recall@1.0FPPI) o H
— Proposed (91.5% recall@1.0FPPI) i
0.8

’

Recall

L

i

_~

0.0 .
10 107 1072
FPPI

(0)

101 10° 10t

11 0f 14

10 ROC Curve - head-shoulder
. T T T
— Proposed w/o BPIF&AJ-NMS (89.2% recall@1.0FPPI) Pt
— Proposed w/o BPIF (89.6% recall@1.0FPPI) : /
— Proposed w/o Al-NMS (90.0% recall@1.0FPPI)
— Proposed (90.2% recall@1.0FPPI) LGP R
0.8 e
0.6
T
]
Q
=4
0.4
0.2
0.0
10+ 10 10° 10* 10° 10!
FPPI
10 ROC Curve - pedestrain
— Proposed w/o BPIF&AJ-NMS (92.0% recall@L.0FPPI)
— Proposed w/o BPIF (92.7% recall@1.0FPPI) /
— Proposed w/o A]-NMS (92.6% recall@1.0FPPI) H
— Proposed (92.9% recall@1.0FPPI)
) /
0.6 7
= ’
9]
ja}
& i
0.4 ;'dﬁ:f‘
N =f_F'F
0.0 L L
10 107 1072 10 10° 10!
FPPI

(d)

Figure 6. Ablation study of the proposed approach w.r.t. BPIF and AJ-NMS on the CUHK-SYSU Person
Search Dataset measured in terms of recall vs. FPPI. (a) ROC curve for head detection, (b) ROC curve
for head-shoulder detection, (c) ROC curve for upper body detection, and (d) ROC curve for the holistic

pedestrian detection.

Table 2. Ablation study of the proposed approach w.r.t. BPIF and AJ-NMS measured in terms of AP

(in %).
Model Pedestrian AP Upper-Body AP Head-Shoulder AP Head AP
Proposed w/o BPIF&AJ-NMS 94.1 92.8 90.8 86.0
Proposed w/o BPIF 94.6(10.5) 92.7(10.1) 90.8(10.0) 86.3(10.3)
Proposed w/o AJ-NMS 94.5(10.4) 93.0(10.2) 91.3(10.5) 86.6(10.6)
Proposed 94.9(10.8) 93.1(10.3) 91.4(10.6) 87.0(11.0)
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Figure 7. Blue, white, red and green bounding boxes stand for correct pedestrian, upper body,
head-shoulder and head detection by our full method, respectively. The black bounding box stands for
the incorrect head detection results in ablation study by ‘Proposed w/o AJ-NMS'.

5. Conclusions

Joint pedestrian and body parts detection in the wild via a single model is challenging because of
partial occlusion, scale diversity, nonuniform illumination, etc. We propose to resolve these challenges
via body part indexed feature (BPIF) and adaptive joint Non-Maximum Suppression (AJ-NMS). While
BPIF is able to encode both semantic relationship between individual body parts and highlights per part
features at detailed scales, A]-NMS is helpful for handling the pedestrian and its individual parts as a
joint unit to reduce false detections and missed detections when each body part is handled separately.
The proposed approach achieves promising performance on the public dataset, and outperforms the
state-of-the-art methods.

We would like to investigate adaptive relationship learning approach between pedestrian and
its body parts to enhance the flexibility in utilizing contextual information in joint pedestrian and
body part detection. In addition, we would also like to investigate the effectiveness of the proposed
approach for joint pedestrian and retrieval task [37].
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