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Abstract: In this study, we developed a novel data-driven fault detection and diagnosis (FDD)
method for bearing faults in induction motors where the fault condition data are imbalanced. First,
we propose a bearing fault detector based on convolutional neural networks (CNN), in which the
vibration signals from a test bench are used as inputs after an image transformation procedure.
Experimental results demonstrate that the proposed classifier for FDD performs well (accuracy of
88% to 99%) even when the volume of normal and fault condition data is imbalanced (imbalance ratio
varies from 20:1 to 200:1). Additionally, our generative model reduces the level of data imbalance by
oversampling. The results improve the accuracy of FDD (by up to 99%) when a severe imbalance
ratio (200:1) is assumed.

Keywords: generative adversarial networks; oversampling; data imbalance problem; bearing fault;
convolutional neural networks

1. Introduction

Fault detection and diagnosis (FDD) in manufacturing facilities is very important for
(1) improving productivity by preventing undesired downtime and (2) guaranteeing safe working
conditions [1]. Traditional FDD methods were developed using physical models based on
mathematics and mechatronics [2–6]. Those methods require complex analysis steps with domain
knowledge. In addition, because physical models are highly dependent on individual specifications,
user configuration is needed when the model is used in a specific facility. To overcome the problems of
physical models, assorted data-driven FDD methods that use machine learning and statistics, such as
support vector machine [7,8] and fuzzy logic [9], have been proposed. However, these data-driven
FDDs still require a complicated pre-processing step before training of the models.

Recently, deep neural networks (DNNs) with more powerful fitting abilities have been
developed and widely applied to prognostics and health management. In [10–15], time-domain
and frequency-domain features are extracted in data processing, and then an FDD model is applied
for motor status classification. In [16–18], vibration image generation with signal analysis was
utilized for feature extractions. The feature extraction method itself can be automated using these
approaches, but establishing such models requires complicated signal processing steps. Automatic
feature extraction using an auto-encoder has been proposed [19], but the computation cost of the DNN
model itself is quite high. To realize wide adoption of data-driven FDD to industry, simpler and more
efficient methods are required in both data-processing and DNN models.
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Furthermore, these data-driven methods have shown great performance with low domain
knowledge requirements, but problems related to the quantity and quality of data still remain.
Data imbalance is common in FDD because normal condition data are more prevalent than
faulty condition data in real manufacturing environments [20]. Such imbalanced conditions
degrade data-driven FDD, especially for convolutional neural network (CNN)-based classifiers.
Among oversampling [11,21], down-sampling [22], and ensemble learning [23], all of which have been
proposed to solve the data imbalance issue, oversampling is most suitable for industrial FDD because
of severe data imbalance ratios. Additionally, oversampling is always the most effective way to deal
with class imbalance for the CNN model on image classification [24].

In this study, we investigated the data-driven FDD of bearing faults in an induction motor under
data imbalance conditions. Firstly, a CNN based classifier with an imaging method for vibration signals
was proposed. We utilized the nested scatter plot (NSP) [25], which is an efficient and scalable image
transformation of correlated time-series data. In NSP, the correlated time-series data are represented
by a square matrix, similar to a scatter plot, where the elements of density dots are calculated like a
heat-map. Experimental evaluation using measured vibration signals from a test bench confirmed that
the features of bearing faults are easily extracted using NSP and the CNN-classifier.

Secondly, an oversampling method with a generative model was proposed to improve
performance when a dataset is imbalanced between normal and faulty conditions. The generative
model was developed based on a Wasserstein generative adversarial network with a gradient
penalty (WGAN-GP) [26] and deep convolutional generative adversarial networks (DCGAN) [27].
We evaluated the performance improvement of the CNN classifier for various conditions after applying
our oversampling method to faulty condition data.

The remainder of this paper is organized as follows: Section 2 introduces the proposed data-driven
fault detection method. Section 3 presents the generative model based on WGAN-GP and DCGAN.
We describe our experiment method and its results in Section 4. The conclusions and future research
topics are discussed in Section 5.

2. Data-Driven Bearing Fault Detection

2.1. Data Collection

The purpose of our fault detection method was to detect bearing faults and diagnose the fault
types. Among the various fault types, inner race, outer race, and contaminant faults were considered.
As an initial step, we collected two channels (the horizontal and vertical axes) of vibration signals for
normal and faulty conditions using the apparatus shown in Figure 1a.

The motors of the test bench were 3 kW three-phase induction motors with rated voltage 400 V
and current 6.4 A. The configuration followed the power drive setup in [28]. We connected the motors
to the controller via inverters to control the speed and torque. The running environment had a 25 Hz
operation frequency and 10 Nm torque. The motors and inverters were mounted on the steel rail to fix
the electronic machines.

For data acquisition, two vibration sensors (model: MMF KS80D, range: ±60 g, bandwidth
22 kHz, sensitivity: 0.1 V/g) were used to record vibration in the x- and z-axis (as shown in Figure 1b).
An oscilloscope was connected to vibration sensors and the recorded vibration signals were stored in a
server. In our experiments, the sampling rate of the vibration signal was 1 MHz. Vibration data from
the induction motor were collected from the test bench under varying environment conditions over
the course of a year.

To measure faulty condition data, bearings were artificially damaged by the following methods.
For inner and outer race faults, we drilled into the middle of the inner and outer raceway in the
bearings after removing the metal shield and the grease in the bearing. The drilling diameter was 1, 3,
and 5 mm for low, medium, and high severity, respectively. For the contaminant, we inserted metal
chips in the cage. The bearing with different faulty conditions is shown in Figure 1c.
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(a) (b)

Inner race drilled (1, 3 mm)

Outer race drilled (1, 3, 5 mm)

(c)

Figure 1. Test bench and bearings. (a) test bench (model: EMOD FKFIE2100LA, Pmech: 3 kW, nnom:
1440 /min, Vnom: 400 V, Inom: 6.4 A, cosφ: 0.78), (b) sensors mounted on the motor, (c) bearing with
different faulty conditions.

2.2. Image Transformation of Vibration Signals

NSP [25] is a data wrangling method that uses image transformation of correlated time series data
for multi-variate correlation analysis and machine learning. Multi-channel signals are represented
in fixed-size images that are generated through three steps: compression in nested clusters, imaging,
and accumulating (Figure 2). The first step was compression in the nested clusters, in which the values
of time-series data with a given range were mapped into a cluster, and each cluster held a count of
mapped values. In the imaging step, a scatter plot was drawn for the multi-channel nested clusters
with given colors. To sustain the fixed image size, the sizes of the clusters for each channel signal
were controlled. To represent the intensity of each cluster in the time-series data, the count of mapped
values was translated into pixel intensity. In the accumulating step, multiple sets of correlated signals
were concatenated as a single RGB image.

Figure 2. Bearing fault-nested scatter plot (BF-NSP) process.
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In [11], signal processing techniques such as the Hilbert–Huang transformation (HHT) and
wavelet transform were employed for vibration signal decomposition to detect bearing faults. We also
exploited NSP representation of vibration signals for bearing fault detection (denoted as BF-NSP),
but using a simpler decomposition method. Specifically, we extracted signals in different bandwidths
from the vibration data and represented them with different colors in a single image.

Selecting the bandwidths of decomposition is important. In [29], faulty condition data showed
high spectral density in a high-frequency band (30 to 40 kHz), known as the resonance band.
Our analysis also showed that the spectral density for 25 to 40 kHz of faulty condition data was
greater than that of normal condition data (Figure 3). In this study, BF-NSP used three bandpass filters:
10 to 30 kHz, 30 to 50 kHz, and 0 to 250 kHz.
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Figure 3. Spectral density difference in resonance bandwidths.

2.3. Fault Classification Using CNN

Using BF-NSP, solving FDD problems by time-series data analysis becomes an image recognition
problem. We employ a CNN classifier because it provides outstanding performance in image
recognition and classification [11]. The structure of the proposed CNN classifier, the CNN-based
bearing fault detector (CBFD), is shown in Figure 4. There are three convolution (Conv) layers with
kernel size 10 × 10, 5 × 5, and 3 × 3, respectively. Batch normalization was applied to the first Conv
layer only. Two fully connected (FC) layers followed the Conv layers. Output nodes reflected fault
types; there were four output nodes for the normal condition and three bearing fault types (inner race,
outer race, and contaminant fault). The activation functions for all layers were ReLU.

In the CNN architecture, the selectable hyper parameters were the number of filters in each Conv
layer, the size of each FC layer, and dropout rate. To determine the hyper parameters, the criteria for
the fault classifier under data imbalanced condition was defined as accuracy over 95% for test sets in
mild imbalance ratio less than 20:1 and high accuracy even in cases of severe imbalance ratio over 50:1.

We tested varying the number of filters in each Conv layer and found the optimal numbers that
met the criteria of training and test accuracy. The results of the number of filters should range from
10 to 50 because underfitting occurred when the number of filters was less than 10 and overfitting
occurred when it was more than 50. The size of the FC layer affected the expressiveness of the networks
and the training time. A large FC layer size increased the risk of overfitting and training time but could
increase the accuracy. Through our experimentation, two FC layers of sizes less than 200 and 20 could
not meet our performance criteria. Considering the overfitting and the training time, the optimal size
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of each FC layer was determined as 500 and 50. Finally, a dropout layer with 75% keep probability was
applied to the first FC layer to mitigate overfitting in the training phase. The CBFD model is described
in Figure 4.

Normal

Contaminant

Outer Race

Inner Race

Figure 4. Convolutional neural network (CNN)-based bearing fault detector (CBFD) architecture.

3. Generative Model for Oversampling Fault Condition Data

The performance of FDD heavily depended on the designated frequency bands in BF-NSP and
the architecture of the CBFD model. However, here, we emphasize the training method used for the
data-imbalance conditions.

CNN-based classification performs well when the distribution of classes is roughly balanced.
However, faulty condition data are generally lower in volume than normal condition data [20].
Such imbalances cause lower recognition accuracy for the minor class, in this case the faulty condition
data. This phenomenon is important because the recognition rate of faulty conditions is the most
important practical measure of effective FDD in engineering applications [30].

There are three solution types for data imbalance: oversampling [11,21], down-sampling [22],
and ensemble learning [23]. For extreme cases such as rare occurrence fault condition data,
oversampling was the most suitable approach. In contrast, reducing the size of the entire dataset
by down-sampling and modeling of the minor data can cause a lack of data and make training
itself impossible.

To solve the data-imbalance problem in FDD, we considered a generative oversampling
method. Oversampling with generative adversarial networks (GANs) improved FDD accuracy in a
previous study [11].

GANs [31] represent a class of generative models based on a game theory scenario in which a
generator network G competes against an adversary D, a discriminator. DCGAN [27] is an extended
model of GAN that uses de-convolution layers in the generator and convolution layers in the
discriminator to extract features of images and construct a model to generate realistic fake images.
By using DCGAN, BF-NSP can be generated and used for oversampling. Figure 5 shows the DCGAN
architecture employed in this study, in which we considered the convergence problem of DCGAN.

GANs aim to approximate the probability distribution function that the input data are assumed to
be drawn from. In the original formulation of GANs [31], it was achieved by treating the discriminator
as a binary classifier for real and fake data distributions. In this way, the discriminator provides
meaningful gradients for the generator so that it minimizes the Jensen–Shannon (JS) divergence
between the real and fake data distributions. However, this process is shown to be extremely unstable
and difficult to train in practice. It has been shown that even in considerably simple scenarios the JS
divergence does not supply useful gradients for the generator [32]. For this reason, numerous recent
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studies have focused on improving the stability and performance of GANs by enhancing the quality of
the gradients derived from the discriminator.

To stabilize our generative model, we propose WGAN-GP [26] on the DCGAN architecture model
(DCWGAN-GP). The original WGAN [32] exploited earth mover’s distance (EMD) as a better means
to measure the similarity between the two distributions. In this way, the losses of the discriminator
and the generator correlate well with the output image quality. WGAN-GP utilizes the same distance
measurement but ensures higher stability by penalizing the norm of the discriminator’s output with
respect to its input data. Our DCWGAN-GP is therefore resilient to the vanishing gradients problem
and generates realistic fake images in a stable manner.

64 x 64 x 3

32 x 32 x 32
(lReLu)

16 x 16 x 64
(BN, lReLu)

8 x 8 x 128
(BN, lReLu)

4 x 4 x 256
(BN, lReLu)

Conv1 Conv2 Conv3 Conv4

Discriminator

64 x 64 x 3
(BN, tanh)

32 x 32 x 64
(BN, lReLu)

16 x 16 x 128
(BN, ReLu)

8 x 8 x 256
(BN, ReLu)

4 x 4 x 512
(Random input)

InIn DeConv1 DeConv2 DeConv3 DeConv4

Image generated

Generator

Figure 5. Deep convolutional generative adversarial networks (DCGAN) for generative model of
BF-NSP images.

When input data are imbalanced, minor data are oversampled by the generative model until the
desired ratio is met; at this point, we trained the CBFD model.

4. Experimental Results

4.1. Data Preparation and Runtime Environment

We transformed the sensor data into the image domain using BF-NSP. The sensor data were
collected under various circumstances. Figure 6 shows normal data under various circumstances,
with the range of images being very broad. In Figure 7, each image shows a fault type that can be
distinguished by comparison with the normal image. Table 1 describes the detailed dataset for each
operating condition. To verify the capability of FDD in data imbalanced condition, the number of
images for normal conditions was much greater than the number of images of bearing faults.

Table 1. Image data sets for motor condition.

Type No. of Images

Normal 21,000

Contaminant 800

Inner Race High 1000
Mid 1000

Outer Race
High 1000
Mid 1000
Low 1000
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Figure 6. Images of normal data under various conditions.

(a) (b) (c) (d) (e) (f)

Figure 7. Images of bearing fault data. (a) Contaminant, (b) outer high, (c) outer medium, (d) outer
low, (e) inner high, and (f) inner medium.

The proposed fault detection and generative networks were implemented using Python scripts
on the TensorFlow framework. The implemented NSP representation, CNN classifier, and generative
networks were tested on a Linux system. The details of the runtime environment are shown in Table 2.

Table 2. Runtime environment details.

Category Specification

CPU Intel Core i7-7700K
RAM 64GB DDR4 memory
GPU NVIDIA Titan XP 12GB GDDR5X
OS Ubuntu 16.04 LTS (Linux)
SW libraries Python 3.4 / CUDA v8.0 /

cuDNN v6.0 / Tensorflow r1.4

4.2. Testing Classification under Data Imbalanced Conditions

Before evaluating CBFD under data imbalanced condition, we considered two issues: (1) that the
data imbalance ratio affects the performance of the classifier more than the number of minority classes;
and (2) that the learning rate and epoch number should be considered to prevent over-fitting.

In [11], the degradation of FDD classification accuracy under an unbalanced normal and fault
condition ratio was demonstrated; for example,

• False alarms, identified when FDD determines a fault despite normal condition;
• Misfiring, where ground truth observations show a fault condition, but FDD indicates

normal condition;
• Confusion, where ground truth observations show one fault condition, but FDD determines another.

According to the previous study [11], the accuracy of testing declines overall when the imbalance
ratio of the dataset increased in the case of binary classification (normal or rotor fault/bearing fault).
This means that the classification performance of these diagnosis methods was easily affected by
the imbalance setting. For motor fault detection, which usually presents severely imbalanced data,
misfiring and confusion from the classifier were more important than false alarms.

In addition to increased classifier errors, the over-fitting phenomenon also resulted in poor
accuracy for the test dataset, but good accuracy at the training stage. In the learning process,
the adaptive moment estimation (Adam) optimizer was employed and tested using static and decaying
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learning rates. The static learning rate was 0.0001 and the decaying learning rate was set as exponential
decay from 0.0005 with 50% decay every 100 epochs (with a total of five decay steps in 500 epochs).
The decaying learning rate performed better than the static learning rate, and the accuracy evolution of
CBFD became weak at approximately 200 epochs. Therefore, for all further experiments, we determined
hyper parameters, with the learning rate and terminal epochs being 50% decay from 0.0005 and 250
epochs, respectively.

To verify the relationship between classification accuracy and data imbalance conditions,
we performed two types of experiments: (1) training a model by fixing the number of normal data
images to 20,000, which was close to the maximum size of the normal dataset shown in Table 1,
and changing the ratio of the data imbalance from 30:1 to 1000:1; (2) fixing the number of normal data
images to 10,000 and changing the ratio of data imbalance from 20:1 to 400:1. As the volume of normal
data was larger than the volume of fault data, the number of normal data images was fixed and the
ratio of data imbalance was changed.

The test set for all conditions contained 300 randomly selected images for each category. To ensure
robust results, we took the mean value of 10 trials for each data imbalance rate case as the final result.

In the first experiment, the model was trained by fixing the number of normal data images to
20,000 and changing the ratio of the data imbalance. Figure 8a–c show the overall FDD accuracy
and the numbers of misfirings and confusion for various imbalance ratios. No false alarms were
observed, but the accuracy is declined and the numbers of misfirings and confusion are increased
as the imbalance of the dataset becomes severe. However, the accuracy was still higher than 80%,
even when the imbalance ratio was 1000:1.

Figure 8d–f show the result of the second experiment, in which we used 10,000 normal data
images. Compared to the first experimental result, it indicates that the numbers of misfirings and
confusion were higher for the same imbalance ratio in Figure 8a–c. The accuracy also decreased in
general owing to the smaller dataset but still achieved around 80% even for the most severe imbalance
ratio of 400:1.
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Figure 8. Test results for fixed normal data at 20,000 and changing ratio of data imbalance: (a) accuracy,
(b) misfiring, and (c) confusion. Test results with fixed normal data to 10,000: (d) accuracy, (e) misfiring,
and (f) confusion.

As shown in Figure 9, the proposed method (CBFD with BF-NSP) gave higher classification
accuracy than CNN with the continuous wavelet transform scalogram (CWTS) [17,18] and DNN with
HHT [11], in which features were extracted using the HHT and the DNN was used as a classifier.
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To ensure a fair comparison, both models were trained using 5000 random sample data points and
tested using 1200 random samples. The comparison results represent the mean values of 10 trials
for every data imbalance rate. We found that CBFD with BF-NSP had 95% accuracy, even when the
imbalance ratio was 20:1. Its accuracy fell below 90% when the imbalance ratio reached 50:1. On the
other hand, the DNN with HHT [11] was more sensitive to the imbalance ratio. Only for an imbalance
ratio of 7:1 was the accuracy over 95%. When the imbalance ratio was 9:1, the accuracy was below 80%.
In the case of the CNN with CWTS [17,18], the accuracies in the imbalanced conditions were at least
28.1% points lower than CBFD with BF-NSP. When the image transformation using CWTS was applied
to the data, the training accuracy of the CNN with CWTS was lower than 90%, so that the results of
the CNN with CWTS declined in the data imbalanced conditions. Even though we tried to classify the
CWTS images using our CBFD, the differences between the results of the two methods were minor.
As shown in Table 3, the CNN with CWTS provided the fastest training and testing among the three
methods because the size of the CWTS image (80 × 80) was smaller than the size of the NSP image
(128 × 128). In summary, our CBFD with BF-NSP outperformed the DNN with HHT and the CNN
with CWTS, and was capable of detecting bearing faults even when the data imbalance was high.
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Figure 9. Comparison of CBFD with BF-NSP with other methods.

Table 3. Computational time comparison of the convolutional neural network (CNN)-based bearing
fault detector (CBFD) with the bearing fault-nested scatter plot (BF-NSP) with other methods.

Training Time (s) Testing Time (ms)

CBFD with BF-NSP 805.48 2.59

DNN with HHT 207.50 1.30

CNN with CWTS 66.15 0.38

4.3. Testing Classification with Oversampling

We employed oversampling using DCWGAN-GP to improve the classification accuracy under
data imbalance conditions. To mitigate problems caused by severe data imbalance, we trained
the DCGAN and the proposed DCWGAN-GP for each fault type, allowing the model to generate
synthetic fault images. Each model was trained using the available fault dataset defined in Table 1.
Figure 10 shows images computed by DCWGAN-GP for each fault type. The generated images can be
distinguished by comparison with normal images, and were similar to the images of real bearing fault
data. For comparison, images generated using DCGAN [27] are shown in Figure 11; these images can
also be distinguished by comparing with normal images and are similar to real bearing fault images.
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(a) (b) (c) (d) (e) (f)

Figure 10. Generated images of bearing fault data using the Wasserstein generative adversarial
networks with gradient penalty on the DCGAN architecture model (DCWGAN-GP). (a) Contaminant,
(b) outer high, (c) outer medium, (d) outer low, (e) inner high, and (f) inner medium.

(a) (b) (c) (d) (e) (f)

Figure 11. Generated images of bearing fault data using the DCGAN. (a) Contaminant, (b) outer high,
(c) outer medium, (d) outer low, (e) inner high, and (f) inner medium.

The images generated using DCGAN contained background noise. To identify the reason for the
noise, we monitored the trend of the loss value in the training step (Figure 12). We found that the loss of
the DCGAN generator increased as the step proceeded, and that the loss showed significant variation.
Figure 13 shows the losses of the proposed DCWGAN-GP; the losses for both the discriminator and
the generator converged toward zero as the training step proceeded. Both models were successfully
trained for the fault types, however, the objective function of the WGAN-GP provided superior stability
and quality of gradients.

We oversampled the fault data of the proposed generative model under various data-imbalanced
conditions. Here, the ratio between normal and fault data images is denoted as normal-to-fault ratio
(NFR), and the ratio that enhances NFR using oversampling as adjusted NFR (A-NFR).

• NFR = (# of normal data images) : (# of fault data images),
• A-NFR = (# of normal data images) : (# of fault data images) + (# of oversampled fault data images).

We considered the serious data-imbalanced conditions where NFR > 100:1. In the experiment,
not only imbalance ratio, but also the number of samples was considered, because the number of
majority and minority datasets had an effect on model training. Firstly, we fixed the number of normal
data images to 10,000. Under the condition, we considered two cases of the data-imbalanced condition:
fault data images of 50 (which yields NFR = 200:1), and fault data images of 100 (which yield NFR =
100:1). Based on these conditions, we oversampled fault data images using DCGAN and DCWGAN-GP
until the number of total fault data images (original and oversampled) reached 500, 1000, 2500, 5000,
and 10,000 (which yielded A-NFR = 20:1, 10:1, 5:1, 2:1, and 1:1, respectively). The experimental results
of the 10,000 normal data images are shown in Figures 14 and 15. The lower bound of FDD accuracy
is 90.77% and 94.63% when NFR is 200:1 and 100:1 without oversampling, respectively. The upper
bound of FDD accuracy was 98.99% when NFR was 20:1 without oversampling.
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Figure 12. Losses of the DCGAN [27]. (a) Losses of the discriminator, and (b) losses of the generator.
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Figure 13. Losses of DCWGAN-GP. (a) Losses of the discriminator, and (b) losses of the generator.

Secondly, we fixed the number of normal data to 20,000. Similar to normal data images of 10,000,
we considered two data-imbalanced conditions: NFR = 400:1 and 200:1, and oversampling using
DCGAN and DCWGAN-GP was conducted in the cases of A-NFR = 20:1, 10:1, 5:1, 2:1, and 1:1.
The experimental results of 10,000 normal data images are shown in Figures 16 and 17. The lower
bound of FDD accuracy is 91.30% and 95.63% when NFR is 400:1 and 200:1 without oversampling.
The upper bound of FDD accuracy is 99.42% when NFR is 40:1 without oversampling. (The detailed
experimental values are shown in Table 4.)

Oversampling using DCWGAN-GP and DCGAN improved the FDD overall accuracy. In the case
of 10,000 normal data images (shown in Figures 14 and 15), DCWGAN-GP improved the accuracy
by 7.28% points and 4.67% points at A-NFR = 1:1 compared to the accuracy at NFR = 200:1 and 100:1.
DCGAN also improved the accuracy by 3.12% points and 2.42% points at A-NFR = 1:1 compared to
the accuracy at NFR = 200:1 and 100:1. Similarly, oversampling using DCWGAN-GP and DCGAN
showed better accuracy compared to the base lines that were no sampling cases (shown in Figures 16
and 17).

DCWGAN-GP outperformed DCGAN in generative oversampling. In the case of NFR = 100:1
(shown in Figure 15), DCWGAN-GP improved accuracy from 4.1 to 4.7% points compared to no
oversampling when DCGAN did only from 0.5 to 2.4% points. In addition, in the case of NFR =
400:1 (shown in Figure 16), oversampling using DCWGAN-GP improved the accuracy by 6.28 to
7.11% points when the result of DCGAN was only 2.24 to 4.33% points. Furthermore, the variance
in accuracy with oversampling of DCWGAN-GP was around 1%, with overall accuracies 98% and
99% higher, respectively. While the accuracy for oversampling was lower than just 2% or less than the
accuracy for upper bound results (NFR = 20:1 and 40:1, in the case of normal data images 10,000 and
20,000, respectively.)
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As seen in Figures 14–17, as oversampling enhanced A-NFR, the accuracy increased. We emphasize
here that oversampling using DCWGAN-GP showed 97% or higher accuracy when A-NFR was 20:1.
As mentioned before, BF-NSP and CBFD showed good performance in the tolerable imbalance
condition such as NFR = 20:1 to 50:1. This means that oversampling using DCWGAN until A-NFR met
the tolerable imbalance conditions was enough for FDD accuracy. DCGAN showed less than 96.5%
accuracy (gap between DCWGAN-GP and DCGAN ranges from 2.7 to 5.97% points) when A-NFR is
20:1. Therefore, DCGAN required more oversampling data than DCWGAN-GP, and this fact resulted
in the increased cost of computation.

NFR was one of the reasons for FDD performance degradation, but the number of datasets was
also important. Figures 14 and 17 have the same NFR = 200:1, but different number of datasets.
Comparing these two results, the case of 20,000 normal data images showed better accuracy than the
case of 10,000 normal data images.
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Figure 14. Fault detection and diagnosis (FDD) accuracy testing:normal-to-fault-ratio (NFR) = 200:1
with 10,000 normal data.
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Figure 15. FDD accuracy testing:NFR = 100:1 with 10,000 normal data.
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Figure 16. FDD accuracy testing:NFR = 400:1 with 20,000 normal data.
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Figure 17. FDD accuracy testing:NFR = 200:1 with 20,000 normal data.
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Table 4. Accuracy of original data and oversampled data using the deep convolution generative
adversarial network (DCGAN) and the proposed Wasserstein generative adversarial networks with
gradient penalty (WGAN-GP) on DCGAN architecture model (DCWGAN-GP) method. (a) Normal-
to-fault ratio (NFR) = 200:1 with 10,000 normal data; lower bound = 90.77% at NFR=200:1, upper bound
= 98.99% at NFR = 20:1. (b) NFR = 100:1 with 10,000 normal data; lower bound = 94.63% at NFR=100:1,
upper bound = 98.99% at NFR = 20:1. (c) NFR = 400:1 with 20,000 normal data; lower bound =
91.30% at NFR=400:1, upper bound = 99.42% at NFR = 40:1. (d) NFR = 200:1 with 20,000 normal data;
lower bound = 95.63% at NFR=200:1, upper bound = 99.42% at NFR = 40:1.

A-NFR
20:1 10:1 4:1 2:1 1:1

DCGAN

(a) 91.05% 91.13% 92.51% 94.24% 93.89%
(b) 95.20% 95.79% 96.23% 97.03% 97.05%
(c) 93.54% 94.10% 94.88% 95.59% 95.63%
(d) 96.39% 96.68% 97.15% 97.42% 97.52%

DCWGAN-GP

(a) 97.02% 97.10% 97.63% 97.88% 98.05%
(b) 98.77% 98.78% 98.98% 98.98% 99.30%
(c) 97.58% 97.81% 98.21% 98.30% 98.41%
(d) 99.15% 99.16% 99.50% 99.16% 99.50%

5. Conclusions

In this study, we developed a novel generative oversampling method to address the data
imbalance issue for bearing FDD. In short, because the volume of faulty condition data is much
lower than that of normal condition data, a lower recognition accuracy of the fault condition results.
Before introducing the oversampling method, the proposed method was used to transform time-series
data into the image domain via the NSP method; bearing faults in the induction motor were classified
using designed CNNs. The classification accuracy was 2.4 to 25% points higher than that of previous
work; furthermore, our approach provided around 90% accuracy even when the imbalance ratio was
weak (50:1); the accuracy declined to 80% when the imbalance ratio increased to 1000:1. To overcome the
data imbalance problem, we generated fault images using DCWGAN-GP. Experiments demonstrated
that the proposed method improves accuracy by 7.2 and 4.27% points on average and gives maximum
values with 5.97 and 3.57% points higher accuracy than the previously developed DCGAN approach.
Additionally, the accuracy of the proposed method was close to that under data imbalance ratio
conditions of 20:1 and 40:1 without oversampling.

As future work, we will consider accuracy improvement in generative oversampling methods.
Even though the proposed DCWGAN-GP improved the FDD accuracy in the given imbalanced data
conditions, there is less than a 2% gap compared to the weak imbalanced data conditions. Furthermore,
comparing to the DNN with HHT [11] and the CNN with CWTS [17,18], CBFD with BF-NSP takes
at least twice training and testing time. We will optimize the classification network and reduce
computational time. In addition, we plan to apply the proposed methods to other data-imbalanced
conditions in FDD.
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Abbreviations

The following abbreviations are used in this manuscript:

FDD Fault detection and diagnosis
DNN Deep neural networks
HHT Hilbert–Huang transformation
CNN Convolutional neural network
NSP Nested scatter plot
GAN Generative adversarial networks
DCGAN Deep convolution generative adversarial networks
BF-NSP Bearing fault-nested scatter plot
CBFD CNN-based bearing fault detector
WGAN Wasserstein GAN
WGAN-GP Wasserstein GAN with gradient penalty
DCWGAN-GP WGAN-GP on DCGAN architecture model
EMD Earth mover’s distance
CWTS Continuous wavelet transform scalogram
NFR Normal-to-fault ratio
A-NFR Adjusted NFR
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