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Abstract: More and more huge embedded foundations are used in large-span bridges, such as
caisson foundations and anchorage open caisson foundations. Most of the embedded foundations are
undergoing horizontal vibration forces, that is, wind and wave forces or other types of dynamic forces.
The embedded foundations are regarded as rigid due to its high stiffness and small deformation
during the forcing process. The performance of a rigid, massive, cylindrical foundation embedded in
a poroelastic half-space is investigated by an analytical method developed in this paper. The mixed
boundary problem is solved by reducing the dual integral equations to a pair of Fredholm integral
equations of the second kind. The numerical results are compared with existing solutions in order
to assess the accuracy of the presented method. To further demonstrate the applicability of this
method, parametric studies are performed to evaluate the dynamic response of the embedded
foundation under horizontal vibration. The horizontal dynamic impedance and response factor of
the embedded foundation are examined based on different embedment ratio, foundation mass ratio,
relative stiffness, and poroelastic material properties versus nondimensional frequency. The results of
this study can be adapted to investigate the horizontal vibration responses of a foundation embedded
in poroelastic half-space.

Keywords: dynamic response; horizontal vibration; embedded foundation; half space

1. Introduction

The analytical solution of the dynamic response of surface foundation in a poroelastic medium
under horizontal, vertical, and torsional vibration is widely studied by many researchers [1–3].
Generally, the foundation is embedded in a certain depth and the horizontal force from wind,
earthquake ground motion, and mechanical vibrations that governs the dynamic response of embedded
foundations. A great deal of research has been done in order to study the dynamic response of surface
foundation under horizontal vibration. Apsel et al. [4] presented the impedance of foundation resting
on an elastic soil medium. Numerical methods, that is, the finite element method and boundary
element method were employed in order to investigate the dynamic response of embedded footings.
Ahmad et al. [5] presented an extensive investigation on the horizontal impedance of square footing
in layered soil using a boundary element method. Latini [1] investigated the dynamic response of
suction caissons by 3D element models in the frequency domain. Wang and Rajapakse [6] studied the
dynamic response of rigid strip footing foundations using the indirect boundary integral equation
method. The soil is treated as a single-phase linear elastic material in most of the existing studies.
Generally, the majority of the foundations are embedded in two-phase soils consisting of a solid
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skeleton and pores full of groundwater, which is so-called poroelastic medium. Biot [7,8] first derived
the wave propagation equations in poroelastic material. Then, many of the researchers studied the
dynamic responses of a disk resting on or embedded in a poroelastic medium [2,9–14]. Rizzo et al. [15]
studied the dynamic response of embedded foundation resting on a uniform half-space under torsional
vibration. Aspel and Luco [4] presented an integration technique to calculate the dynamic response
of embedded foundations subjected to external forces and moments. Different embedment ratios
were also studied. Senjuntichai and Sapsathiarn [16] presented the dynamic response of forced
vertical vibrations of an elastic circular plate embedded in poroelastic soils. The dynamic response
of an arbitrary buried load was also studied by virtue of Green’s function by Chen et al. [17].
Indirect boundary integral equation method was adopted to investigate the vertical vibration of
the massless foundation embedded in a homogeneous poroelastic medium by Senjuntichai et al. [18].
Cai et al. [19] studied the vertical vibration of embedded massive foundation resting in a poroelastic
medium using a simplified analytical method. Cai and Hu [20] also extended their research to the finite
thickness of poroelastic soil. Bilotta et al. [21] had done an excellent exploration on addressing the
importance of seismic site response and soil-structure interaction of a tall building in Italy. Fabozzi and
Bilotta [22] further conducted the feasibility study of a loss-driven earthquake early warning and rapid
response systems for tunnels in Italy high-speed railway network. Di Laora et al. [23] investigated
the effect of the rotational component of motion induced by the interaction between a pile group.
An application highlighting the rotational component of input motion is important for tall structures on
small pile groups. In conclusion, with the rapid development of underground structures in recent years,
the dynamic response of embedded foundations is still a matter of great concern. Seismic vibration,
ground shaking due to machine or high-speed train can easily induce damages to the infrastructure
which may cause great economic losses. Soil-structure interaction has been an important issue in
the assessment of the seismic vulnerability of a building. Considering the great risk of structures
under seismic risk, a number of techniques have been developed to deal with this problem. Note that
the above solutions indicate that the analytical solution of embedded foundations under horizontal
vibration is still not reported in the literature.

The aim of the current study is to provide an analytical solution of embedded footing resting in
a poroelastic medium under horizontal vibration. The soil medium is divided into two parts, that is,
the soil under the foundation and the soil around the foundation. The soil medium is modeled as an
isotropic homogeneous poroelastic medium under the footing while the soil around the footing is
divided into infinitesimal thin layers. The soil and the foundation contact surface are fully permeable.
Biot’s poroelastic theory is adopted, and the governing equation is solved by the Hankel transform.
The mixed boundary problem is solved by reducing the dual integral equations to a pair of Fredholm
integral equations of the second kind. The accuracy of the present analytical solution is compared
with existing solutions by degenerating existing solutions to previous situations. The horizontal
impedance and dynamic response factor of the embedded foundation are delineated. The influence
of foundation embedment ratio, foundation mass ratio, relative stiffness, and poroelastic material
properties is discussed separately.

2. Problem Definition and Governing Equations

2.1. Problem Statement

The foundations are subjected to time-harmonic loading as shown in Figure 1. The cylindrical
foundation is bonded with soil medium with the same displacement, and the contact between
foundation and soil is totally permeable. The exact solution for an embedded foundation under
dynamic vibration is hard to obtain due to complex mathematics. Thin layer theory by Novak
and Beredugo [24,25] is adopted to separate the soil medium into two independent parts. The soil
underlying the foundation base is assumed to be a homogeneous poroelastic half-space while the soil
along the side of the foundation is assumed to be a series of infinitesimally thin layers [20]. The total
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reaction force consists of the reaction force at the foundation side and foundation base. The vertical
and torsional displacement of the foundation is neglected.
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Figure 1. Rigid cylindrical foundation embedded in a poroelastic half-space.

2.2. Governing Equations of Poroelastic Soil

The motion of vibration P(t) is assumed to be time-harmonic with a time factor of eiωt, where ω is
the circular frequency and i =

√
−1. The time factor of eiωt is canceled henceforth from all expressions

for simplicity.
The equilibrium governing equation of foundation motion is:

m
..
u(t) + Fb(t) + Fs(t) = P(t) (1)

where m is the mass of the cylindrical foundation, u(t) = ueiωt is the time-harmonic horizontal
displacement of the foundation. When

..
u(t) equals to 0, means the dynamic acceleration of foundation

is zero, the dynamic motion equation can degenerate to static equilibrium function. P(t) = Peiωt is
the excitation force. Fb(t) = Fbeiωt is the horizontal dynamic reaction force at the foundation base,
Fs(t) = Fseiωt is the horizontal dynamic reaction force along the foundation side.

The governing differential equations for the poroelastic medium are expressed under cylindrical
coordinates system o (r, θ, z), shown as follows [7,8],

G∇2ur + (λ + G)
∂e
∂r
− G

r
(2

∂uθ

r∂θ
+

ur

r
)− α

∂p f

∂r
+ G

∂2ur

∂z2 − ρs
..
ur − ρ f

..
wr = 0 (2)

G∇2uθ + (λ + G)
∂e
∂θ
− G

r
(

uθ

r
− 2

∂ur

r∂θ
)− α

1
r

∂p f

∂r
+ G

∂2uθ

∂z2 − ρs
..
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..
wθ = 0 (3)
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∂e
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− α

1
r
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The seepage function under cylindrical coordinates is expressed as follows under the assumption
of soil grain, and the fluid is incompressible.

M
(

∂
.

wr

∂r
+

.
wr

r
+

1
r

∂
.

wθ

∂θ

)
+ αM

(
∂

.
ur

∂r
+

.
ur

r
+

1
r

∂
.
urθ

∂θ

)
= − .

p f (7)

where uz, ur, uθ is the vertical, radial, and tangential displacement of the solid matrix, wz, wr, wθ is
the average fluid displacement of the solid matrix in the vertical radial and tangential direction.
ur(t) = ureiωt, wr(t) = wreiωt, uθ(t) = uθeiωt, wθ(t) = wθeiωt. ρ is the mass density of the bulk
material, and ρ = (1 − n)ρs + nρf, where ρf is the density of the fluid, ρs is the density of solid mass. b is
defined as the ratio between the fluid viscosity and the intrinsic permeability of the porous medium
(s·Pa/m2). The ratio of fluid density ρf over the porosity n is defined as a. λ, G are the Lame parameter.
g is the acceleration of gravity. α, M are the Biot’s parameters accounting for compressibility of the
poroelastic material. pf is the pore water pressure. e is the dilatation of the solid matrix, 52 is the
Laplace operator, which are defined as e = ∂2ur

∂r2 + ur
r + 1

r
∂uθ
∂θ , ∇2 = ∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂θ2 .

2.3. General Solutions of Horizontal Vibration of Embedded Foundation

2.3.1. Reaction Force at the Side of the Embedded Foundation

Thin layer theory is adapted to conduct the reaction force along the height of the embedded
foundation (L). The integration of force along the foundation side can be conducted to calculate the
reaction force along the foundation side. The horizontal displacement of foundation under horizontal
excitation is uh (at θ = 0 direction), the foundation is under time-harmonic vibration. The normal stress
on the ground surface is zero. There’s no displacement at the bottom of the foundation. The model
of motion is purely horizontal vibration, and the vertical and torsional displacement is neglected.
Displacement at tangential and radial direction is not zero, that is, ur, uθ 6= 0, wr, wθ 6= 0, uz, wz = 0.
With the radiation condition, the boundary condition of the model of motion can be written as,

σz(r, θ, 0) = 0 r > 0, 0 ≤ θ ≤ 2π, 0 < z < L
ur(r, θ, L) = 0, uθ(r, θ, L) = 0, uz(r, θ, L) = 0
ur(r, θ, z) = 0, τ rz

θz

(r, θ, z) = 0, σz(r, θ, z) = 0, p f (r, θ, z) = 0, r > r0, 0 ≤ θ ≤ 2π (8)

The rigid footing is fully bonded with the surrounding soil, and the contact surface is assumed to
be fully permeable. The consistent boundary condition can be expressed as:

ur(r, θ, z) = uh cos θ r < r0, 0 ≤ θ ≤ 2π, 0 < z < L
uθ(r, θ, z) = −uh sin θ r < r0, 0 ≤ θ ≤ 2π, 0 < z < L
uz(r, θ, z) = 0 r < r0, 0 ≤ θ ≤ 2π, 0 < z < L

(9)

Potential function method is a powerful and physical meaningful method for solving coupled
partial differential equations. The displacement potential function of solid and fluid ϕs, ψs, ϕf, ψf are
introduced by Yu [26] to solve the coupled differential equations. The potential functions of solid and
fluid in poroelastic materials can be expressed as follows:

ur =
∂ϕs
∂r + 1

r
∂ψs
∂θ uθ = 1

r
∂ϕs
∂θ −

∂ψs
∂r

wr =
∂ϕ f
∂r + 1

r
∂ψ f
∂θ wθ = 1

r
∂ϕ f
∂θ −

∂ψ f
∂r

(10)
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E = es =52ϕs and ef =52 ϕf, the following equations can be obtained by substituting Equations (5)
and (6) to Equations (2) and (3),

(λ+2Gs)
∂∇2 ϕs

∂r + Gs
r

∂∇2ψs
∂θ +

(
αbωi + ρ f ω2 − aω2α

)(
∂ϕ f
∂r + 1

r
∂ψ f
∂θ

)
= −

(
ρ− αρ f

)
ω2
(

∂ϕs
∂r + 1

r
∂ψs
∂θ

) (11)

(λ+2Gs)
1
r

∂∇2 ϕs
∂θ − Gs

∂∇2ψs
∂r +

(
αbωi + ρ f ω2 − aω2α

)(
1
r

∂ϕ f
∂θ −

∂ψ f
∂r

)
= −

(
ρ− αρ f

)
ω2
(

1
r

∂ϕs
∂θ −

∂ψs
∂r

) (12)

The following equations can be derived by substituting the potential functions to the fluid
constitutive relations after some manipulations.

M∇2 ϕ f + αM∇2 ϕs = −ρ f ω2 ϕs −
(

aω2 − biω
)

ϕ f (13)

ρ f ω2ψs +
(

aω2 − biω
)

ψ f = 0 (14)

After divergence and curl operation of Equations (13) and (14), the following equation set can
be obtained: [ (

λ + 2Gs + α2M
)
∇2 + ρω2αM∇2 + ρ f ω2

αM + ρ f ω2 M∇2 +
(
aω2 − biω

) ][ ϕs

ϕ f

]
=

[
0
0

]
(15)

[
Gs∇2 + ρω2 ρ f ω2

ρ f ω2 (
aω2 − biω

) ][ ψs

ψ f

]
=

[
0
0

]
(16)

Equations (15) and (16) can be compiled as(
x2 − c1x + c2

)
ϕs, f = 0 (17)

(
x− d3

2
)

ψs, f = 0 (18)

where x = ∇2, c1 =
2αMρ f ω2−ρω2 M−(λ+2Gs+α2 M)(aω2−biω)

(λ+2Gs)M , c2 =
ρω2(aω2−biω)−(ρ f ω2)

2

(λ+2Gs)M ,

d3
2 =

−ρω2(aω2−biω)+(ρ f ω2)
2

Gs(aω2−biω)
Equations (17) and (18) can be written as

(
x− d1

2
)

ϕ1 = 0
(

x− d2
2
)

ϕ2 = 0 (19)

with x1,2 = d1,2
2 =

c1±
√

c1
2−4c2

2 , ϕs = ϕ1 + ϕ2, ϕ1 is assumed as ϕ1 = H(r)I(θ)eiωt in order to separate
variables. The following equation can be obtained:

I(θ)
d2H(r)

dr2 + I(θ)
dH(r)

rdr
+ H(r)

d2 I(θ)
r2dθ2 − d1

2H(r)I(θ) = 0 (20)

The solution of Equation (20) is:

H(r) = SaKn1(d1r) + Sb In1(d1r) I(θ) = Sc sin n1θ + Sd cos n1θ (21)

The formulation of ϕ1 and ϕ2 can be obtained as follows,

ϕ1 = H(r)I(θ)eiωt = [SaKn1(d1r) + Sb In1(d1r)](Sc sin n1θ + Sd cos n1θ)eiωt (22)

ϕ2 = H(r)I(θ)eiωt = [SaaKn2(d2r) + Sbb In2(d2r)](Scc sin n2θ + Sdd cos n2θ)eiωt (23)
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where In1, In2, Kn1, Kn2 denote modified Bessel function of the first and second kind. With the property
of Bessel function and the odevity of e, Sb = Sbb = 0, Sc = Scc = 0,

ϕs = [S1K1(d1r) cos θ + S11K1(d2r)]eiωt ]ϕ f = [S2K1(d1r) cos θ + S22K1(d2r)]eiωt (24)

ψs = S3K1(d3r) sin θeiωt ψ f = S4K1(d3r) sin θeiωt (25)

By substituting the expression of Equations (24) and (25) to Equations (13) and (14),

S2 = χ1S1, S22 = χ2S11, S4 = χ3S3,

where

χ1 =
(λ + 2Gs)d1

2 + (ρ− αρ f )ω
2

biω + ρ f ω2 − aαω2 , χ2 =
(λ + 2Gs)d2

2 + (ρ− αρ f )ω
2

biω + ρ f ω2 − aαω2 , χ3 =
ρ f ω2

biω− aαω2

By substituting the expression of ϕs, ϕ f , ψs, ψ f to the potential function and using the boundary
condition of ur = uheiωt cos θ, uθ = −uheiωt sin θ, wr (r0,θ,z) = 0, the following equations can
be obtained, {

S1[K1(d1r)]′ + S11[K1(d2r)]′ +
1
r

S3K1(d3r)
}∣∣∣∣

r=r0

= uh (26)

{
−S1r−1K1(d1r)− S11r−1K1(d2r)− S3[K1(d3r)]′

}∣∣∣
r=r0

= −uh (27){
S4[K1(d1r)]′ + S22[K1(d2r)]′ + S4r−1K1(d3r)

}∣∣∣
r=r0

= 0 (28)

The roots of S1, S11, S3 can be obtained by solving a 3 × 3 matrix. The force resultant around the
foundation side is qh. The horizontal resultant of reaction stress can be obtained by direct integration
of the horizontal stress. With the negative pore water pressure considered, σr = σ′ − p f .

qh =
∫ 2π

0
(−(σ′ − p f ) cos θ + τrθ sin θ) · 1 · rdθ (29)

The expression of qh can be obtained as follows by a series of substitution of normal stress,
shear stress, and pore water pressure.

qh = −πreiωt

[
(λ + 2Gs + αM + χ1M)S1d1

2K1(d1r)+
(λ + 2Gs + αM + χ2M)S2d2

2K1(d2r) + GsS3d3
2K1(d3r)

]
(30)

The reaction force along the foundation side is:

Fs = qh × L = GsuhL( fss + i fsd) (31)

where fss = Re[ qh
Gsuh

], fsd = Im[ qh
Gsuh

].

2.3.2. Reaction Force at the Base of the Embedded Foundation

The dynamic reaction at the base of the foundation is independent of the depth of embedment.
The reaction force at the base of embedded foundation can be solved by considering the foundation
base as a surface foundation.
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As it is delineated above, it is convenient to substitute the expression of stress, displacement,
and pore water pressure to the solid function, and after some manipulations, the following equations
can be derived.

Gb∇n+1
2Un + (λ + Gb)(

∂en

∂r
− n

r
en) + (ρsω2 + ρ f

2ω4η)Un − (ρ f ω2η + 1)(
∂p
∂r
− n

r
p) = 0 (32)

Gb∇n−1
2Vn + (λ + Gb)(

∂en

∂r
+

n
r

en) + (ρsω2 + ρ f
2ω4η)Vn − (ρ f ω2η + 1)(

∂p
∂r

+
n
r

p) = 0 (33)

Gb∇n
2uzn + (λ + Gb)

∂en

∂z
+ (ρsω2 + ρ f

2ω4η)uzn − (ρ f ω2η + 1)
∂p
∂z

= 0 (34)

en =
1

bαiω + ρ f ω2α
∇n

2 pn +
aM−1ω2 −Mbiω

bαiω + ρ f ω2α
pn (35)

∇n
4 pn − β1∇n

2 pn − β2 pn = 0 (36)

Mξ + αMe = − .
p (37)

where η = (biω− aω2)
−1, β1 =

ρω2 M+(λ+2G+α2 M)(aω2−biω)−2αMρ f ω2

−(λ+2G)M , β2 =
(ρ f ω2)

2−ρω2(aω2−biω)

−(λ+2G)M ,

ξ = ∂
.

wr
∂r +

.
wr
r + 1

r
∂

.
wθ
∂θ , e = ∂

.
ur
∂r +

.
ur
r + 1

r
∂

.
uθ
∂θ

Un = urn + uθn Vn = vrn − vθn (38)

∇a
2 =

∂2

∂r2 +
1
r

∂

∂r
− a2

r2 +
∂2

∂z2 (a = n, n− 1, n + 1) (39)

en =
∂rurn

r∂r
+

nuθn
r

+
∂uzn

∂z
(40)

Dimensionless variables are defined with a hat “-” on it. a0 is the dimensionless
excitation frequency.

λ =
λ

Gb
, ρ =

ρ f

ρ
, b =

b
√

ρg
r0, a0 =

√
ρ

Gb
r0ω, M =

M
Gb

, r =
r
r0

, z =
z
z0

, ur =
ur

r0
, uz =

uz

r0

wr =
wr

r0
, wz =

wz

r0
, p =

p
Gb

, σr =
σr

Gb
, σθ =

σθ

Gb
, σz =

σz

Gb
, τrz =

τrz

Gb
, τzr =

τzr

Gb
, ϑ =

ϑ

ρ

Equations (32)–(37) can be derived as follows:

∇n+1
2Un + (λ + 1)(

∂en

∂r
− n

r
en) + a0

2(1− ρv)Un − (α−v)(
∂pn
∂r
− n

r
pn) = 0 (41)

∇n−1
2Vn + (λ + 1)(

∂en

∂r
+

n
r

en) + a0
2(1− ρv)Vn − (α−v)(

∂pn
∂r

+
n
r

pn) = 0 (42)

∇n
2uzn + (λ + 1)

∂en

∂z
+ a0

2(1− ρv)uzn − (α−v)
∂pn
∂z

= 0 (43)

en =
v

a02ρ(v− α)
∇n

2 pn +
1

a02(v− α)
pn (44)

∇n
4 pn − B1∇n

2 pn − B2 pn = 0 (45)

σzn = λen + 2
∂uzn

∂z
− αpn (46)

where B1 = 2αϑρa0
2−ς(λ+α2+2)+ϑa0

2

(λ+2)a0
2 , B1 = − a0

2(ς−ρ2a0
2)

(λ+2)a0
2 , ς = ϑa0

2 − iba0, v = ρa0
2

ϑa0
2−iba0

.
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With the stress-strain relationships and soil constitutive models, we can define,

Γ = τrzn − τθzn =
∂Vn

∂z
+

∂uzn

∂r
+

n
r

uzn (47)

∆ = τrzn + τθzn =
∂Un

∂z
+

∂uzn

∂r
+

n
r

uzn (48)

Ũn, ∆̃, Γ̃, Ṽn, ũzn, p̃n, σ̃zn, ẽn denotes the Hankel transforms of Un, ∆, Γ, Vn, uzn, pn, σzn, en. With the
properties of Hankel transforms, the solutions of Equations (41) to (46) can be derived as follows,

p̃n = A1e−x1z + A2e−x2z (49)

ẽn A1B1e−x1z + A2B2e−x2z (50)

ũzn = A1C1x1e−x1z + A2C2x2e−x2z + De−x2z (51)

Ũn = 2/ε(g1 − 3ε2C1/2)A1e−x1z + 2/ε(g2 − 3ε2C2/2)A2e−x2z + (2Dx3/ε + F)e−x3z (52)

Ṽn = −εA1C1e−x1z − εA2C2e−x2z + Fe−x3z (53)

Γ̃n = 2εx1 A1C1e−x1z + 2εx2 A2C2e−x2z + (Dε− x3F)e−x3z (54)

∆̃ = −2A1x1(B1 + x1
2C1)ε

−1e−x1z − 2A2x2(B2 + x2
2C2)ε

−1e−x2z − [(ε2 + 2x3)ε
−1D + x3F]e−x3z (55)

σ̃zn = A1H1e−x1z + A2H2e−x2z − 2Dx3e−x3z (56)

where Bi = vMxi
2−ρa0

2

ρa0
2(α−v)M

i = 1, 2, Ci = λBi+Bi−α+v
x3

2 i = 1, 2, gi = Bi + (xi
2 + ε2)Ci i = 1, 2,

Hi = λBi − 2Cixi
2 − α i = 1, 2

In order to solve the mixed boundary-value problem of horizontal vibration of the base of
embedded foundation resting on poroelastic medium, the following dual integral equations can be
obtained under the given boundary conditions.∫ ∞

0
ε−1
[
χ11(ε)Γ̃(ε, 0) + χ12(ε)∆̃(ε, 0)

]
J0(εr)dε = Duh r < 1 (57)

∫ ∞

0
ε−1
[
χ21(ε)Γ̃(ε, 0) + χ22(ε)∆̃(ε, 0)

]
J2(εr)dε = 0 r < 1 (58)∫ ∞

0
Γ̃(ε, 0)J0(εr)dε = 0 r > 1 (59)∫ ∞

0
∆̃(ε, 0)J2(εr)dε = 0 r > 1 (60)

where

χ11(ε) = ε(x3Ω)−1[2ε2x3
2(C1−C2) + 4ε2x3(x2C2− x1C1) + 4x3(x1g1− x2g2) + (2x3

2 + ε2)(H1−H2)]

χ12(ε) = ε3(x3Ω)−1[2x3
2(C2 − C1)− 4x3(x2C2 − x1C1) + (H1 − H2)]

χ21(ε) = ε(x3Ω)−1[4x3
2(g2 − g1) + 6ε2x3

2(C1 − C2) + 4x3(x1g1 − x2g2) + ε2(H1 − H2)]

χ22(ε) = ε(x3Ω)−1[4x3
2(g1 − g2) + 6ε2x3

2(C2 − C1)− 4ε2x3(x1C1 − x2C2) + (2x3
2 + ε2)(H1 − H2)]

Ω = (x3
2 + ε2)(H2 − H1)− 2x3(x1g1 − x2g2), Γ̃1(ε, 0) = 2ε−1Γ̃(ε, 0), ∆̃1(ε, 0) = 2ε−1∆̃(ε, 0)

The dual integral equations can be solved by reducing to the Fredholm integral equations of
the second kind. With the aid of Sonine’s integrals in Noble [27], combining with the Heaviside
functions as defined by Pak and Saphores [28], and the properties of Bessel functions, with a series of
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manipulations, the dual integral equations can be reduced to a pair of Fredholm integral equations of
the second kind.

θ1(r) +
l2
l1
[
∫ 1

r

1
t

θ2(t)dt− θ2(r)] +
∫ 1

0
θ1(t)δ11(r, t)dt +

l2
l1

∫ 1

0
θ2(t)δ12(r, t)dt = 1 (61)

l4
l3

θ2(r) + [
1
r

∫ r

0
θ1(t)dt− θ1(r)] +

∫ 1

0
θ1(t)δ21(r, t)dt +

l4
l3

∫ 1

0
θ2(t)δ22(r, t)dt = 0 (62)

where

δ11(r, t) =
√

rt
∫ ∞

0 ε( χ11(ε)
l1
−1) J−0.5(εr)J−0.5(εt)dε, δ12(r, t) =

√
rt
∫ ∞

0 ε( χ12(ε)
l2
−1) J−0.5(εr)J1.5(εt)dε

δ21(r, t) =
√

rt
∫ ∞

0 ε( χ21(ε)
l3
−1) J1.5(εr)J−0.5(εt)dε, δ22(r, t) =

√
rt
∫ ∞

0 ε( χ22(ε)
l4
−1) J1.5(εr)J1.5(εt)dε

The force resultant of the foundation base can be obtained by the integration of contact stress on
the foundation base,

− Fb
Gr2 =

∫ 2π

0
[τrz(r, θ, 0) cos θ − τθz(r, θ, 0) sin θ]dθ

∫ 1

0
rdr (63)

After substituting the expression of stress into Equation (63) and several manipulations, the force
at the foundation base can be obtained:

Fb =
8Gr2

l1
uh

fbs + i fbd
(64)

where fbs = Re[ 1∫ 1
0 θ1(t)dt

], fbd = Im[ 1∫ 1
0 θ1(t)dt

], 1∫ 1
0 θ1(t)dt

is regarded as the dynamic compliance

coefficient of foundation base.

2.4. Dynamic Response of Embedded Foundation under Horizontal Vibration

By substituting Equations (31) and (64) to Equation (1), the equivalent equation can be derived:

muhi
2
ω2 +

8Gbr2

l1
uh

fbs + i fbd
+ GsuhL( fss + i fsd) = P (65)

The nondimensional equivalent horizontal dynamic impedance Kh can be expressed as

Kh = kh + icha0 (66)

where a0 =
√

ρ
Gb

rω

kh =
8Gbr2

l1
fbs

fbs
2 + fbd

2 + GsL fss −ma0
2 Gb

ρr2 (67)

ch = GsL fsd −
8Gbr2

l1
fbd

fbs
2 + fbd

2 (68)

The horizontal dynamic response factor is given as Ah, proposed by Lysmer and Richart [29,30]:

Ah =
1√

kh
2 + (a0ch)

2
(69)
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3. Results and Discussion

3.1. Verification of the Analytical Solutions with Existing Results

The solutions of the dynamic response of embedded foundation under horizontal vibration
are programmed by Matlab code. The results by the proposed method are verified by comparing
similar conclusions reported by Yu [26] and Jin [31]. The solution scheme in the preceding sections
is conducted to verify the accuracy of this solution. The real and imaginary part of nondimensional
horizontal dynamic impedance can degenrate to the side, and bottom vibration of an embedded
foundation which can be found by different combinations of L/R, the radius of the foundation is
selected as a unit of length R.

3.1.1. Verification of the Base of the Embedded Foundation

Solutions corresponding to present analysis are reduced to a surface foundation problem by
setting the embedment from 5 m to 0 m. The real part and imaginary part are separated under
different nondimensional frequency. The solutions derived from the present study are compared
with the analytical solution of horizontal vibration of a disk on the poroelastic half-space by Jin [31],
with a nondimensional frequency range of 0 < a0 ≤ 5 using the same material parameters. f bs

s and
f bd

s are the dynamic impedance of surface footing presented by Jin [31]. As it is indicated in Figure 2,
the real and imaginary part of the present solution is gradually close to the solution of a surface
foundation by reducing the embedment ratio. The present solution shows a very close agreement with
Jin’s solution when the embedment depth goes to zero.Appl. Sci. 2019, 8, x FOR PEER REVIEW 11 of 18 
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3.1.2. Verification of the Side of the Embedded Foundation

Figure 3 shows a comparison of nondimensional results of dynamic stiffness and damping at the
embedded foundation side by varying the embedment from 0 m to 5 m. The dynamic impedance along
the foundation side is investigated by comparing the results with Yu’s results [26] (f ss

p and f sd
p) by

adopting the same material parameters. As indicated in Figure 3, the dynamic impedance side agrees
excellently, both in the real and imaginary part of dynamic impedance, as the foundation embedment
increases. The real part increases when a0 < 2 and then decreases throughout the considered frequency
range. The imaginary part shows a linear increase with increasing a0. Comparisons of the dynamic
impedance of the present solution with Yu’s results (f ss

p and f sd
p) proves that the accuracy of the

present solution is confirmed.
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In this paper, the soil is considered as drained condition (high permeability) with a soil
permeability larger than 10−4, that is, 0.1. Selected key parameters, such as the ratio of embedment,
the variation of foundation mass, etc., of a rigid, massive, cylindrical foundation embedded under
horizontal vibration, are investigated by varying the nondimensional excitation frequency. The effect
of Poisson’s ratio v on the horizontal dynamic impedance of embedded foundation can be ignored
through verification. The nondimensional frequency of excitation is defined as 0 ≤ a0 ≤ 5 from lower
frequency range to moderate frequency range. The nondimensional horizontal impedance Kh are
studied by its real part (kh) and imaginary part (ch), respectively. The dynamic response factor is also
demonstrated with nondimensional frequency.

The key parameters are studied, including:

(1) The ratio of embedment over foundation radius, that is, L/R from 0 to two.
(2) The effect of the mass ratio (the variation of foundation mass) from one to four.
(3) The effect of poroelastic material property M from 10 to 300.
(4) The relative stiffness of the soil layer around the foundation and under the foundation, that is,

Gs/Gb from 0.1 to two.

3.2. Effect of the Footing Embedment Ratio

The embedment of a foundation is crucial to the stiffness of the foundation because the stiffness can
significantly increase with the embedment. The foundation stiffness increases because part of the load is
transmitted into the soil through shear and normal traction acting on the side-walls [5]. With uniformly
distributed soil around the foundation and under the foundation, the effect of embedment ratio L/R
= 0, 0.5, 1, 2 is investigated. The dynamic response of the depth ratio under horizontal excitations is
presented by varying the nondimensional frequency of excitation. Figure 4 indicates the real part (kh)
and the imaginary part (ch) of Kh, respectively. As we can see from Figure 4, the dynamic impedance
increases significantly with increasing foundation embedment ratio. However, the variation of kh and
ch with the frequency a0 shows a different trend for all the values of foundation embedment. In the
case of the real part, the stiffness of the foundation for horizontal vibration increases with increasing a0.
The spring coefficient increases remarkably with the embedment ratio at a higher frequency. For the
imaginary part, the damping of foundation decreases a0 < 2 and reach a minimum value at about
a0 = 1.5 and then increases with increasing frequency. It is noted that both components of the dynamic
impedance vary for different embedment ratios. The real part of dynamic impedance is small at
low frequency and then increases linearly with frequency thereafter which result from little wave
propagates at these low frequencies. Different from this trend, the imaginary part decreases with
the interested frequency range and then increases slowly, indicating wave propagation throughout
the frequency [32]. The magnitudes of the real part (kh) and the imaginary part(ch) of Kh increases
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with increasing embedment. The influence of embedment has a relatively smaller influence on the
imaginary part when compared to the real part.
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Figure 5 indicates the effect of the depth ratio on the dynamic response factor. It is clear that the
embedment of the foundation has a significant effect on the magnitude and shape of the dynamic
response factor. It is noticed that the foundation becomes stiffer as the dynamic response factor
decreases with increasing embedment ratio. This effect can be explained with the restriction of the
movement of the embedded foundation by the normal stress and shear stress from the overlying soil.
The foundation’s response factor also decreases with increasing a0, as expected. However, the dynamic
response factor is dependent on high frequency (a0 > 2). In addition, the larger the embedment ratio,
the steeper is the corresponding response factor curve. Therefore, at high frequencies away from 2,
the dynamic response factor keeps steady.Appl. Sci. 2019, 8, x FOR PEER REVIEW 13 of 18 
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3.3. Effect of the Footing Mass Ratio

The mass ratio can significantly affect the dynamic response of embedded foundation.
Figure 6 shows the dynamic response of embedded foundation in order to investigate the effect
of the mass ratio of the foundation under horizontal vibration with a depth ratio L/R = 1.0. In general,
the dynamic impedance of the embedded foundation increases by increasing the mass ratio. The initial
density of embedded foundation is set to be one, and the density of massive foundation varies from one
to four in order to examine the mass ratio of the embedded foundation. It is obvious that an increase in
the mass ratio can definitely increase the stiffness of foundation, as shown in Figure 6. The foundation
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stiffness increases almost linearly with the increasing value of a0 when the mass ratio (RM) is 1:4, with
almost the same speed. The increasing trend tends to be gentle when a0 > 1.5. The mass ratio has little
effect on the imaginary part of Kh. The reason for this phenomenon is that the soil mass ratio has no
influence on the contact with the surrounding soil. The imaginary part increases first to a maximum
value at about a0 = 1.5 and then decreases for a larger value of frequency. The imaginary part of
horizontal impedance Kh is nearly independent of the mass ratio when compared to the real part.
The imaginary part shows a gradual increase when a0 < 1.5, which shows a near linear variation with
a0. The mass ratio is more significant on the real part of the horizontal impedance and relatively smaller
on the imaginary part of Kh. The parametric study indicates that the imaginary part of horizontal
impedance is less affected by the mass ratio than the real part.
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Figure 7 shows the influence of mass ratio on the horizontal dynamic response factor Ah for
an embedment ratio L/R = 1. It can be concluded that the mass ratio of the embedded foundation
has a significant influence on the dynamic response factor. The peak value of the dynamic response
factor is at zero frequency, and the foundation stiffness is the maximum at this state. By increasing the
value of the mass ratio, the dynamic response factor decreases, and the foundation stiffness increases.
In addition, the dynamic response factor decreases sharply with the lower value of the mass ratio.
The dynamic response of foundation also decreases with the increase in nondimensional frequency
a0. The value of Ah is close to each other at any mass ratio when the frequency is larger than 3. It is
noted that a significant decrease occurs when a0 < 1.5, and then the dynamic response factor decreases
slowly as a0 increases. As expected, the response factor decreases with increasing foundation mass.
However, at high frequencies away from 1.5, the response factor shows little dependence on the
mass ratio.
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3.4. Effect of Poroelastic Material Parameters

In order to investigate the effect of poroelastic material parameters under horizontal dynamic
interaction, Figure 8 shows the dynamic impedance of embedded foundation versus a0 for L/R = 1.
The only difference is the poroelastic material parameter. As it is indicated, the real part of dynamic
impedance increases with the increasing poroelastic material parameters. As we proved, the increasing
speed of the real part decreases when the relative value is larger than 100. The real part of dynamic
impedance seems overlapped when a0 is smaller than 1.5, and the increasing speed differs when a0 is
larger than 3. The imaginary part of dynamic impedance decreases with the increasing poroelastic
material parameters when the poroelastic material parameters are smaller than 5 and then increases at
a larger relative ratio. The imaginary part seems to increase to a maximum value at about a0 = 1.5 and
then decreases for higher frequencies. As expected, both the real and imaginary part of all impedance
shows the strong influence of the poroelastic material and the influence of excitation especially when
10 < M < 100 and a0 > 1.5. The parametric study indicates that both the real and imaginary part of
the horizontal impedance component are independent when a0 < 1.5. However, it is affected by the
poroelastic material properties significantly when a0 > 1.5.
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The dynamic response factor of embedded foundation affected by the poroelastic material
properties versus a0 is depicted in Figure 9. It can be noticed that the dynamic response factor
decreases with the increasing poroelastic material properties modulus. By increasing the poroelastic
material properties, the dynamic response factor decreases obviously when the relative ratio is lower
than 50. This decrease in value is very small when the relative ratio is larger than 100. The dynamic
response factor decreases with the increase in frequency. In the case of frequency a0 < 1.5, the dynamic
response factor for different poroelastic material properties are the same. The effect of poroelastic
material properties pronounced for higher frequency. The dynamic response factor shows little
dependence on M and when a0 > 1.5, the dynamic response factor decreases with the increasing M.
Moreover, the dynamic response factor decreases with the increase in frequency.
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3.5. Effect of the Relative Stiffness

The effect of relative stiffness on the horizontal dynamic impedance of embedded footing in
poroelastic soil medium are investigated to demonstrate the influence of nondimensional frequency.
Figure 10 shows that the dynamic impedance Kh varies with frequency a0 with a different value of the
relative soil stiffness. It is noted that the horizontal dynamic impedance depends on the relative soil
stiffness with other fixed parameters. The real part of Kh increases with the increasing Gs/Gb which is
due to the embedded foundation. The foundation stiffness enhances with larger soil stiffness around
the foundation. The foundation stiffness also increases with the increasing frequency, especially for
a frequency higher than 1. In general, the imaginary part of dynamic impedance increases with the
increasing Gs/Gb, while this trend reverses when a0 > 4. The damping of foundation increases to
a maximum value at about a0 = 2 and then decreases at the same speed for different Gs/Gb with the
increasing a0. Figure 10 also indicates that the relative stiffness of the foundation soil has a noticeable
influence on the value of dynamic impedance. Both foundation stiffness and damping increase as the
Gs/Gb increases. The results from Figure 10 also show that the relative stiffness of the subsoil has
a strong effect on the magnitude of the horizontal impedance Kh, which is investigated by discussing
the real and imaginary part separately. Another important conclusion revealed from Figure 10 is the
rising difference of the dynamic impedance between the undisturbed soil and disturbed soil which has
also been proved by Cai et al [20].Appl. Sci. 2019, 8, x FOR PEER REVIEW 16 of 18 
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The dynamic response factor of embedded foundation under horizontal excitation under different
relative stiffness is investigated by varying a0. It is indicated that the response factor decreases with
the increasing Gs/Gb, especially when Gs/Gb increases from 0.1 to 0.5. As expected, the foundation
stiffness increases with the increasing Gs/Gb because of the side-wall effect of embedded foundations.
The dynamic response factor decreases with the increasing frequency at the range of 0 to five. Note that
Ah decreases significantly at a lower frequency, a0 < 1.5, while the dynamic response factor shows little
dependence on a0 when a0 > 1.5. It is evident that the horizontal dynamic response factor depends
significantly on the frequency and the relative stiffness of subsoil and backfill. The dynamic response
factor shows a similar trend for different values of Gs/Gb. Another important conclusion revealed in
Figure 11 is the independence of the dynamic response factor on high frequency.
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4. Conclusions

A simplified analytical method was performed to investigate the dynamic response of embedded
foundation under horizontal vibration in the poroelastic soil medium. Biot’s theory was used to
solve the dynamic behavior of soil. The mixed boundary value problem was analyzed by adopting
a simplified analytical method. The proposed method in this study was confirmed by comparing the
results with the existing literature. Analytical expressions were developed for predicting the dynamic
impedance of embedded foundation under horizontal vibration. Furthermore, a comprehensive
parametric analysis was performed in order to assess the applicability of this method. The dynamic
impedance and dynamic response factor versus frequency were depicted in the dimensionless scale,
respectively. Some conclusions are drawn below:

(1) Results illustrated in this paper show that the embedment ratio of the foundation, mass ratio
of the foundation, relative stiffness, and poroelastic properties of the backfill has a significant
influence on the horizontal dynamic response of embedded foundation for the frequency range
of 0 ≤ a0 ≤ 5.

(2) The horizontal dynamic impedance of embedded foundation increases while the dynamic
response factor decreases with the increasing embedment ratio. There’s an increase in dynamic
impedance and a decrease in dynamic response factor with the increasing frequency.

(3) It should be noted that the real part of dynamic impedance increases with the increasing mass
ratio while the imaginary part is independent of the mass ratio. The dynamic response factor
decreases with increasing mass ratio. An increase in the dynamic impedance and a decrease in
the dynamic response factor are described with the increasing frequency.
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(4) By increasing the poroelastic material properties, the real part of dynamic impedance increases
while the imaginary part, as well as the dynamic response factor, decreases. The larger the
frequency, the larger is the dynamic impedance and the smaller the dynamic response factor.

(5) The dynamic impedance increases significantly, especially for a frequency smaller than 1.5.
The real part keeps increasing while the imaginary part decreases when the frequency is larger
than 1.5. A considerable decrease in the dynamic response factor is noted due to the presence of
relative backfill modulus. The effect of Poisson’s ratio v on the horizontal dynamic impedance of
embedded foundation can be ignored.

With the aid of simplified analytical solutions proposed in this study, the expressions of dynamic
impedance and dynamic response factor are formulated. The method proposed in this paper can be
used to evaluate the dynamic response of embedded foundation subjected to horizontal dynamic
loading. The comprehensive parametric study can provide versatile guidance to civil engineering
and other dynamic construction. However, the proposed method is limited by the perfect smooth
contact between the foundation and soil interface. The analytical solution of the horizontal impedance
of embedded foundation with rigid underlying bedrock also remains unclear.
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