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Featured Application: Measurement of the pneumatic conveying parameters.

Abstract: The acoustic emission (AE) method is used in certain industries for the measurement of
pneumatic conveying. Instead of the non-intrusive sensors, the comparison of two different intrusive
probes in pneumatic conveying is presented in this work, and the AE signals generated by the flow for
different particle flow rates and particle sizes were studied. Comparing the distribution of root mean
square (RMS) values indicates that the AE signal acquired by a wire mesh probe was more reliable
than that from a T-type probe. Limited intrinsic mode functions (IMFs) were extracted from the raw
signals by the ensemble empirical mode decomposition (EEMD) algorithm. The characteristics of
these signals were analyzed in both the time and frequency domains, and the energies of different
IMFs were used to predict the particle mass flow rates, demonstrating a relative error under 10%
achieved by the proposed monitoring system. Additionally, the mean squared error contribution
fraction, instead of the energy fraction, can predict the particle size.

Keywords: ensemble empirical mode decomposition algorithm; particle mass flow rate; particle size;
pneumatic conveying

1. Introduction

Pneumatic conveying is widespread in the power, pharmaceutical, metallurgy, food, and various
other industrial processes [1]. The capability of online management and measurement of pneumatic
conveying is of great significance for monitoring and control of industrial processes. Considering
the coal-fired power plant industry as an example, the mass flow rate and particle size of pulverized
coal will directly affect combustion inside of the boiler and the carbon content of the resulting
ash, significantly impacting operation efficiency and plant economy. Determining pneumatic
conveying parameters, including particle size, particle mass flow rate, flow velocity, and humidity, is
complicated, and with current technology, it is challenging to establish an accurate model for these
conveying characteristics.

Over the course of many years, researchers have studied and developed a variety of pneumatic
conveying measurement methods. Each method has certain advantages over a specific range, but also
possesses notable drawbacks. Among these numerous measurement methods, the most commercially
promising techniques include ultrasonic [2,3], optical [4,5], electrostatic [6,7], and capacitance [8]
approaches, among others. The ultrasonic method is susceptible to temperature and is regarded as
difficult to install. The optical method is mainly subject to the pollution of the sampling window.
The electrostatic and capacitive method belongs to the electrical category, however, it is hard for the
electrostatic sensor to be electrically shielded from the rest of the environment. The capacitance sensor
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lacks sufficient sensitivity for dilute flows that contains moisture. During the pneumatic conveying
process, particle-particle interaction and particle-wall interaction produce particular acoustic signals,
which can be detected by acoustic emission (AE) sensors. Since pneumatic conveying generates
these signals, they reveal important characteristics about the conveying process. As an added benefit,
acoustic emission measurements are simpler and more convenient for this application.

Some researchers investigated the monitoring of particle size by using acoustic emissions method.
Leach and Rubin [9] originally introduced three important cases to illustrate the principles of the
method. Nevertheless, further application of signal processing techniques on the acoustic emission
signal had not been performed. Alessandro et al. [10] applied the approach to research the relationship
between AE signal and particle size distribution for limited operating conditions. To this end, they
developed a three-step data processing procedure, using wavelet packet decomposition to extract
useful features and multivariate data analysis to decrease feature numbers used as the input of
the neural network. This led to the development of a neural network to realize particle sizing.
For the wavelet packet decomposition process, however, it is necessary to apply multiple adjustments.
Uher and Benes [11] experimentally validated the Hertz contact theory in the measurement of particle
size distribution, while their experimental results are distinct to practical industrial processes. As a
consequence, a more accurate theory is necessary to establish and predict the process. Hu [12]
developed an AE-based online particle sizing instrument employing the Hertz theory of contact, and
the experimental results were highly consistent with theoretical expectations under limited conditions.
However, for increasing solid mass flow rate, the sizing results deviated significantly due to their
theoretical assumptions. Hansuld and Briens et al. [13] used the audio AE signals to monitor particle
size in pharmaceutical manufacturing. The investigation demonstrated a predictive relationship
between the total power spectral density and wet granule size in a 12 L beaker, with the result
corresponding to dry sphere measurement. Guo [14] used audio AE signals to monitor particle size in
pneumatic conveying, and after decomposition by wavelet analysis, the energy fractions of different
components could predict particle size through a neural network. The result showed that relative error
was within 23% when experimental particle sizes (e.g. 75/90/110/150/200 µm in the research) were
in certain ranges. Additionally, the higher error range indicated that the signal processing should be
improved. Among the scientific research mentioned above, only a little portion of relative researches
have denoised the raw signal to extract effective signals to develop the relationship between the
particle size and the AE signal. Moreover, the acoustic emission signal propagation has not been
considered. The propagation process is rapid in the metal pipe. In the relative references mentioned
above, the total signal introduced into the sensors is a complex mixture of signals generated by the
whole system, making it difficult to detect local characteristics of the particle size.

Some researchers have applied the acoustic emission to the research on particle mass flow rate
monitoring in the multiphase flow. Cao [15] decomposed the AE signal by utilizing the seven scales
wavelet decomposition method and proposed a model of particle mass flow rate to explore the
quantitative relationship between the AE energy, superficial gas velocity and particle mass flow
rate. The model is under strict assumption of low speed flow conditions and uniform particle
distribution. Nevertheless, particle size distribution was described by the Rosin-Rammler distribution
instead of uniform particle distribution. It means that the model developed by Cao was useful in
limited situation. Wei [16] developed a regression model between AE energy and particle mass
flow rate by using the wavelet packet decomposition and partial least square method. Chen [17]
developed an acoustic emission monitoring system to detect the sand mass flow rate and some
other parameters. The relationship between the sand mass flow rate and power spectrum amplitude
is linearity. His research focused on liquid-solid phases systems instead of pneumatic conveying.
Wang [18] studied the relationship of the signal frequency, area of the power spectrum estimation and
solid particle size and mass flow rate. The combination of AE signal and power spectrum estimation
to detect parameters of pneumatic conveying is feasible and effective. However, the effects of multiple
impacts of the same particle were ignored. Through the literature mentioned above, it is apparent
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that the researchers did not consider the mixture of the signal problem adequately. Involving in
the signal processing, the wavelet packet decomposition is used widely. However, the selection of
wavelet function and decomposition level is a complex process, which needs manual selection in
many situations.

In this paper, acoustic emission signals collected by different probes, subjected to different
particle mass flow rates with different particle sizes, were studied. Compared with the wavelet packet
decomposition, the ensemble empirical mode decomposition (EEMD) is a more self-adaptive algorithm.
The ensemble empirical mode decomposition method was used to decompose the signal, and the
effective signal is extracted to establish a specifying relationship between AE signal and mass flow
rate, and the relationship of the signal and particle size is built as well.

2. Theoretical Model

Solid particle collisions with the probe generate transient elastic stress waves that propagate away
from the point of impact. These waves can be detected by a piezoelectric transducer located a certain
distance from the collision site.

According to the Hertz contact theory, the impact frequency relates to the duration of the collision.
Hou [19] deduced the frequency of the resulting acoustic signal, assuming that the particle is spherical
and that the impact is a completely elastic collision. Accordingly, the frequency can be approximated by:
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and the Poisson ratio, respectively; subscripts 1 and 2 refer to the material of the particle’s bulk and
its surface, respectively; ρs, dp, and v0 represent the particle’s density, radius, and approach velocity,
respectively. With a certain particle velocity and known material properties, the particle size can be
related to the signal frequency, and the particle size distribution can be described by the Rosin-Rammler
function. From the equation, it is obvious that the larger the particle size, the smaller the corresponding
frequency. Therefore, when the particles in pneumatic conveying collide with the probe or the tube
wall, there will be different resulting frequency distributions due to different particle sizes.

Based on the research of Cody [20], He [21] deduced the acoustic energy driven by contact
between the particle and wall. The energy can be approximately by:
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where η is the transformation efficiency from collision pressure to acoustic pressure; t is the time
interval; m is the mass of the particle; and Cp is the particle concentration dispersed within the air
volume. Sp and xj represent the considered interaction area where dispersed particles collide with the
wall and the percentage of particles impacting it at an angle of αj, respectively.

In a real system, the AE signal traveling from sensor to the computer is dependent not only upon
this theoretical analysis, but also upon wave propagation effects and the system’s response to surface
vibrations. The complete AE signal can be expressed as [22]:

V(t) = S(t) ∗ G(t) ∗ R(t) (3)

where V(t) represents the measured AE voltage signal, and S(t), G(t), and R(t) are the original acoustic
signal, wave propagation function, and the system response, respectively, where the symbol * denotes
convolution. The wave propagation medium and the system response function are non-linear and time
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variant; therefore, it is difficult to develop a direct relationship between the AE signal and pneumatic
conveying without signal processing.

3. Ensemble Empirical Mode Decomposition

With the development of modern digital signal processing technology, signal analysis has become
an important tool for the study of pneumatic conveying characteristics. Huang et al. [23] proposed an
empirical mode decomposition (EMD) method, which is based on the step-wise decomposition of the
non-linear non-stationary signal itself. As mentioned above, in real world monitoring of pneumatic
conveying, particle size is uncertain, which possess a challenge when defining an effective frequency
range. Thus, the EEMD algorithm is suitable for signal decomposition since it utilizes the raw signal,
and the EMD method has good adaptability. Each order of the intrinsic mode function (IMF) should
satisfy the following two conditions:

1. In the entire data sequence, the number of extreme points and the number of zero-crossings
should be equal or differ at most by one;

2. The mean value of the envelopes determined by the local maxima and local minima at any given
data point should be zero.

However, the EMD method can misrepresent the envelope due to the addition of the boundary
value, and the local fluctuation can result in mode confusion. Considering these EMD disadvantages,
Wu [24] proposed an improvement to the ensemble empirical mode decomposition method, adding a
Gaussian-white-noise background to the signal. After several decompositions, the additional noise is
eliminated and only the signal remains. The EEMD algorithm decomposition steps are as follows:

1. Add white noise to the raw data x(t):

X(t) = x(t) + nm(t) (4)

where nm(t) is the white noise, and X(t) represents the data (with noise) for the mth trial.
2. Decompose the noise-added data X(t) into several IMFs (total number I);
3. Repeat steps (1) and (2) several times, each time adding independent random white noise,

until the trial number reaches a pre-determined value, m = M, M is the number of trials;
4. Calculate the ensemble mean ci of the M trials for each IMF:

ci =
1
M

M

∑
m−1

ci,m i = 1, 2, . . . , I; m = 1, 2, . . . , M (5)

5. Finally, decompose the raw data into several IMFs: c1, c2, . . . , cI and a residual component r:

x(t) =
I

∑
i−1

ci + r (6)

The accuracy of the EEMD method depends on both the chosen amplitude for the added white
noise and the number of specified trials. A small amplitude for the added noise will have no influence
on the raw signals, whereas a high amplitude will mask the raw signal.

The number of Gaussian white noise to the EEMD obeys the statistical law [25]:

εn =
ε√
M

(7)

where ε is the amplitude of the white noise. Generally, the value of εn is 0.2, and the value of M is 100.
In order to ensure that the algorithm converges quickly and results in efficient detection, ε should not
be too small.
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Finally, the raw signal x(t) can be decomposed as follows:

x(t) =
I

∑
i=1

ci(t) + rI(t) (8)

4. Experimental System

This section describes the materials required to apply this methodology experimentally, including
test materials, a laboratory-scale pneumatic conveying system, and a data acquisition system.

4.1. Test Materials and System

4.1.1. Test Materials

For health and safety considerations, dry glass beads with a density of 2500 kg/m3 were selected
as the test material. Baking the glass beads in an electric oven at 100 ◦C for about 4 h ensured that
the beads were dry, which was necessary to reduce the humidity effect on the generated AE signals.
Furthermore, drying prevented aggregation to stabilize the size of the glass beads. As a preliminary
trial, four particle sizes were chosen, 550 µm, 250 µm, 180 µm, and 150 µm.

4.1.2. System Set-Up

A laboratory-scale flow-loop pneumatic conveying system was developed. Figure 1 shows the
system schematic, consisting of several sections of stainless steel pipe or plexiglas pipe.
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4.1.3. Particle Feeding System

The feeding system consists of two parts: The first is the vibrating feeder, adjusted by a voltage
control, and the second part is a hopper above the vibrating feeder. The two components are installed
at fixed position to make sure the feeding rate remains constant at a certain voltage. Before the
experiments, tests were carried out to investigate the consistency and calibration of the particle flow
rates; the results under different control voltage, presented in Figure 2, show that the particle mass
flow rates from the vibrating feeder are relatively consistent over a 1 min span.
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4.1.4. Piping and Air Conveying System

The piping system was constructed using standard steel pipe with a 50 mm nominal bore, and the
horizontal pipes were divided into four parts. The first section is a T-type tee structure that connects
the vertical branch with the feeder as the solid inlet; one side is the air inlet, and the other connects
to the second section by a flange. The second segment is a plexiglas pipe 1700 mm in length, which
functions as a visual monitor to ensure that the particles do not accumulate at the bottom of the pipe.
Additionally, there are two holes in the pipe wall for installation of the pitot tube flowmeter and the
T-type probe. The Plexiglas pipe then connects with the third section by another flange. There is a
special structure in this connection that installs the mesh probe between the two sides of the flange.
The third part is a stainless steel pipe (1200 mm in length) that connects with the filter section through a
hose, and the filter section connects with the draft fan by a hose as well. The draft fan is manufactured
by the Beijing Draft Fan Corporation, Beijing, China, 2014.

Together with the particle feeding system, these instruments allow for independent adjustment of
both the bead mass flow rates and concentration

4.2. Data Acquisition System

The measurement and data acquisition (DAQ) system comprises two SR 150M AE sensors
(Soundwel Technology Co., Ltd., Beijing, China, 2010) with a 60 kHz–400 kHz bandwidth, two preamplifiers
(Soundwel Technology Co., Ltd., Beijing, China, 2010) with 20/40/60 dB adjustable gain, a high-speed
DAQ board (four channels, Soundwel Technology Co., Ltd., Beijing, China, 2010), and an industrial
control computer.

4.3. Experimental Programs

This research briefly covers three main investigations:

1. The effect of different probe types on AE generation;
2. The relationship between particle mass flow rate and the AE signal;
3. The relationship between particle size and the AE signal.
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In all of these experiments, the flow velocity was measured by a pitot tube flowmeter inserted into
the piping system. The sampling frequency is 1 MHz and the number of data points for the AE signal
is 16,384, with a corresponding sampling time of 16.384 ms. To reduce the influence of the air velocity
on the generated AE signals, the flow velocity was set at 21 m/s, as a constant parameter. The particle
feeding rates were varied from 6 g/s to 16 g/s with an increment of 2 g/s, and the volumetric particle
concentrations for pneumatic conveying at different feeding rates are summarized in Table 1. Each test
condition was repeated four times, corresponding to 200 AE samples.

Table 1. Experimental test conditions.

Conveying Velocity (m/s) Particle Mass Flow Rate (g/s) Particle Loading (%) Particle Size (µm)

21 6 to 16 with an increment of 2 0.006–0.016 550/250/180/150

5. Results and Discussion

This section presents and discusses the data acquired by the AE signal acquisition system for the
experimental parameters mentioned above.

5.1. Effect of Different Signal Acquisition Methods

To realize an on-line measurement system, data processing time should be short. While the
experiments were conducted for fixed conditions, the movement of particles was still disordered.
Therefore, the obtained data should be representative of smaller data volumes, as required by a
real-time system. Two different probe types were compared. The first one was of the T-type, shown in
Figure 3, and the second was the wire-mesh type (Figure 4). When the T-type probe was installed in
the system, since the sensitive area is concentrated, only part of the particles would have contact with
the T-type probe. Together with the uncertainty of the flow type, the uncertainty of particle impact
would increase and unpredictable. The wire-mesh probe does not pose this same challenge. Without
increasing the occupation of the cross-sectional area, the wire mesh covers the entire cross-sectional
area, while not significantly affecting the pipe’s cross-sectional volume. Thus, the wire-mesh probe
can be effectively increasing the number of particle impacts.
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Figure 5 presents typical raw AE signals acquired simultaneously by two AE sensors attached on
both the T-type and wire-mesh probes. This signal corresponds to a particle mass flow rate of 16 g/s
and a particle size of 550 µm. The peak amplitude of the AE signal obtained by the T-type probe is
larger than that recorded by the wire-mesh probe. Figure 6 presents the samples retrieved from the
raw AE signals, for both probes, and each graph column was collected at the same time. All data in
Figure. 6 were extracted randomly from the entire raw signal. One can see that the signals for the
T-type fluctuate more than those from the wire-mesh probe. Figure 7a shows the root mean square
(RMS) of AE signal for the two probe types. Even though the signal peak-amplitude for the T-type
probe is higher, the RMS value for the wire-mesh probe is slightly greater than for the T-type probe.
Figure 7b shows that the relative error for the wire-mesh probe deviates less from the zero line, which
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means that the randomly selected signals acquired by the wire-mesh probe are more representative of
the sample. Therefore, it can be concluded that the AE signal is more stable and representative for
the wire-mesh probe than for the T-type probe. Figure 8 plots the RMS average values (for all four
repeated tests) of the AE signals with respect to particle mass flow rates.Appl. Sci. 2019, 9 FOR PEER REVIEW  8 
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It is worth noting that as mentioned, the AE signal RMS obtained by the wire-mesh probe is higher
than for the T-type probe, and this value gap increases with a growing particle mass flow rate.

5.2. Relationship Between Particle Mass Flow Rate/Size and The Ae Signal

In this section, the influences of particle mass flow rate and size were investigated. As discussed,
the AE signals obtained by the wire-mesh probe are more reliable and representative than the signals
obtained by the T-type probe. Therefore, the data used in this section results from the wire-mesh
probe sensor.

First, the AE signals under a particle mass flow rate of 14 g/s and a particle size of 150 µm were
analyzed. It can be seen from Figure 9 that nine IMF components, together with a residual r9, were
generated from the AE signal. In the time domain, the amplitude of all IMF components decreases by
several orders of magnitude from the highest value in IMF1 to the lowest in IMF9. In the frequency
domain, the same trend was observed, displayed in Figure 10, i.e., IMF1 has the highest instantaneous
frequency and IMF9 has the lowest.



Appl. Sci. 2019, 9, 501 10 of 15

Appl. Sci. 2019, 9 FOR PEER REVIEW  10 

It is worth noting that as mentioned, the AE signal RMS obtained by the wire-mesh probe is 
higher than for the T-type probe, and this value gap increases with a growing particle mass flow 
rate.  

5.2. Relationship Between Particle Mass Flow Rate/Size and The Ae Signal 

In this section, the influences of particle mass flow rate and size were investigated. As 
discussed, the AE signals obtained by the wire-mesh probe are more reliable and representative than 
the signals obtained by the T-type probe. Therefore, the data used in this section results from the 
wire-mesh probe sensor.  

First, the AE signals under a particle mass flow rate of 14 g/s and a particle size of 150 μm were 
analyzed. It can be seen from Figure 9 that nine IMF components, together with a residual r9, were 
generated from the AE signal. In the time domain, the amplitude of all IMF components decreases 
by several orders of magnitude from the highest value in IMF1 to the lowest in IMF9. In the 
frequency domain, the same trend was observed, displayed in Figure 10, i.e., IMF1 has the highest 
instantaneous frequency and IMF9 has the lowest. 

 
Figure 9. The raw signal and the ensemble empirical mode decomposition (EEMD) signal results in 
time domain. 

Figure 9. The raw signal and the ensemble empirical mode decomposition (EEMD) signal results in
time domain.

Appl. Sci. 2019, 9 FOR PEER REVIEW  11 

 
Figure 10. Raw signal and a portion of the intrinsic mode functions (IMFs) in the frequency domain. 

To reduce the influence of random error, five random AE signal samples were selected and 
decomposed. In order to select useful features from the IMF components, the correlation coefficients 
between different IMF components and the raw AE signal were computed, given in Figure 11 
showing that the correlation coefficients for IMF1 to IMF4 are above 0.1. This means that all these 
four components have the potential to represent the raw sample signals to show a relationship 
between the AE signal and pneumatic conveying parameters. The relationship between the energies 
magnitudes for different IMFs, corresponding to the wire-mesh probe and the particle mass flow 
rate, is presented in Figure 12. 

 
Figure 11. Correlation coefficients between the IMF components and the raw AE signal. 

It can be concluded that given the same particle size, with an increasing particle mass flow rate, 
the energy of IMFs will gradually increase. This can be explained, under certain conditions, since the 
increase in particle mass flow rate boosts the number of effective interactions, it causes an energy 
increase in the IMFs. Additionally, under the same airflow and particle mass flow rate, an increase in 

Figure 10. Raw signal and a portion of the intrinsic mode functions (IMFs) in the frequency domain.

To reduce the influence of random error, five random AE signal samples were selected and decomposed.
In order to select useful features from the IMF components, the correlation coefficients between
different IMF components and the raw AE signal were computed, given in Figure 11 showing that
the correlation coefficients for IMF1 to IMF4 are above 0.1. This means that all these four components
have the potential to represent the raw sample signals to show a relationship between the AE signal
and pneumatic conveying parameters. The relationship between the energies magnitudes for different
IMFs, corresponding to the wire-mesh probe and the particle mass flow rate, is presented in Figure 12.
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It can be concluded that given the same particle size, with an increasing particle mass flow rate,
the energy of IMFs will gradually increase. This can be explained, under certain conditions, since the
increase in particle mass flow rate boosts the number of effective interactions, it causes an energy
increase in the IMFs. Additionally, under the same airflow and particle mass flow rate, an increase in
particle size results in rising IMF energy as well. This phenomenon is due to the high kinetic energy of
single particles.

To analyze the relationship between the features and particle flow rate, a linear-fitted line for the
energies of the IMFs under given particle size is computed, and a parameter termed as the average
relative deviation from linearity, δ, is introduced and defined as:

δ =
1
M

M

∑
1

|Ye −Ys|
Ye

∗ 100% (9)

where Ye is the experimental energy under different mass flow rates; Ys is the corresponding value
for the fitted line, given the same condition represented by Ye; and M is the number of particle mass
flow rate conditions. δ can illustrate the performance of the line fitting, and Figure 13 shows the
average relative deviation for different IMF components. Apparently, all δ-values are under 0.1 (10%),
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meaning that they are all acceptable for an industrial process. Considering the four particle sizes, IMF3
or IMF4 may be best suited to develop the relationship for particle mass flow rate measurement in
industrial processes.
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After determining a fitting process, additional experimental conditions sought to validate the
approach, and the results are presented in Table 2. After analysis by the EEMD method, all of the results
were compared with the described fitting function, and the resulting relative deviations are displayed
in Table 3. One can note that all of the relative deviations are under 10%. In view of these additional
data points, it is clear that the energies for IMF3 and IMF4 have the best linear relationship with
particle mass flow rates for different particle sizes, which is useful in characterizing flow rate change.

Table 2. Additional experiment conditions for validation.

Conveying Velocity (m/s) Particle Mass Flow Rate (g/s) Particle Loading (%) Particle Size (µm)

21 18/20 0.018/0.02 550/250/180/150

Table 3. Relative deviation for the validation experiments.

Particle Mass Flow Rate (g/s) IMF Number 550 µm 250 µm 180 µm 150 µm

18

IMF1 2.041 0.424 4.300 3.399
IMF2 2.677 0.392 5.895 4.483
IMF3 2.161 1.726 4.063 3.176
IMF4 2.704 0.387 3.839 2.256

20

IMF1 0.580 5.874 3.784 4.522
IMF2 2.474 6.552 4.852 4.405
IMF3 3.439 3.587 1.909 3.802
IMF4 1.454 5.532 4.051 3.620

In Figure 12a, there are two magenta ovals to specify two data points that, while representing
different conditions, nearly share the same energy value. To consider this further, Table 4 presents the
IMF energies for the two different conditions. The first row represents a particle mass flow rate of
6 g/s and a particle size of 180 µm; the second row corresponds to 14 g/s and 150 µm, respectively.
This side-by-side comparison validates the value similarity between the two IMF components, which
shows a case where distinguishing the two could result in an incorrect judgment. Therefore, at least
two parameters are required to avoid incorrect judgment.
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Table 4. intrinsic mode function (IMF) energy for different conditions.

Sample Number IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

1 630.921 98.471 21.726 5.857 0.725 0.305 0.186 0.079 0.050
2 637.792 97.377 19.765 5.552 0.775 0.316 0.163 0.094 0.053

In this paper, the mean-squared error contribution fraction (MSECF) for different IMFs is
defined as:

pi =

1
N ∑N

1

(
ci(n)− ci(n)

)2

∑m
1

(
1
N ∑N

1

(
ci(n)− ci(n)

)2
) (10)

which indicates the importance of the IMF components to the raw AE signal. N is the sampling

number (set as N = 16384); 1
N

N
∑
1

(
ci(n)− ci(n)

)2
is the mean-squared error; and m is the number of the

IMF component.
Figure 14 presents the MSECF for different IMF components. As the particle size increases,

according to the formula 1, the dominant frequency of the AE signal gradually decrease, which result
in a gradual decrease in the MSECF of the high frequency components. This can explain why the
MSECF of the IMF1 would have a reversely performance compared with other IMF components, and
the curves for IMF4 indicate the four particle sizes clearly. Therefore, the MSECF may perform better
when distinguishing particle size. The linear fit for the average MSECF respective of particle size is
presented in Figure 15, with the fitting equation:

y = 0.55858 + 0.00144 ∗ x (11)

In this fitting function, y is the MSECF value, and x represent the particle flow rate. The adjusted
R-Squared of the curve is 0.98745, which indicates a good fit.
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6. Conclusions

This paper develops two intrusive probes to collect the AE signals in pneumatic conveying,
compares the AE signals characteristics of the two probes and analyze the relationship between the
signals and particle flow rate or particle size. The conclusions are as follows:

1. Comparison of the RMS values of AE signals illustrates that the acoustic emission signal acquired
by a wire mesh is more reliable than the T-type probe.

2. After the signals decomposed by the EEMD algorithm, the IMF1 to IMF4 have the potential to
represent the raw sample signals to show a relationship between the AE signal and pneumatic
conveying parameters.

3. By comparing the average relative deviation, it is obvious that the energies of the IMF3 or IMF4
can be used to develop a linear relationship with particle flow rate.

4. Instead of the energies of the IMF components, the MSECF of IMF4 have a good performance to
distinguish particle size.
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