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Featured Application: The proposed method for easily obtaining contoured insoles from the
variation of the insole foot area together with the pain pressure threshold could potentially be
applied to orthotic shoe designers for reducing pain in calcaneal spur patients.

Abstract: The objective of this study is to investigate the effect of contouring the shoe insole on
calcaneal pressure and heel pain in calcaneal spur patients. Calcaneal pressure was measured using
three force sensors from 13 patients including three males and 10 females. These patients have plantar
heel pain due to calcaneal spurs, and we examined five customized contour insole foot areas (0–100%).
Sensors were attached at the central heel (CH), lateral heel (LH) and medial heel (MH) of the foot. The
pain was measured using an algometer and evaluated by the pain minimum compressive pressure
(PMCP). In this study, it was observed that the calcaneal pressure decreased with increasing insole
foot area. In addition, increasing the insole foot area from 25% to 50% can reduce the calcaneal
pressure approximately 17.4% at the LH and 30.9% at the MH, which are smaller than the PMCP,
while at the MH, pressure reduced 6.9%, which is greater than the PMCP. Therefore, to reduce pain,
one can use 50% insole foot area, even though at MH it is still 19.3% greater than the PMCP. Excellent
pain relief was observed when using 100% insole foot area, as the pressures in those three areas are
lower than the PMCPs, but it is not recommended because it requires large production costs.

Keywords: calcaneal spur; pain minimum compressive pressure; contour of shoe insole; insole
foot area

1. Introduction

Plantar heel pain is one of the most common musculoskeletal conditions affecting the foot in
adults, with a highest incidence at the age of 40 to 60 years [1,2]. There are many causes of pain in the
plantar heel area, and one of them is due to a calcaneal/heel spur [3].

A calcaneal spur is a condition where a calcium deposit grows between the heel and arch of the
foot [4]. Generally, this does not affect a person’s daily life, but repetitive stress from activities may
result in the spur breaking into sharp pieces and pressing the nerves of the plantar fascia [5–7]. This
condition causes plantar fasciitis, in which patients experience pain and tenderness at the heel [8,9].
People who are obese, individuals with either flat feet or high arches, and individuals who engage in
prolonged standing or walking are very vulnerable to this disease [6].
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Heel pain treatment (including pain caused by a calcaneal spur) is listed in the document
of the Clinical Practice Guideline (CPG) developed by the heel pain committee of the American
College of Foot and Ankle Surgeons (ACFAS), which recommends quick procedures in assessment
and management of heel pain [10]. The authors classify treatments into three phases for heel pain
treatments, and the use of orthotic shoes is recommended in phase II.

Orthotic shoes for calcaneal spur patients are specially designed to reduce pain when used for
walking activity by modifying pressure in the heel region [11,12]. Pressure reduction using orthotic
shoes requires knowledge of the location and dimensions of the spur, and typically the minimum
pressure that causes pain in the patient’s heel area. A large-dimension spur (≥6 mm) causes high pain
level compared to a small spur (1–2 mm) [13]. Determining the area in the heel where the spur growth
is plays a major role in knowing the level of the pain. The research on pressure pain threshold (PPT)
in patients experiencing plantar heel pain syndrome using a pressure algometer was presented by
Saban et al. [14]. To measure PPT, the heel was divided into five regions. The results indicated that
PPT levels at posterior/medial, anterior/medial and central regions were significantly lower than at
anterior/lateral and posterior/lateral regions.

Various types of shoe soles have been studied to reduce pain in the heel area. Shoes with thick
soles and extra cushioning can reduce pain while standing and walking [15,16]. High-heel shoes can
shift pressure away from the heel to the mid-foot and fore-foot [17]. Contoured insoles are better than
flat insoles in reducing local peak pressures [18–20]. A number of methods have been carried out to
estimate the contact pressures or pressure distribution patterns in both feet for each subject during
standing and/or walking activity. The methods applied the finite element method (FEM) [15], used
a pressure sensor, that is, the Force Sensing Resistor (FSR) [16,17], were based on a weighting scale
method [18], used a flexible F-Scan® insole sensing system [19], or used capacitance sensor/transducers
(the PEDAR® pressure measurement system) [20].

Commonly, to obtain a contour-customized in-shoe foot orthotics is done by taking a plaster
cast of the patient’s foot plantar surface (the negative cast) and then moulding this negative cast on
a plaster casting board to obtain the positive cast [21]. Tsung et al. [18] made the positive cast with
full-weight-bearing and semi-weight-bearing by directly printing the plantar foot on the casting board
placed on top of the electronic balance. Another method to obtain the patient’s foot plantar surface is to
use 3D scanning, which is the latest technology that has been widely used by many researchers [22,23].
This study aims to determine the effect of contouring of an in-shoe foot orthosis on heel pressure while
standing, and its relationship to the pain in the heel area.

2. Materials and Methods

Thirteen patients (3 male and 10 female) at the local public hospital Tugurejo Semarang with
plantar heel pain due to a calcaneal spur from June 2017 to August 2018 were involved in the
experimental work of the study. The ethical clearance has been approved and issued by the Ethics
Committee of the Tugurejo Hospital. All subjects have also signed and provided their written informed
consent before participating in this study. The diagnosis of plantar heel pain of the patients was based
on pain upon palpation. The mean age of the subjects was 56.5 ± 9.9 years (range between 38–73 years),
mean height was 155.6 ± 7.6 cm (range from 144 to 172 cm) and mean weight was 63.3 ± 9.4 kg (range
between 50–84.6 kg). The location and dimension of each patient’s spur were obtained from lateral
X-rays [17]. The length of the spur is classified into 3 types: small (1–2 mm), medium (3–5 mm) and
large (≥6 mm) [13]. There were 7 patients with a calcaneal spur on both feet, but in this study, only the
longest spur was evaluated because there is a significant correlation between the length of spur and
the pain minimum compressive pressure (PMCP) [17].

In order to obtain an exact location and dimension of the spur in the plantar view as shown in
Figure 1 up, each patient was requested to do a two-dimensional footprint using a digital footprint
scanner (LSR 2D Laser Foot Scanner, Vismach Technology Ltd., China). This scanner is equipped with
software to measure foot length (FL) and foot width (FW) to determine the shoe size and heel width
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(HW) of each patient [24]. The spur is assumed to be located in the heel center line, which is a line
drawn from the center of the heel (CH) to the tip of the second toe [25].

Figure 1. (up) Location and dimension of the spur in the plantar view; (down) Five locations of the
pressure pain threshold (PPT) around spur growth.

The pain in the heel area was measured using an FDIX 25 algometer (Wagner Instruments,
Greenwich CT, USA), which consists of a flat rubber tip probe 1.0 cm in diameter [26]. This instrument
can display the compression force in either Newtons or kilograms and also can measure the pressure
which is calculated from the force divided by the probe area. The region of the pain pressure threshold
(PPT) was determined around the spur growth which is divided into five points: point 1 at the base of
the spur, and the next compressive test points at the anterior site (point 2), the lateral site (point 3), the
posterior site (point 4), and the medial site (point 5), made circular with radius of spur length, L plus
1 cm as presented in Figure 1 down. The addition of 1 cm is needed to compensate for the diameter
of the algometer probe. The calculation method of PPT region in this paper is similar to the study
conducted by Saban et al., but the exact location of pain suppression was not specified and the patients
recruited were not specifically recruited due to the calcaneal spur [14].

To measure PPT, the patient was requested to lay supine in a relaxed position and press the
algometer probe at point 1 as shown in Figure 1 down. S is the distance from the tip of the heel to the
base of the spur and L is the length of the spur. We increased the pressure gradually until the patient
complained of pain. We recorded the pressure value and applied a similar procedure to others points.
From the recorded data, the PMCP and the point location in each patient can be monitored [17].

2.1. Determining the Contour of the Shoe Insole

In this study, the negative cast of the custom insole foot contour is made from a 3D foot scanner
(ScanPod 3D, Vismach Technology Ltd., Hongkong, China). The accuracy of this scanner is ± 1.0 mm
and the output is in the standard language (dxf/stl/wrl/obj/ply/asc). These formats are associated
with any 3D software, for example, AutoCAD. The output can be in the form of the 3D plantar the of
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foot in difference of colors as presented in Figure 2a, where the red color indicates where the foot has
the largest convex (largest z-coordinates), the 3D foam negative impression to make a negative cast
of the foot as shown in Figure 2b, and the 3D positive model of the footprint in the form of a foam
impression as shown in Figure 2c [27].

Figure 2. Example outputs of 3D scanning: (a) footprint depth in difference of colors; (b) 3D foam
negative impression; (c) footprint 3D positive model.

This technique has been used previously by Telfer et al. [22] and Stankovic et al. [23]. The
difference between the technique proposed in this paper and the above-mentioned published papers
is in the variation of the shape of the foot that was evaluated. In this study, the shoe insole foot
contours are distinguished by the insole foot area, where the largest area is equal to the contour of
the unloaded foot (100% A) and the smallest is the same as the flat insole (0% A). This is based on the
fact that the sole of the foot will follow the contour of the shoe insole as long as it does not exceed
the contour of the unloaded foot. There were 5 variations of shoe insole foot area, that is, (1) 100% A,
(2) 75% A, (3) 50% A, (4) 25% A, and (5) 0% A. One hundred percent and zero percent areas express the
contour and projection areas of the 3D scanning result of the foot evaluated using Rhinoceros software,
respectively. The other shoe insole area is calculated as follows:

n% A = n% x ∆A + 0% A, (1)

where n are 75, 50 and 25 and ∆A = 100% A–0% A.
Varying the area of shoe insole means changing the z-coordinates at 100% A until it reaches

z-coordinates at 75% A to 25% A. The procedure for determining variations of the shoe insole area is
presented in detail in Figure 3a. The following steps are conducted in the experimental work:

Scan the foot in 3D format and import this 3D scanned image file into AutoCAD.

(1) Evaluate the area 100% A and 0% A using Rhinoceros software.
(2) Generate the xyz-coordinates of 100%_A by using Microsoft Excel which integrated with

AutoCAD software as presented in Figure 3b.
(3) Adjust the z-coordinates of 100% A to 75% A; initially specify a reduced percentage of 5% (reduced

percentage z-coordinates of 100% A and 0% A are 0% and 100%, respectively) and display the
coordinates in AutoCAD to evaluate its area using Rhinoceros software.

(4) If the area is still much greater than 5 mm2 [28] compared with Equation (1), repeat the procedure
four times by increasing the percentage of 5% reduction.

(5) If the difference of area approaches 5 mm2, increase the percentage reduction to 1–2%.
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A similar procedure (step 4 to 6) is conducted to obtain shoe insole area of 50% A and 25% A by
initially determining that the deduction percentage is slightly greater than the deduction percentage of
75% and 50%, respectively. The z-coordinates for every n% A can then be calculated using Equation (2),
where z, zmax and zmin express the z-coordinates at 100% A (z100%_A) and the largest and smallest
z-coordinates at 100% A, respectively.

zn%A = z −
(

2z − (zmax + zmin)

2

)
x % deduction (2)

Figure 3. (a) Flowchart evaluation of n% insole foot area; (b) Table of 3D coordinates (x, y, and z axis)
generated from AutoCAD with the visualization of the increment of x- and y-axis.

2.2. Measuring Pressure in Heel Area

To measure the burden of its own weight, we used three force sensing resistors (FSR 402, Interlink
Electronics) which are attached to the calcaneal area of the feet with double tape. Determination of the
location of each sensor was performed using an unloaded foot scan around the area that was estimated
to receive a large burden when standing, as shown in Figure 2a. For this purpose, sensor 2 is placed at
CH (0.15 FL) [29] and sensors 1 and 3 are placed arbitrarily at the lateral heel (LH) and medial heel
(MH), in line above sensor 2, under the boundary between the heel and mid foot area (0.31 FL) [30], as
shown in Figure 4.



Appl. Sci. 2019, 9, 495 6 of 12

Figure 4. Illustration of the Force Sensing Resistor (FSR) sensor locations.

The FSR is a polymer thick-film device which exhibits a decrease in resistance with an increase in
the force applied to the active surface. Its force sensitivity is optimized for use in human touch control
of electronic devices. FSRs are not a load cell or strain gauge, though they have similar properties. The
FSR 402 has active area of 0.5” (12.7 mm) diameter, the nominal thickness of 0.018” (0.46 mm), force
sensitivity range of 100 g to 10 kg, and pressure sensitivity range of 1.5 to 150 psi. The relationship
between the load L (grams) and the voltage V (volts) can be expressed by polynomial regression, as
presented in Equation (3). Each sensor is connected to one resistor. The output voltage of the FSR
sensor is read by the Arduino MEGA 2560 microcontroller using 10 pin analog input bits [31]. Then, the
voltage is sent to DAQ software LabVIEW via serial USB to be converted into load using Equation (3).

L = 927.7 V3 − 1643.9 V2 + 1083.5 V − 31.02 (3)

Each patient was requested to stand upright using the appropriate test shoe size for each shoe
insole area. The outsole material is made of Microcell Puff EVA foam and the insole made of Poron
cushioning [32]. Initially, each patient is requested to wear the shoe with 0% A, and three pressure
datapoints from CH, MH and LH areas are recorded. A similar procedure is carried out for the 25% A,
50% A and 100% A, and the results are compared to the value of PMCP which is measured using an
algometer. The patient will feel pain if the pressure in the heel region is greater than the PMCP.

3. Results

Among the 13 patients, seven patients had symptomatic heel spurs on two feet. Since the longest
spur was used in this study, a total of 20 feet were evaluated. The length of spur (L) ranged between 1.5
and 7 mm, as presented in detail in Table 1. According to Table 1, three classifications are determined:
(1) there are two patients with small length of spur, with average L of 1.75 ± 0.35 mm; (2) there are
seven patients with medium length of spur, with average L of 3.93 ± 0.73 mm; and (3) there are four
patients with large length of spur, with average L of 6.50 ± 0.58 mm. Based on data of FL and FW, we
can obtain the shoe size of each patient [33]; one patient has shoe size 37; four patients have shoe size
38; one patient has shoe size 39; four patients have shoe size 40; two patients have shoe size 42; and
one patient has shoe size 43. Thus, we summarize a total of six shoe sizes of 37–40 and 42–43. Each
size is not made in the shoe form, but in the form of a foam impression (Figure 2c), and for variation
in the shoe insole area of 0% A to 100% A, a total of 30 foam impressions were made. The distance
measurements of the center of the heel (used for pressure measurement of sensor 2, Figure 1 up) and
the base of the spur (used for PPT measurement of point 1, Figure 1 down) are not coincident. The
distance from the center of the heel (CH) ranged between 35.1–41.4 mm, and the distance from the
base of spur (S) ranged between 30–41 mm, where there were seven patients with the base of spur
location on the right CH and six other patients at the left CH (the farthest distance of S and CH is
7 mm, and the closest is 0.4 mm).
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Table 1. A detailed description of each subject.

Subject Number 1 2 3 4 5 6 7 8 9 10 11 12 13

Height, cm 155 157 151 153 153 172 150 156 146 159 164 163 144
Weight, kg 57.2 60 50 52 70 63.8 59 68.6 55.3 84.6 62.7 72 67.6

FL, mm 249 266 237 240 252 276 237 251 240 240 270 273 234
FW, mm 98 118 106 91 100 108 96 102 94 100 100 99 90
Shoe size 40 42 38 38 40 43 38 40 38 39 40 42 37

L, mm 4.5 3.0 1.5 4.0 5.0 3.0 4.0 7.0 6.0 7.0 2.0 4.0 6.0
CH, mm 37.4 39.9 35.6 36.0 37.8 41.4 35.6 37.7 36.0 36.0 40.5 41.0 35.1

S, mm 38.0 34.0 36.0 38.0 39.0 41.0 35.0 39.0 30.0 38.0 34.0 34.0 36.0
(CH-S), mm −0.6 5.9 −0.5 −2.0 −1.2 0.4 0.5 −1.4 6.0 −2.0 6.5 7.0 −0.9

The information on the results of PMCP measurements at each heel site is very important to know
which sites have the smallest PMCP value. Table 2 shows the pressure pain sensitivity in patients
with plantar heel pain due to a calcaneal spur at each heel site, where the PMCP ranged between
1.24–3.3 kg/cm2 and averaged 2.09 ± 0.63 kg/cm2. The result shows that the smallest PMCP occurs at
the anterior site, and the PMCP at the medial site was significantly lower than at the lateral site.

Table 2. The pain minimum compressive pressure (PMCP) values at each heel site.

Heel Site Number of
Feet

PMCP (kg/cm2)
PMCP Related to the Length of Spur Types

(kg/cm2)
Mean ± SD (Number of Feet)

Mean ± SD (Range) Small Medium Large

1 1 1.32 1.32 (1) - -
2 5 1.63 ± 0.25 (1.24–1.87) - 1.24 (1) 1.73 ± 0.13 (4)
3 2 3.13 ± 0.25 (2.95–3.3) 2.95 (1) 3.3 (1) -
4 2 2.38 ± 0.37 (2.11–2.64) - 2.38 ± 0.37 (2) -
5 3 2.25 ± 0.41 (1.92–2.71) - 2.25 ± 0.41 (3) -

The procedure to obtain n% insole foot area (Figure 3) produces the values of percentage
deductions that can be applied to all of the shoe insoles (Table 3). The contour results of the foot of the
shoe insole area of 0% A to 100% A from one of the study subjects are shown in Figure 5.

Table 3. The deduction percentage and area of shoe insole result of modification of z-coordinate and
calculation using Equation (1) from one of the study subjects.

% Shoe Insole Area % Deduction
Shoe Insole Area (mm2)

From Modification of
z-Coordinates From Equation (1)

100 0 17,972 17,972
75 16.5 17,063 17,071
50 34.5 16,169 16,170
25 56 15,266 15,269
0 100 14,368 14,368

According to the body weight (BW), there was a relationship between BW and the pressure in
the calcaneal region. As the BW increases, the pressure at MH, LH and CH will increase as well [6].
There was a significant increase in pressure for the MH area, except at 100% A, with an average
correlation coefficient of 0.74. At LH, a significant increase in pressure is seen at 0–50% A with an
average correlation coefficient of 0.85. Furthermore, at CH, a significant increase in pressure is seen
at 0–25% A with an average correlation coefficient of 0.85. To find the effect of area of shoe insole on
the pressure of each pressure sensor in detail, it is easier to use a comparison of the pressure of each
sensor to the BW or the total pressure of all sensors. Table 4 shows the distribution of pressure on
the calcaneal region of one foot (assumed to be the same between left and right feet), expressed as
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a proportion of BW and the percentage of each sensor to the total pressure of all of the sensors. In
comparison to the BW, it is seen that the percentage area of the shoe insole is increased. However, the
peak pressure is decreased for the MH, LH and CH. The significant decreases are seen at the MH of
75% to 100% A and at the LH of 50% to 75% A and 75% to 100% A, respectively. In comparison to the
total pressure of all sensors seen, there is a significant increase at the MH of 50% to 75%. In contrast,
the pressure at the LH shows a significant decrease at the same percentage areas of shoe insole.

Figure 5. Example of negative casts of the foot from one subject.

Table 4. Comparison of load of each sensor to the BW and all sensors (%).

Percentage Area
of Shoe Insole 0% 25% 50% 75% 100%

Calcaneal region Comparison to the BW (mean ± SD)
MH 10.14 ± 1.46 8.93 ± 1.16 8.26 ± 1.65 7.01 ± 1.09 3.64 ± 0.60
LH 7.46 ± 1.28 6.70 ± 1.06 5.53 ± 0.91 2.23 ± 0.52 0.93 ± 0.16
CH 1.44 ± 0.20 1.05 ± 0.21 0.73 ± 0.09 0.59 ± 0.09 0.24 ± 0.06

Calcaneal region Comparison to all sensors (mean ± SD)
MH 53.31 ± 0.82 53.60 ± 1.55 56.69 ± 1.26 71.49 ± 2.36 75.47 ± 3.04
LH 39.11 ± 1.01 40.11 ± 1.04 38.20 ± 0.78 22.44 ± 2.55 19.44 ± 2.41
CH 7.58 ± 0.18 6.29 ± 0.51 5.11 ± 0.48 6.07 ± 0.20 5.09 ± 1.03

The distribution of loading at the MH, LH and CH for the five percentage areas of shoe insole is
shown in Figure 6. The pressure applied at the CH is lower than the PMCP for all percentage areas of
the shoe insole, while the pressure at the LH is lower than the PMCP with increasing percentage area
of shoe insole from 25%. The magnitude of pressure is significantly greater than PMCP at the MH of
0% to 50% A (that is, 34.07%, 25.09% and 19.30% of PMCP, respectively). In relation to the length of
spur, the pressures applied at the MH, LH and CH for five percentage areas of shoe insole are shown in
Table 5 and Figure 7. As percentage area of shoe insole increased, the pressure in the calcaneal region
decreased for all lengths of the spur. For the small and medium lengths of spur, the pressure at MH
is greater than PMCP at percentage area of shoe insole 0–50%, while for the large length of spur, the
pressure at MH is greater than PMCP at percentage area of shoe insole 0–75%. At LH, the pressure
is slightly higher than PMCP at small length of spur only in the 0% A, while at the medium length
of spur, the pressure is lower than PMCP for all percentage areas of shoe insole. For large lengths of
spur, the pressure at the LH is greater than the PMCP in the percentage area of shoe insole 0–50%. The
significant lowered pressure is seen at the CH for all lengths of spur and percentage areas of the shoe
insole, compared to the PMCP.
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Figure 6. Calcaneal loading during standing for the five percentage areas of shoe insole, compared to
the PMCP measured using the algometer (mean ± SD).

Table 5. The distribution of pressure at the MH, LH and CH for each length of spur.

Spur
Length

PMCP
(kg/cm2)

Calcaneal
Region

Calcaneal Loading for Each Percentage Area of Shoe Insole (kg/cm2)
0% 25% 50% 75% 100%

MH 3.00 ± 0.34 2.67 ± 0.22 2.37 ± 0.45 2.06 ± 0.27 1.02 ± 0.10
Small 2.14 ± 1.15 LH 2.17 ± 0.34 1.96 ± 0.27 1.61 ± 0.24 0.69 ± 0.15 0.27 ± 0.04

CH 0.43 ± 0.05 0.30 ± 0.06 0.22 ± 0.02 0.17 ± 0.02 0.05 ± 0.00
MH 3.11 ± 0.33 2.75 ± 0.21 2.52 ± 0.43 2.15 ± 0.26 1.18 ± 0.22

Medium 2.29 ± 0.66 LH 2.28 ± 0.32 2.06 ± 0.26 1.70 ± 0.23 0.68 ± 0.11 0.29 ± 0.04
CH 0.44 ± 0.04 0.32 ± 0.06 0.23 ± 0.02 0.18 ± 0.02 0.08 ± 0.01
MH 3.35 ± 0.69 2.91 ± 0.45 2.84 ± 0.91 2.34 ± 0.56 1.13 ± 0.18

Large 1.73 ± 0.13 LH 2.52 ± 0.68 2.24 ± 0.54 1.86 ± 0.48 0.71 ± 0.22 0.31 ± 0.08
CH 0.47 ± 0.09 0.36 ± 0.12 0.24 ± 0.03 0.20 ± 0.04 0.09 ± 0.03

Figure 7. The pressure at the MH, LH and CH for the five percentage areas of shoe insole and each
length of spur, as presented in Table 5.



Appl. Sci. 2019, 9, 495 10 of 12

4. Discussion

The determination of PPT location as a function of base and length of spur (Figure 1 down) is
necessary for obtaining an accurate PMCP value and the point location in each patient. The results
of PPT from 13 patients, as shown in Table 2, showed that the PMCP occurs mostly at the anterior
site (that is, 38.5%). This result is similar to previously published work reported by Goff et al. [6] and
Wibowo et al. [17]. These PPT results are also in accordance with the study of Saban et al. [14], which
indicated that the average PMCP at the medial site was significantly lower than the one at the lateral
site (that is, 2.25 and 3.13 kg/cm2, respectively).

The research for obtaining the contour of the sole by varying the contact area of the foot using 3D
scanners is a novelty. By using a 3D foot scanner [22,23,27], it is easier to obtain a form of a shoe insole
mold (foot impression cast) than previously, which involved placing the sole of a foot on a gypsum
mold for any different bearing conditions [18,19]. The procedure that is described in Figure 3a can be
applied to determine any foot impression cast shape of the shoe insole area. For example, it is desirable
to get a foot impression cast shape shoe insole area of 70%; the initial value of the percentage of z
deduction can be set to 10% (Table 3). The generating xyz-coordinates obtained from Equation (2) can
be made into a 3D negative cast model from wood (Figure 5) by using Computer Numerical Control
(CNC) milling.

Table 4 is used to check the validity of load measurements and the position of the foot during
standing. In comparison to the BW, at 0% A, it shows that the subjects’ feet support a total load
of 19.04% of BW in the calcaneal region. This result is similar to the previous study of 19.32% BW
presented in Ref. [34]. In comparison to the total pressure of all sensors, the pressure at MH is larger
than at LH for all insole foot areas, which indicates that most of the patients’ heels tend to pronation
while standing [35,36]. The pronation tendency occurs very clearly in 75% A and 100% A, and are
possibly caused by the sensor mounted at the LH shifting to the heel center line for holding pain, seen
from the significant decrease in load to only 22.44% and 19.44%, respectively, compared to MH.

This study proved that contoured insoles are better than flat insoles in reducing local peak
pressures [18–20], but in relation to pressure relieving pain, are only 100% A at MH and 50–100% A
at LH, which are lower pressures than the PMCPs. The pressures at CH are all lower than PMCP
for the all insole foot areas (Figure 6). These results are corresponding to the research conducted by
Chia et al. [16] and Bonanno et al. [37], and prove that the contoured insole increases foot area contact
and reduces pain pressure in the calcaneal region. To find the percentage of insole foot areas suitable
for each patient without causing pain in detail, we can examine the evaluation of pressure in the
calcaneal region associated with the types of spur length (Table 5). For large spur lengths there are
four patients requiring a 100% A; for the medium spur lengths there is one patient requiring 50% A,
five patients requiring 75% A, and one patient requiring 100% A; while for small spur lengths there are
two patients requiring 50% A and 100% A, respectively.

The average difference between the location of the base of the spur (S) and the location of the
center of the heel (CH) was 1.37 mm (Table 1). Therefore, the position of the CH as the basis for the
measurement of pressure using the FSR sensor was relatively accurate, since the area of the sensor was
still able to compress the base of the spur.

5. Conclusions

The main criterion for the use of a contoured orthotic shoe insole for heel pain sufferers due to
a calcaneal spur depends on how well it can reduce pain when used for standing. Therefore, the
information on how the shape of the contour of the foot changes with weight bearing, which results
in the smallest pain at the heel area, is essential in shoe design. This quantitative study shows that it
is easy to obtain a variety of shoe insole foot contours by varying the contact area of the shoe insole,
compared to directly printing the plantar foot on the casting board for any weight bearing condition.
The use of larger insole areas could reduce local peak pressure. Contoured insoles were significantly
better than flat insoles.
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To reduce pain in patients with a calcaneal spur while standing, we can use 50–100% insole foot
area. The average pressures at CH and LH for a 50% insole foot area are 0.23 kg/cm2 and 1.73 kg/cm2,
respectively, which are significantly lower than the average PMCPs (89.0% and 17.1%, respectively),
while the average pressures at 75% insole foot area are 0.19 kg/cm2 and 0.69 kg/cm2, respectively,
which are also significantly lower than the average PMCPs (91.1% and 67.0%, respectively). On
the other hand, the average pressures at MH for a 50% and 75% insole foot area are 2.59 kg/cm2

and 2.20 kg/cm2, respectively, which are still greater than the average PMCPs (19.3% and 4.7%,
respectively). One hundred percent insole foot area can also be used, but is not recommended—even
though the average pressure in all regions and the percentage of insole foot area are smaller than the
average PMCP—because it requires large production costs.
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