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Abstract: A new femtosecond, Extreme Ultraviolet (EUV), Time Resolved Spin-Angle Resolved
Photo-Emission Spectroscopy (TR-Spin-ARPES) beamline was developed for ultrafast materials
research and development. This 50-fs laser-driven, table-top beamline is an integral part of the
“Ultrafast Spintronic Materials Facility”, dedicated to engineering ultrafast materials. This facility
provides a fast and in-situ analysis and development of new materials. The EUV source based on
high harmonic generation process emits 2.3 × 1011 photons/second (2.3 × 108 photons/pulse) at H23
(35.7 eV) and its photon energy ranges from 10 eV to 75 eV, which enables surface sensitive studies of
the electronic structure dynamics. The EUV monochromator provides the narrow bandwidth of the
EUV beamline while preserving its pulse duration in an energy range of 10–100 eV. Ultrafast surface
photovoltaic effect with ~650 fs rise-time was observed in p-GaAs (100) from time-resolved ARPES
spectra. The data acquisition time could be reduced by over two orders of magnitude by scaling the
laser driver from 1 KHz, 4W to MHz, KW average power.
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1. Introduction

Angular Resolved PhotoElectron Spectroscopy (ARPES) is one of the most powerful techniques
for the investigation of the electronic energy levels and momenta (k-vectors) at the surface of a solid
material, resulting in detailed characterization of the energy band dispersion and Fermi surface [1].
The Extreme Ultraviolet (EUV) radiation from Synchrotron Radiation Sources (SRS) provides the
narrow-bandwidth radiation to measure electron energy levels with excellent resolutions of <10 meV.

The SRS-driven beamline was miniaturized to table-top laser-driven laboratory-size ARPES using
UV photons (~6 eV) for remarkable researches in superconducting materials [2,3]. This was possible by
the advent of chirp pulse amplification (CPA) technique [4], generating high-power femtosecond laser
pulses [2]. The laser-driven ARPES was then extended to ~7 eV UV photons [5] and ~10.5 eV in order
to increase the electronic momentum space [6–8]. New Vacuum Ultra-Violet (VUV) sources which use
metasurfaces to convert TiS laser pulses to 6 eV [9] and 4.5 eV radiation [10] have been reported but
have not yet been used for ARPES.

The laser photoelectron spectroscopy can be extended to the time-domain taking advantage
of the femtosecond pulse duration of the laser-driver [11] and opening the field of time-resolved
ARPES (TR-ARPES) [12–16]. In this technique, the femtosecond laser pulse is split into two pulses
with a beam-splitter. The first pulse (hνexcitation ~1.5 eV in case of Ti: Sapphire laser systems) excites
electrons in the sample material. The second pulse is converted—through nonlinear crystals—to UV
(typically hνprobe ~6 eV) and probes the sample material by extracting photoelectrons (PE) which
are then analyzed in the ARPES. By delaying the UV probe pulse with respect to the Infrared (IR)
excitation pulse, one obtains a time sequence of ARPES spectra, which constitute the “video” of the
electron-motion inside the material.

The femtosecond-laser-based TR-ARPES technique was further developed by extending the
probe photon energy from UV range to EUV range in order to access the full Brillouin zone of the
sample material. This was achieved by converting the laser photons to EUV photons through the
High Harmonic Generation (HHG) process [17–22]. For example, in the Artemis facility [23–25],
an excitation pulse generated by an optical parametric amplifier (OPA), tunable from the near-infrared
(NIR) to mid-IR (photon energy from 1 eV to 60 meV), works as pump pulse and a femtosecond
HHG-based EUV pulse acts as probe pulse, whose photon energy ranges from 10 eV–100 eV by means
of a pulse-preserving monochromator [26,27]. This new type of facility, incorporating HHG EUV
pulses with ~20 fs duration (~10 fs optional) and photon energies extending to ~100 eV, led to the
discovery of several ultra-fast processes in novel materials, such as 2D materials like Graphene, TaS2,
and topological insulators [28–30]. Several laboratories around the world have developed such EUV
beamlines for time-domain research in both materials science and atomic-molecular physics [31–39].

In this paper, we present the new femtosecond EUV beamline for time-resolved Spin-ARPES,
developed for research on ultrafast and spintronic materials. The laser-driven, sec-top beamline is an
integral part of the “Ultrafast Spintronic Materials Facility” at Nanjing University. This facility stations
are dedicated to materials engineering by molecular beam epitaxy (MBE), sputtering and pulsed laser
deposition (PLD). The sample material is easily transferred from the materials engineering stations
to the TR-Spin-ARPES end-station through a fast and contamination-free ultrahigh vacuum (UHV)
transport tube. The facility can provide the in-situ analysis for novel materials, especially for those
sensitive materials, in order to reveal their intrinsic properties.

The paper describes the beamline components shown schematically in Figures 1 and 2: TiS
laser-driver with ~50 fs pulse duration, 4 W average power and 1 kHz repetition rate (Section 2);
HHG EUV Source generating photons with energies >75 eV, with maximum flux of single harmonic
>1011 photons/second (ph/s), ~50 fs pulse duration (>108 ph/pulse/harmonic) (Section 3); EUV
Off-Plane Mounting (OPM) monochromator preserving the pulse duration (Section 4); Focusing and
recombination of the EUV and excitation pulses. The excitation and EUV pulses are focused on the
same focal spot on the sample material (Section 5). The sample material is mounted on a five-axis
manipulator with liquid helium cooling for Spin-ARPES measurements (Section 6); Ultrafast materials
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engineering stations: MBE and PLD growing the new, ultrafast sample materials. The stations are
connected by fast and contamination free UHV transfer tubes to the TR-Spin-ARPES spectrometer
(Section 7). Section 8 describes the beamline characterization. Section 9 describes measurements
of static and time-resolved ARPES. Finally, Section 10 describes the possible EUV beamline scaling
reduction of data acquisition time. This could be achieved by upgrading the laser driver from the 4 W,
1 kHz Ti: Sapphire to the new femtosecond fiber laser with ~kW average power, and MHz repetition
rate, resulting in over two orders of magnitude reduction of data acquisition time.
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TR-Spin-ARPES Beamline and the materials engineering stations.
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Figure 2. The EUV Beamline: (a) engineering drawing and (b) laboratory picture. (1) TiS laser
driver; (2) Laser beam-splitter; (3) Delay line; (4) Focusing lens for excitation pulse); (5) Focusing
lens for HHG; (6) HHG EUV source; (7) EUV monochromator; (8) monochromator exit slit; (9) EUV
detector chamber; (10) Focusing and recombination chamber; (11) Spin-ARPES spectrometer chamber;
(12) Spin-ARPES hemispherical analyzer; (13) Liquid Helium cooling pipes; (14) 4-axis manipulator for
sample; (15) Load lock for sample material; (16) Transfer tube bringing sample material from materials
engineering stations; (17) MBE-2 materials engineering station.
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2. Femtosecond Laser-Driver

The laser-driver is a TiS laser named Libra system from Coherent Inc. ( Santa Clara, CA, USA).
The laser emits ~50 fs pulses, centered at λ = 800 nm, at 1 kHz repetition rate and with 4 mJ pulse
energy. In the normal operation of the beamline, 2.2 mJ laser pulses are typically used. They are
split in two pulses by an 80/20 beam-splitter: (i) ≈1.8 mJ are focused on the gas jet to generate high
harmonics; (ii) the less intense excitation pulse is directed to a delay line and then focused onto the
sample in the Spin-ARPES chamber where the pulse energy, after transmission losses, is ~0.2 mJ.
The laser has a 10 kHz repetition rate option which will be used in the near future to upgrade the HHG
EUV source to a higher repetition rate. At 10 kHz, the maximum laser pulse energy is 0.4 mJ/pulse.
In this configuration, tighter laser focusing will be required for HHG.

3. HHG EUV Source

The laser-driver is focused by a plano-convex lens into the gas jet to generate the EUV source
through the HHG process as shown in Figure 3. The plano-convex lens with a focal length f = 500 mm
focuses the 1.8 mJ laser pulse into the gas target with a focal diameter of ~100 µm and peak intensity
of ~1014 W/cm2. HHG is obtained in Argon or Neon gas jets.
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Figure 3. Schematic of the HHG EUV source: (1) input laser pulse; (2) focusing lens; (3) entrance
windows with anti-reflective (AR) coating; (4) gas nozzle; (5) HHG EUV source; (6) EUV and laser
output to monochromator; and (7) gas input pipe.

The noble gas is injected into the HHG chamber through a pulsed nozzle (Attotech Inc.,
Staffanstorp, Sweeden) controlled by a pulsed valve with an opening time of ~200 µs, which is
synchronized to the laser’s repetition rate. The short opening time of the valve allows a higher
gas density to be injected in order to increase the HHG EUV output compared to continuous gas
injection—while keeping the overall gas pressure in the HHG chamber to <10−3 mbar. The gas backing
pressure on the valve is maintained to 2 bar. The position of the gas nozzle relative to the laser focus is
optimized by a 3-axis manipulator. To avoid re-absorption of the HHG by the noble gas, the HHG
chamber is pumped by a 2200 L/s turbo-pump. The base pressure of the chamber is 10−3 mbar
when gas nozzle is switched on. Differential pumping is used between the HHG chamber and the
monochromator, in order to ensure that a pressure of 10−6 mbar is maintained in the monochromator
even when the gas target is turned on.

4. EUV Pulse-Preserving Monochromator

The EUV generated from the HHG process has a broad spectrum with equally spaced harmonics.
In order to select a single harmonic for time-resolved Spin-ARPES, a pulse preserving EUV
monochromator is used after the HHG chamber. The monochromator utilizes gratings in the off-plane
mount (OPM). In this design, the EUV incident plane is almost parallel to the grooves of the grating.
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Grating monochromators for EUV ultrafast pulses can be realized using two different designs.
The “time-delay compensated” design indicates a monochromator with two grating stages. The first
stage performs the monochromatization on an intermediate slit, while the second stage compensates
for the pulse front-tilt introduced by the diffraction from the first grating. In this case, the instrument
is time-delay compensated and the final temporal response is close to the Fourier limit. Temporal
response as short as 5 fs have been recently measured on monochromatized pulses at 42 eV, being
essentially limited by the intrinsic duration of the generation process [40].

The “time-preserving” design indicates a single-stage grating monochromator in which the
operating parameters are chosen so that the pulse temporal broadening (due to the pulse-front tilt) does
not alter considerably the pulse duration. In the design here presented, the pulse-front tilt is limited
in the few-to-several tens of femtoseconds. The adopted configuration, time preserving in off-plane
mount, has the main advantages in the high throughput as well as geometric simplicity [26,27].

The monochromator consists of two toroidal mirrors, a plane grating and a slit with adjustable
width, as shown in Figure 4. The first toroidal mirror collimates the beam, while the second one focuses
the diffracted beam on the exit slit plane. The monochromator has a set of three interchangeable
gratings with different groove density for different spectral ranges and resolutions. Table 1 shows
the specifications of toroidal mirrors and three gratings. The width of the slit is adjustable so that the
bandwidth of a single harmonic can be controlled to some extent.
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Figure 4. EUV monochromator. (a) off plane mount geometry; (b) laboratory picture: (1) toroidal
mirrors; (2) gratings mounted on translation stage; (3) grating rotation stage.

Table 1. Characteristics of the monochromator gratings. The energy resolution has been calculated on
a 100-µm slit width.

Toroidal Mirrors
Incident angle 3◦

Input/output arms 500 mm

Gratings Altitude 3.5◦

G1
Energy region 10.8 eV–40 eV
Groove density 150 gr/mm
Bandwidth (100-µm slit) ∆E = 0.4 eV @ 20 EV

G2
Energy region 10.8 eV–40 eV
Groove density 300 gr/mm
Bandwidth (100-µm slit) ∆E = 0.2 eV @ 20 EV

G3
Energy region 30 eV–100 eV
Groove density 600 gr/mm
Bandwidth (100-µm slit) ∆E = 0.7 eV @ 50 EV

The overall EUV conversion efficiency of the beamline is estimated as ~2 × 10−7/Harmonic,
considering a laser to HHG efficiency of ~10−6/Harmonic and a beamline overall transmission
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efficiency of ~0.20. The photon flux at the sample needs anyway to be reduced in order to avoid space
charge effects, as discussed in Section 8.5.

5. Focusing and Recombination of the EUV and Excitation Pulses

For TR-Spin-ARPES measurements, the IR pump and EUV probe pulses are focused and
overlapped spatially and temporally on the sample material, shown in Figure 5. The EUV
monochromatized pulses are focused by a grazing-incidence toroidal mirror used in 1:1 configuration
with 1 m input and output arms, in order to minimize aberration. The diameter of the focused EUV
on the sample material could therefore be as small as the EUV source diameter, which is estimated to
<30 µm. In normal operation, in order to avoid space charge effects at the sample material, the EUV
spot size on the sample should be much larger than source size (see Section 8.4). This is achieved by
slightly de-focusing the toroidal mirror. The EUV focal spot on the sample material is measured on a
Ce: YAG crystal which converts the EUV scattered radiation into visible green light. The excitation
laser pulse is also focused on the sample material by a lens with 1.3 m focal length. The spot-size is
adjusted to illuminate an area of about 1 mm × 1.5 mm in order to provide the optimum excitation
fluences on the sample material, typically 1–2 mJ/cm2/pulse.
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Figure 5. The optical diagram of focusing and recombination chamber: (1) EUV pulse from the
monochromator; (2) EUV focusing toroidal mirror on a 5-axis stage; (3) sample materials or CE:YAG
crystal; (4) Excitation laser pulse (ELP) from the variable delay line (VDL); (5) AR-coated plano
convex lens with a focal length of f = 1.3 m. (6) The D-shaped re-combination mirror, reflecting ELP;
(7) Spin-ARPES detector; (8) Focusing and recombination chamber; (9) Spin-ARPES vacuum chamber;
(10) Differential pumping system with three pinholes; (11) Telescope; (12) CCD camera; (13) Plane
golden mirror for observing the overlapping of two beams; (14) Linear stage.

The vacuum in the focusing and recombination chamber is maintained at 10−8 mbar and the
ARPES chamber is operated in the 10−10 mbar vacuum range. The differential pumping between the
focusing and recombination chamber and the ARPES chamber is achieved by the three pinholes placed
in the pipe between the two chambers.

6. Spin-ARPES Electron Spectrometers

The ARPES spectrometer measures: (a) the Kinetic Energy (KE) of the photoelectrons emitted
by the sample material when illuminated by EUV photons, and (b) the angles θ and ϕ, representing
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the momentum-vector of photoelectrons emerging from the sample material surface, as shown in
Figure 6a. The electron binding energy is calculated by subtracting the measured photoelectron
energy from the energy of the EUV photons. The wave-vector (k) is calculated taking the projection
of the PE momentum onto the crystal plane. The engineering drawing of the ARPES spectrometer is
illustrated in Figure 6b. The PHOIBOS 150 Hemispherical Energy Analyzer can separate photoelectrons
with different kinetic energy, supplied by SPECS GmbH (Berlin, Germany). For measurements, two
typical detectors are equipped in our Spin-ARPES: one is an imaging CCD for normal electronic band
structure, another is a Mott spin detector, which can probe the spin-polarization of electron in the
sample materials. The Spin-ARPES chamber is also equipped with a Helium-discharge lamp (UVS300)
as UV source. The UVS 300 delivers (always) two emission levels lines: He-I with 21.2 eV and He-II
with 40.8 eV. Here, we have used He-I as the ARPES source.
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Figure 6. Angle Resolved Photo-emission Spectrometer (ARPES): (a) schematic and (b) engineering
drawing. (1) sample material to be analyzed; (2) EUV pulse; (3) excitation laser pulse (ELP);
(4) photo-electron (PE); (5) Hemispherical electron analyzer; (6) ARPES detector with multichannel plate
(MCP), phosphor screen, telescope and CCD camera; (7) Spin-spectrometer with Mott spin detector;
(8) sample material manipulator with five axes and liquid He cooling; (9) load lock for inserting sample
material into the ARPES chamber; (10) ultra-high vacuum (UHV) ion pump; (11) XYZ fine mechanical
adjustment for positioning the center of the ARPES chamber exactly in the focal-point of the EUV
toroidal mirror.

7. Ultrafast Materials Engineering Stations

The Ultrafast Spintronic Materials Laboratory integrates the ultrafast materials engineering
stations with the EUV Beamline. The new sample materials are engineered in two types of deposition
chambers for stacks of single atomic or molecular layers: the Molecular Beam Epitaxy (MBE) stations
and the Pulsed Laser Deposition (PLD) stations (Figure 1). The new, ultrafast properties of the
engineered sample material are analyzed in the TR-Spin-ARPES spectrometer. To avoid contamination
the sample material is transferred directly through the UHV Transfer Tube from the deposition stations
to the TR-Spin-ARPES chamber. This fast, contamination-free process will make possible not only
analysis but also development of new materials.

7.1. Molecular Beam Epitaxy Stations

In the molecular beam epitaxy (MBE) stations, the materials to be deposited are placed in the K-cell
Source, heated and evaporated at a time forming molecular beams propagating in UHV towards the
substrate. Single atomic or molecular layers of the desired material can be deposited on the substrate.
The desired new material is engineered by depositing different atomic layers on the substrate according
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to new designs. The metal-MBE station is equipped with several metal sources like: Fe, Co, Al, Mg and
Cr. The vacuum is maintained at 3 × 10−10 mbar. In this station one can grow thin films of magnetic
materials for example: Fe, Co2FeAl, MgO, FeOx, etc. [41]. Reflection High Energy Electron Diffraction
(RHEED) and longitudinal Magneto-Optical Kerr Effect (MOKE) are setup to monitor the growth
process and the magnetic properties of samples in real time. The second MBE station is equipped to
deposit semimetals and topological insulators [42,43].

7.2. Pulsed Laser Deposition Stations

The PLD stations are used to fabricate high-quality thin films on substrates. A 248 nm KrF excimer
laser pulse beam ablates the target material. The target molecules acquire kinetic energy and deposit on
the atomically flat substrate surface. The laboratory has two PLD stations with a maximum vacuum of
10−8 mbar: one station is used to fabricate complex oxide thin films such as LaMnO3, LaxSr1−xMnO3,
LaAlO3 and BaTiO3 [44,45] and the second station is used to grow non-oxide [46,47]. An Ozone
generator helps optimize the growth process of oxides. During the fabrication of complex oxide
films, RHEED is also used to monitor the growth dynamics in order to guarantee the layer-by-layer
growth mode.

8. EUV Beamline Experimental Characterization

8.1. HHG EUV Spectra

The HHG EUV emission spectra from Argon (Ar) and Neon (Ne) were measured by scanning the
gratings of the monochromator. The EUV radiation is measured with the absolutely calibrated NIST
EUV diode, placed after the slit of the monochromator. The Ar harmonics are generated with 1.8-mJ
pulse energy, focused through a lens with focal length f = 500 mm on the pulsed gas jet, operating at 1
kHz repetition rate. Figure 7a shows the photon flux in the HHG spectrum of Ar. The measured flux is
above 1010 ph/s for all the harmonics in the range H9-H25, with a maximum emission of 5.5 × 1010

ph/s at H17 (26.4 eV), corresponding to 0.23 nJ/pulse at 1 kHz repetition rate. The flux emitted by
the EUV source (before the monochromator) can be estimated to be ~2.5 × 1011 ph/s at H17, taking
into account the monochromator spectral transmission [23]. The Ar spectrum photon energy ranges
from 10 eV to 45 eV. The HHG spectrum of Ne is obtained using higher pulse energy ~3 mJ/pulse,
and shorter focal length f = 300 mm. Figure 7b shows the HHG spectrum of Ne with photon energy
extending to >H45 (70 eV). A maximum photon flux of 3 × 108 ph/s is measured at the H29 (45 eV).
The EUV flux measurements show long-term stability over at least 48-h operation, allowing long
TR-Spin-ARPES data acquisition runs.
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The HHG EUV spectra of Ar and Ne were also produced with 400-nm driving laser pulses [47].
The 1.2-mJ 400 nm pulses are obtained through second harmonic generation of fundamental laser
and then focused on the gas jet with a f = 300 mm lens. Figure 8a shows the HHG spectrum in Ar,
which has a maximum photon flux of 1.2 × 1011 ph/s at H7 (21.7 eV). Figure 8b shows the HHG
spectrum in Ne, with a maximum photon flux of 5.5 × 109 ph/s at H15 (46.5 eV). The EUV source
excited by 400-nm laser can emit higher photon flux, due to the wavelength-scaling effect, and also
provide higher energy resolution, which is useful for TR-Spin-ARPES measurements. The spacing
between harmonics is increased (Figure 8). Ref. [48] takes advantage of this larger spectral spacing to
replace the monochromator with an Al filter which transmits mainly H7 (21.7 eV) with bandwidth of
~150 meV.
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Figure 8. HHG spectra generated by the SHG laser pulse (400 nm). (a) Ar spectrum measured with
grating G2 (300 gr/mm); and (b) Ne spectrum measured with grating G3 (600 gr/mm). The absolute
photon flux is measured after the monochromator slit.

8.2. EUV Spectral Bandwidth

Photo-electron spectroscopy requires a narrow spectral bandwidth of the EUV radiation.
The spectral profile at the output of the monochromator depends on the size of the HHG source,
on the monochromator instrumental response (i.e., the bandwidth transmitted through the slit) and on
the intrinsic bandwidth of the harmonics. If the intrinsic bandwidth of the harmonics is lower than the
bandwidth transmitted through the monochromator, the energy resolution is limited by the source
itself. In this case, the monochromator is acting as a broadband filter that is used to select a single
harmonic and filter out all the adjacent harmonics. On the other side, if the transmitted bandwidth is
lower than the bandwidth of the harmonics, the monochromator, as well as filtering out all the adjacent
harmonics, is also selecting a spectral portion of the single harmonic.

The actual bandwidth at the output of the monochromator has been estimated by measuring
the HHG spectral profile for different widths of the slit. The widths of the spectral profiles measured
for H15 and H21 using G3 are shown in Figure 9. The measured values for H15 and H21 are fitted
assuming, respectively, 100-µm and 80-µm source size and 200-meV and 180-meV source bandwidth,
the dashed lines in Figure 9. The size of the source that is found by the fitting procedure (80–100 µm)
is well in agreement with the measurements of the EUV spot size done on the ARPES chamber
using the CE:YAG crystal. Similarly, the source bandwidth (180–200 meV) is in agreement with the
resolution measured from the static ARPES spectra, which is ~190 meV after space-charge minimization.
Therefore, the actual spectral resolution of the beamline is limited by the intrinsic bandwidth of the
source. Indeed, the monochromator acts as a tunable filter with high efficiency in the whole spectral
bandwidth of operation.
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8.3. Pulse Front-Tilt Induced by Gratings: Effect on EUV Pulse Duration

The grating gives intrinsically a wavefront tilt due to the diffraction phenomenon. In fact, each
illuminated groove gives a delay of one wavelength at first diffraction order; therefore, the total delay
results as ∆OP = Nλ, where N is the number of illuminated grooves and λ is the EUV wavelength.
Therefore, the wavefront tilt is directly proportional to the grating illuminated area. Once the beam
divergence is measured, the resulting wavefront tilt is

WFT = DIV × L × σ × λ × c−1, (1)

where DIV is the EUV beam divergence, L is the distance between the HHG source and the first
toroidal mirror, σ is the grating groove density, λ is the wavelength and c is the speed of light in
vacuum. The beam divergence has been measured through the knife-edge test, resulting in 3.1 mrad
for H15 (23.5 eV) and 2.6 mrad for H21 (32.55 eV). The corresponding wavefront tilt is reported for the
three gratings in Table 2. In the same table, the bandwidth on a 100-µm slit is also reported, in order
to show the typical trade-off in the design of a monochromator for ultrafast pulses: the narrower the
bandwidth, the longer the time response, and vice versa.

Table 2. EUV wavefront tilt given by the three gratings for H15 and H21.

H15 (23.50 eV) H21 (32.55 eV)

Wavefront Tilt at Half
Maximum (fs)

Bandwidth on
100 µm Slit (meV)

Wavefront Tilt at Half
Maximum (fs)

BANDWIDTH on
100 µm Slit (meV)

G150 20 580 12 1140
G300 40 290 25 570
G600 80 145 50 285

8.4. EUV Focused Spot Size on the Sample Material

The EUV beam emerging from the monochromator is focused by a toroidal mirror on the surface
of sample material, placed in the center of the ARPES chamber. We choose a large EUV focal spot size
in order to avoid a space charge effect on the samples. To measure the size of the EUV focal spot, a
CE:YAG crystal is placed into the ARPES chamber in the exact position of the sample. Figure 10a shows
the EUV focal spot of the H15 (23.25 eV) on the CE:YAG crystal. The x-axis and y-axis dimensions of
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the EUV spot are fitted with a Gaussian function and the corresponding Full-Width-Half- Maximum
(FWHM) are Dx-FWHM = 170 µm and Dy-FWHM = 120 µm, respectively, as shown in Figure 10b. The focal
spot is elongated along the x-axis because the EUV beam is incident at 45◦ on the crystal.
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Figure 10. EUV spot size measurement (a) CCD image of the fluorescence of the CE:YAG crystal,
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and Dy−FWHM ~ 120 µm.

8.5. Space Charge Effect at the Sample Material

While the EUV photon flux of >1010 ph/s after the monochromator is comparable to the flux of
synchrotron radiation source beamlines, the number of photons per pulse is much higher because of
the lower pulse repetition rate of the laser, compared with the synchrotron. The large photons density
incident on the sample surface during the ultrashort EUV pulse can lead to the space charge effect,
which can distort photoelectron emission. A single-crystal copper Cu (111) as the sample was inserted
into the ARPES chamber and its Fermi-edge photoemission spectra were measured in order to measure
the influence of space charge on the ARPES spectra and characterize the energy resolution of the EUV
beamline. The H13 (20.15 eV) is chosen with grating G2 as photon source and the slit width is ~100 µm.
The photon flux was varied from 5.7 × 109 to 6 × 108 ph/s. Figure 11 shows the effect of space charge
on the ARPES measurements of the copper crystal. In Figure 11a, we observe space charge broadening
and shifting of the Fermi-edge for higher photon fluxes. The space charge effect is minimized for
Fph ~ 3.6 × 109 ph/s, which corresponds to a pulse photon density of 180 ph/µm/pulse in the EUV
focal spot with dimensions of 170 µm × 120 µm. The Fermi-edge spectrum was fitted with Fermi–Dirac
function, convolved with a 190 meV-width Gaussian function (black line in Figure 11b). The good
fitting shows that energy resolution of the EUV beamline is ~190 meV for H13, when space charge
effects are minimized. This spectral resolution is in agreement with the design resolution of grating G2.

In order to minimize the space charge effects, we need to reduce the EUV pulse photon density
on the sample to <180 ph/µm2/pulse. This pulse photon density is in good agreement with the
space-charge measurements in Ref. [23] and is typical for TR-ARPES measurements reported in
Refs. [28,29] for example. The reduction in photon density is obtained by increasing the EUV focal spot
area at the sample, to a maximum of 170 µm × 120 µm, and/or reducing the photon flux at the sample.

The EUV spot size of an average diameter of ~150 µm has a negligible contribution to the angular
resolution and hence to the momentum measurement. On SRS, the EUV spot size is around 50 µm
and the effect of the 150 µm in the TR-ARPES is negligible due to the low energy resolution (190 meV).
Essentially in TR-ARPES, the momentum resolution is dominated by the energy resolution of the
photon beam.
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Figure 11. ARPES spectra of the Fermi edge of Cu (111) as a function of incident EUV flux on the
sample material. EUV photon energy H13 (20.15 eV); monochromator grating G2 and slit width = 100
µm. (a) spectra measured with the following EUV photon fluxes (ph/s): (1) 6 × 108; (2) 1.5 × 109; (3)
3.6 × 109; (4) 4.8 × 109; (5) 5.28 × 109; (6) 5.68 × 109; (b) the Fermi edge measured with photon flux
~3.6 × 109 ph/s, corresponding to a pulse photon density ~180 (ph/µm2). The black fitting curve has a
FWHM = 190 meV.

In angular resolving lens modes, the emission angle distribution is imaged on the detector. Here,
the finite spot size of the photon beam on the sample contributes to the angular resolution and
therefore to the momentum resolution. Theoretically, all electrons with the same escape angle excited
from within the photon beam spot should be focused into an infinitely small spot on the detector.
In reality, this spot on the detector will have a certain lateral spread M, which could also be viewed as
a magnification. The contribution of the photon beam spot size S to the angular resolution A may be
described by

A =
M
D

× S,

where D is the angular dispersion of the lens mode. For example, the Wide Angle Mode (WAM) of
the PHOIBOS 150 analyzer has an angular acceptance of ±15◦ with D = 0.75 mm/◦. The values for M
depend on the lens mode and the retardation ratio R = kinetic energy/pass energy. For the WAM mode,
M is typically of the value of 0.8. and the specification for the angular resolution is 0.5◦. Therefore,
a photon beam spot size S of 0.15 mm will result in a broadening A of 0.15◦. This is much smaller than
the specified angular resolution of 0.5◦ for this particular lens mode.

9. TR-ARPES Spectra Measurements

9.1. Static ARPES Spectra of Cu (111)

Except for the investigation of space charge effect, static ARPES spectra of single-crystal copper
were also measured at room temperature, using the EUV beamline with photon energy H13 (20.15 eV).
The EUV photon flux was adjusted to ~6 × 108 ph/s and the EUV spot area at the sample was 170 µm
× 120 µm. Grating G2 was used and the silt width was Ws = 100 µm. The exposure time for acquiring
data was ~20 min. Figure 12a shows a snapshot of the Shockley surface state of Cu (111), along Г–K
direction in the surface Brillouin zone. For comparison, Figure 12b shows the similar ARPES image
obtained with radiation from an He-I discharge lamp (21.22 eV).
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9.2. TR ARPES Spectra of p-type GaAs (100)

TR-ARPES spectra of p-type GaAs (100) valence band were measured with time delay steps ~67
fs from time-zero to 1000 fs and larger steps up to a delay of 30 ps (Figure 13). The 50-fs excitation laser
pulse (1.55 eV) irradiates the sample material with a fluence of 2 mJ/cm2. The femtosecond EUV pulse
with photon energy ~20.15 eV (H13) probes the excited sample material with photon flux ~109 ph/s
(photon density ~50 ph/µm2/pulse).

Figure 13a shows the ARPES spectra of the valence band of GaAs (100) at time zero (left image)
and at time delay +650 fs (right image) after the excitation laser pulse. To further distinguish the
influence of excitation pulse on the ARPES spectra, two typical electron Energy Distribution Curves
(EDC) are plotted in Figure 13b, for two time delays: −500 fs (before excitation) and +5 ps (after
excitation). It is clearly observed that the peak position of EDC is shifted to the higher kinetic energy
side when the EUV probe pulse arrives at the sample after the excitation. We attributed this up-shifting
phenomenon to the Surface Photo-Voltaic (SPV) effect. In general, the downward band bending on the
p-type semiconductor can trap photo-excited electrons at the surface and drive photo-excited holes
into the bulk. Such electron-hole separation could produce additional electric flied to transiently shift
the band structure up in energy [49,50].

The shift of EDC peaks in valence band (called by SPV shift), induced by the excitation laser pulse,
can be calculated from the temporal evolution of EDC:

SPV shift = KEEDC-PEAK (TDL) − KEEDC-PEAK (TZ), (2)

where KEEDC-PEAK (TDL) is the kinetic energy (KE) of photoelectrons at the peak of EDC for a given
time-delay (TDL); and KEEDC-PEAK (TZ) is the value at the time zero (TZ). Figure 13c,d show the SPV
shift of GaAs’s valence band as a function of time delay between excitation laser pulse and EUV probe
pulse. Within ultrafast rise-time ~650 fs, the SPV shift reaches a maximum plateau of ~80 meV, lasting
>30 ps. The SPV error bars are obtained by averaging out the measured data over 50 cycles. The errors
are minimized by measuring KEEDC-PEAK at the peak of the EDC. The temporal step error bars are
not shown because they are much smaller than the delay step ~67 fs. Similar SPV measurements of
photo-excited electron dynamics in p-type GaAs (100) have previously been reported [49,50].
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(a) TR ARPES spectra of the valence band near the Г point at 0 fs and 650 fs delay after the excitation
pulse. Vertical axis: photoelectron (PE) energy (eV); Horizontal axis: PE momenta k (Å−1); (b) typical
energy distribution curves (EDC) of valence band measured before the excitation pulse (−500 fs) and
after the excitation pulse (+5 ps); (c) temporal evolution of SPV effect with 650 fs rise-time. Delay steps
are 67 fs; (d) SPV effect over showing a plateau lasting >30 ps.

10. EUV Beamline Scaling to a 1 MHz Repetition Rate

The 1 KHz repetition rate of the present laser-driver leads to quite long data acquisition time
(tens of hours), which could not only reduce the efficiency of measurements, but also increases the
experimental error. In addition, it could limit the investigation of extremely sensitive but novel
materials. The repetition rate and the useful photon flux at the sample material (inside TR-Spin-ARPES
spectrometer) could be scaled by a factor of up to ~1000×. This could be achieved by upgrading the
present laser driver to the MHz repetition rate and ~kW average power, femtosecond fiber-lasers.
Such laser is now becoming available [51,52] and has already been used to produce high EUV fluxes
by HHG [52]. The 1 MHz repetition rate, for example, could reduce the data acquisition time from tens
of hours at 1 kHz to minutes at 1 MHz, for a complete set of TR-ARPES runs.

Figure 14 shows a schematic of such an upgraded EUV beamline system. The ~1.2 kW average
power, MHz fiber laser output would be ~1.2 mJ/pulse, ~300 fs pulse duration, λ = 1030 nm (1.2 eV).
The laser pulse could be compressed to <40 fs, in a hollow fiber with an output of ~0.7 mJ/pulse,
which is only ~2.6× smaller than present pulse energy. The upgraded EUV beamline would operate
similarly to the present EUV BL. A small fraction of the laser pulse energy would be split to drive the
excitation laser pulse, and the main laser pulse energy drives the HHG EUV source.

The large laser average power, ~kW, will require special heat management to protect the EUV
beamline from damage. The laser beam would be transformed into an annular beam, with a small
central hole, prior to focusing in the HHG chamber. The HHG source would use a gas jet and cooled
gas nozzle. The laser beam would be separated from the EUV beam immediately after HHG. This could
be achieved by taking advantage of the laser annular beam and larger divergence compared to the
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EUV beam. The EUV beam passes through the hole of the mirror while the laser power is reflected
by the mirror into a cooled beam-dump. Alternatively, the reflected beam could be recycled to run a
second HHG beamline. The laser power loss in the HHG process is very small.
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The repetition rate could be increased further, for example to 20 MHz (or even 100 MHz) by
using the same kW-class fibre laser-driver laser with 20× (or 100×) reduced pulse energy compared to
1 MHz (Active Fibre Systems GmbH, Jena, Germany, Data Sheet). As the Beamline repetition rate is
increased above tens of MHz, consideration needs to be given to the effects of heat diffusion and/or
material relaxation in the sample. These very high repetition rates may restrict the option of using
Mid-Infrared excitation pulse, as proposed in Figure 14 and the paragraph below. An alternative
method of achieving these very high EUV beamline repetition rates is using a Yb:fibre frequency comb
of 80 W average power and cavity-enhanced high-harmonic source to obtain repetition of 88 MHz [53]
and 60 MHz [54]. The beamlines provide EUV pulses of ~100 fs [53] and 400 fs [54] with 65 meV
and <25 meV spectral resolution, respectively, with sub-100 µm EUV spot on the sample material.
This interesting new scheme would require major modifications to the present beamline as well as a
high finesse cavity with cavity length locked to the seed.

An optional Beamline geometry could provide femtosecond mid-IR excitation laser as in Ref. [20],
instead of the fundamental laser photons (hν = 1.2 eV). This could be achieved by using the excitation
laser pulse to drive an optical parametric amplifier (OPA) as shown in Figure 14. The OPA would
generate femtosecond pulses of mid-IR (hν~1 eV–60 meV or λ~1.2 µm–20 µm) which are well suited
to excite only neighboring energy levels to the one of interest [20,26] for TR-Spin-ARPES spectroscopy.
This option could be implemented with the fiber laser-driver operating at ~100 kHz and generating
~7 mJ/pulse in <40 fs pulses. The laser pulse energy would be divided into: ~6 mJ/pulse driving the
OPA, and ~1 mJ/pulse driving the HHG EUV source. This option could provide a ~100× increase in the
useful EUV photon/flux at the sample material. Such a beamline will also reduce the TR-Spin-ARPES
DAQ time from tens of hours at 1 kHz repetition rate to tens of minutes at 100 kHz.

11. Conclusions

A new femtosecond EUV beamline was developed for ultrafast materials research and
development. The beamline is an integral part of the “Ultrafast Spintronic Materials Facility” at
Nanjing University. The facility also comprises materials engineering stations by molecular beam
epitaxy (MBE), sputtering and pulsed laser deposition (PLD), all in the same experimental area.
This leads to a fast turn-around time from the production of a new sample material to its being
analyzed in the TR-Spin-ARPES station. Therefore, the facility will provide not only fast “analysis”
but also “development” of new ultrafast materials for the electronics industry.

The EUV beamline is composed of the: 50-fs laser driver; excitation laser pulse beamline;
HHG EUV source, pulse-preserving EUV monochromator; focusing and recombination of the EUV
and excitation laser pulse; and Spin-ARPES spectrometer end-station. The EUV beamline was
fully characterized and optimized for TR-Spin-ARPES spectroscopy. The HHG EUV spectra from
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10 eV–75 eV were measured after the monochromator slit. A maximum flux of ~5.5 × 1010 ph/s is
measured at the H17 (26.4 eV) using Argon gas and 3 × 108 ph/s is measured at the H29 (45 eV) using
Neon gas. The EUV flux is increased when the SHG of the TiS laser (400 nm) is used to drive the
HHG, due to the wavelength-scaling effect. The spectral bandwidth and wavefront tilt of the EUV
beamline can be measured and in good agreement of calculation. The EUV monochromator can enable
the narrow bandwidth of the EUV beamline and also preserve its pulse duration. The space charge
effect on static ARPES spectra was measured as a function of EUV pulse photon density at the sample
material. The space charge effect is minimized when the photon density is below 200 ph/µm2/pulse.
This is obtained by controlling the EUV flux and focal spot-size on sample material.

Time resolved ARPES measurements of the of p-GaAs (100) were performed over 30 ps temporal
delay range, with fine temporal steps of 67 fs for the first 1000 fs delay between the excitation laser
pulse and the EUV pulse. TR-ARPES spectra measured the ultrafast surface photovoltaic effect with a
650 fs rise-time of the valence band electronic structure.

The TR-Spin-ARPES data acquisition time could be reduced from tens of hours to minutes by
upgrading the femtosecond TiS, kHz, 4 W laser driver to the new, femtosecond, ~MHz repetition rate
and ~kW average power fiber-lasers.
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