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Abstract: For some IoV-based collision-avoidance architectures, it is not necessary that all vehicles
have communication abilities. Hence, they need some particular designs and extra components. In the
literature, one of them uses a camera mounted onto the infrastructure at an intersection to realize
collision detection. Consequently, technologies for real-time object detection and dynamic prediction
are required for the purposes of collision avoidance. In this paper, we propose an interesting method
to predict the future position of a vehicle based on a well-known, real-time object detection project,
YOLOv3. Our algorithm utilizes the concept of vehicle dynamics and the confidence region to predict
the future position on vehicles. This will help us to realize real-time dynamic prediction and Internet
of Vehicles (IoV)-based collision detection. Lastly, in accordance with the experimental results, our
design shows the performance for predicting the future position of a vehicle.

Keywords: IoV-based collision avoidance; vehicle’s position estimation; computer vision; machine
learning; confidence region

1. Introduction

The vehicle has been a most widely used form of transportation in people’s lives over the last few
decades, and various studies were consequently proposed for road safety. Passive safety technologies
are designed to mitigate the effects of traffic accidents, and have been undergoing a lot of development.
Nowadays, due to the increasing use of electronics in the automobile industry, it is now also using
active safety technologies. Note that the difference between passive and active safety is the operating
time—namely, an active safety system will operate before the accident and thus attempt to avoid such
accidents [1]. Many advanced safety techniques have been developed for various scenarios, such as the
Lane Departure Warning system (LDW) [2], Forward Collision Warning system (FCW) [3], Blind Spot
Warning system (BSW) [4], and Parking Assistant System (PAS) [5–7], and navigation [8,9]. Therefore,
vehicular safety systems have already become more and more indispensable for up-to-date vehicles.
Among those techniques, Internet of Vehicles (IoV) is one of the most interesting and important
technologies to the modern automobile industry, where it is clearly a moving network made up of the
Internet of Things (IoT). A vehicle can communicate with other vehicles and infrastructures through
the Internet for various applications. It enables vehicles to perform more effective managements, such
as in collision avoidance systems, navigation, intelligent transport systems, and entertainment systems.

Communication between vehicles and traffic infrastructures has been studied extensively [1,10–13].
In [10], the transmission of information in urban intersections was analyzed and evaluated. In order
to improve its performance, the authors proposed a vehicle-assisted relaying scheme, where the
relaying vehicle is selected in an autonomous manner. Moreover, since collision avoidance with
multiple data resource reservation per schedule assignment is a critical issue for the improvement of
broadcast reliability, the authors in [11] proposed an enhanced method to address it. Their simulation
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results show that by adopting their design, the network capacity in terms of supported vehicles
under given service requirements is largely increased. Recently, a comprehensive survey on resource
allocation schemes, including Dedicated Short-Range Communications (DSRC) and cellular networks,
was proposed in [12]. On the other hand, IoV-based systems have been exploited in different traffic
applications, such as collision avoidance. In [14], the Inertial Measurement Unit (IMU), DSRC, vehicle
dynamics, computer vision, and Global Positioning System (GPS) were combined to improve both the
accuracy and reliability of the vehicle’s positioning system.

Unfortunately, the above studies are under the assumption that all vehicles in the scenario
should have some form of communication ability. It is too difficult to meet such an assumption
during the development of IoV. Therefore, making up for such a deficiency is currently a significant
topic in IoV-based safety. Consequently, in [1], the authors proposed a form of collision-avoidance
architecture based on computer vision, machine learning, vehicle dynamics, and the predictive
algorithm. By adding some extra equipment, their architecture is able to eliminate the assumption
that all vehicles in the considered scenario should have communication ability. Consider the following
scenario: if there is an infrastructure at the intersection, which can observe every vehicle from
each direction and predict whether the collision will happen or not, and then warn vehicles via
communication ability and/or the traffic sign, the collision avoidance system will still work even if
some vehicles are without communication ability. In particular, the authors designed a linear algorithm
based on the output of an existing real-time object detection project, YOLOv3 [15,16], to predict the
future position of a vehicle. Note that their algorithm can cooperate with different real-time object
detection projects, YOLOv3 being one of the most feasible methods.

In this paper, we focus on the obtaining of the future position of a vehicle. According to the above
discussion, the researchers in [1] design a linear algorithm to realize the prediction. Unfortunately,
it is not accurate and stable for the purposes of estimating the further future position of a vehicle.
The intuition is that it is very difficult for the movement of a vehicle to be described by a linear function.
Hence, where linear and nonlinear functions are used instead to predict the position of a vehicle, we
assume that vehicles present similar behaviors when entering the same road segment, whereas during
a short time-period, the movement of a vehicle (such as the heading angle, absolute position) will not
vary significantly. By capturing a video with higher resolution and frames per second (FPS), we would
be able to use some of the skills of vehicle dynamics on the time axis to obtain the future confidence
region. On the other hand, we use the concept of a confidence region to represent the possibility of the
future position, which can help us predict and present the future information clearly.

This paper is structured as follows. In Section 2, we give an overview of the IoV-based collision
avoidance architecture proposed in [1], which can practically eliminate the assumption that all vehicles
in the considered scenario should have communication ability. In Section 3, we start to introduce our
idea, which also cooperates with YOLOv3. We will use our video recorded above a road to simulate
the view that an infrastructure has been observed. Experimental results are shown and discussed in
Section 4, and finally, Section 5 concludes the paper, where future work is also discussed.

2. IoV-Based Collision-Avoidance Architectures

The operating procedure for an infrastructure in Figure 1 is described as follows:

• For an IoV-based collision avoidance architecture, the real-time video is captured by the camera
mounted on the infrastructure.

• By using the real-time object detection, we can obtain all objects that interest us, such as vehicles,
motorcycles, and pedestrians.

• By utilizing the real-time dynamic prediction, we can get the future position of a moving object.
• Lastly, according to the future position of two moving objects, we can predict whether the collision

will happen or not, and then warn them by using communication ability and/or the traffic sign.

Note that we will only consider the scenario of moving vehicles in the text.
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Figure 1. Operating procedure for an infrastructure.

For instance, in Figure 2, there are two cars that come from distinct directions to the same
intersection. If the collision happens, they will be alerted to slow down by the system via its
communication ability and/or the traffic sign. Particularly, the vehicle with its communication
ability can be warned by the IoV message and the roadside traffic sign. On the other hand, the vehicle
without communication ability can be warned by the roadside traffic sign. It is practical to make up
for the deficiency of the assumption that all vehicles must have communication ability.

Figure 2. An instance for showing the collision-avoidance scenario.

3. Method

In this section, we will be introducing our predictive method. The main idea comes from vehicle
dynamics [17–19]: the movement of a vehicle will not be a large value within a short time interval,
such as the heading angle and the absolute position. Hence, if a video has a high resolution and FPS,
we can estimate whether it is a reasonable position or not by calculating the difference between the two
positions and using some skill of vehicle dynamics on the time axis to get the future confidence region.
More specifically, the former means that if a vehicle is travelling at a higher speed, like the example
shown in Figure 3, it is reasonable to estimate that its next position will not be at the left, rear-left, rear,
rear-right, and right region. Conversely, if a vehicle just starts moving from a static situation, there are
only two unreasonable regions—that is, left and right.

On the other hand, the latter means that a road segment should be considered, which is the specific
representation of a portion of a road with uniform characteristics [20], where the traffic regulation of
the entire road segment should be the same. Hence, we can assume that every car will have similar
behavior while entering the road segment, and then be able to use the information of previous vehicles
that have passed through the road segment to estimate the future position of a vehicle, which is
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currently on that segment. In other words, while a car enters the road segment, according to its
movement in the beginning, we can find the most proper model from the database within a short
time, and thus predict its future position. In particular, since our algorithm can predict the future
position of a vehicle by finding the most proper model from the database where the data is collected
from a particular road segment, such as the highway or intersection, it can be applied to every possible
case. Therefore, in applying our design to predict the vehicle’s position along two different roads
which intersect in the same crossroad, possible collisions can be predicted. Notice that in this paper,
a confidence region is utilized to describe the future position of a vehicle at time t, and a confidence
model is also used to express the behavior of a vehicle on a road segment. Obviously, a confidence
model is composed of many confidence regions at different times.

Figure 3. An example of the confidence region.

Our design is composed of two parts—the training method, and the predictive algorithm. First,
we illustrate the predictive algorithm, which is constructed of two parts—the error modification and
the future position prediction. This algorithm is shown in Table 1. The original current position of the
moving object mo provided by the real-time object detection module has been stored in pori (line 1).
Then, we declare two important variables, pt and mt, where pt is the position of mo at time t, and mt

is the movement of mo at time t (lines 2–3). Note that mt is the difference in position between pt and
pt−1, and it is very critical for describing the dynamics of a vehicle. As there are no reference materials
in the initial phase, the only thing that we could do was to wait for two consecutive pori, and then to
utilize them to estimate the value of mt (lines 4–6). Particularly, upon receiving a new pori, we first
projected the original position onto the map data of the current road segment (line 4), and then applied
the concept of vehicle dynamics to obtain a new one (line 5). The above two actions helped us to get
a reasonable amount of information. The former was also adopted in [1] for the same reason that a
vehicle should drive on the road generally. The latter has been discussed in the first paragraph of
Section 3 in order to avoid unreasonable position information. Upon receiving a new pori, we were
able to calculate mt by using two consecutive pori (lines 7–9). Finally, by adopting some of the latest
information, positions, and movements, we intended to find the most similar model from the database
and thus predict its future information (line 10), that is, the future position, a frames later. Note that in
order to find the most similar model from the database, we designed different functions with different
properties, whose performances are compared in Section 4.

The training method is shown in Table 2. Most of the algorithm is the same as the predictive one
illustrated in Table 1. In the last part, we made an output of all the saved position information into
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the database in sequence, that is, pt and mt (line 10). While we intend to predict the future position
and/or movement of a vehicle, we were also able to adopt some of the latest information to find the
most similar model from the database and then predict its future dynamics.

Table 1. Our predictive algorithm.

Algorithm: Predictive algorithm for moving object mo

input:
(01) pori: original current position of mo, which is obtained from the real-time object detection module directly.
variables:
(02) pt: position of mo at time t;
(03) mt: movement of mo at time t;
init:
(04) pt ←map_matching( pori );
(05) pt ← vehicle_dynamics( pt );
(06) mt ← 0;
upon receiving a new pori:
(07) pt ← textbfmap_matching( pori );
(08) pt ← vehicle_dynamics( pt );
(09) mt ← pt - pt−1;
predict:
(10) pt+a find(pt, pt−1, pt−2, . . . . . . , mt, mt−1, mt−2, . . . . . . , a);

Table 2. Our training method.

Algorithm: Training algorithm for moving object mo

input:
(01) pori: original current position of mo, which is obtained from the real-time object detection module directly.
variables:
(02) pt: position of mo at time t;
(03) mt: movement of mo at time t;
init:
(04) pt ←map_matching( pori );
(05) pt ← vehicle_dynamics( pt );
(06) mt ← 0;
upon receiving a new pori:
(07) pt ← textbfmap_matching( pori );
(08) pt ← vehicle_dynamics( pt );
(09) mt ← pt - pt−1;
output:
(10) output all pt and mt;

4. Experimental Results

In this section, we will illustrate our experiments using real data, which has been extracted from a
video recorded by a camera. Noteworthily, this camera was set on a building above a road segment in
order to observe the segment. The experimental settings are shown below:

• The resolution of the video captured by the camera is 1920×1080.
• The output frequency of the video captured by the camera is about 20 Hz.
• The resolution of a confidence region was set to 50×50.
• In this captured video, vehicles enter the scenario from the right side, and leave from the left side,

as shown in Figure 4.
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Figure 4 shows an image of the experimental scenario where vehicles enter from the right side
and leave from left one. The blue points in Figure 4 represent the trajectory of a vehicle stored in our
database, which is called the dynamic model. The database consists of 194 trajectories collected in
the experimental scenario which compose the different dynamic models of our system. The database
includes straight, parallel parking, as well as turning to the right and left trajectories. Thus, after
acquiring the required information of a vehicle entering the road segment, the proposed method can
find the most similar dynamic model from the database. Figure 5 shows 50 different trajectories of
our dataset.

In our experiments, we considered two different find functions with a distinct amount of past
information, where all were used to predict the future position 0.25 s, 0.5 s, 0.75 s, 1.0 s, 1.25 s, and 1.5 s
later. More specifically, the first design of the find function utilizes the concept of distance in Euclidean
space with the same weighting value for all past x frames to find the most similar model from the
database, where x is set to 3, 5, and 10, respectively. Figure 6 shows the six predicted positions (red
color) of a vehicle after 0.25, 0.5, 0.75, 1, 1.25, and 1.5 seconds by means of the vehicle’s information
being acquired from three frames (blue color). Figures 7 and 8 show the six predicted positions
using the vehicle’s information from five and ten frames, respectively. Since the length of each video
is about five seconds, we could compare the prediction of the future position with the actual one
immediately, and calculate whether the above two positions were within the same confidence region
or not. The results are shown in Figures 9–11. According to the experimental results, we can observe
that for the prediction less than or equal to 0.5 s later, no matter how many past positions were used
as references, they had a higher correct ratio—that is, of more than 80 percent. On the whole, using
five past positions with the same weighting value as the references was the best choice among the
three settings. The intuition is that considering too many past frames as references, which includes
some obsolete information, will influence our design to find the most proper model from the database.
On the other hand, considering fewer past frames as references will lead to insufficient information,
meaning it will influence our design as well.

Figure 4. An experimental scenario with the trajectory of a past vehicle.
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Figure 5. An experimental scenario with the first 50 trajectories of past vehicles.

Figure 6. An example of using the past three frames to find the most similar model from the database
to then predict the future position.

Figure 7. An example of using the past five frames to find the most similar model from the database to
then predict the future position.
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Figure 8. An example of using the past 10 frames to find the most similar model from the database to
then predict the future position.

Figure 9. Use of three past positions with the same weightings, as per the references.

Figure 10. Use of five past positions with the same weightings, as per the references.
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Figure 11. Use of 10 past positions with the same weightings, as per the references.

Furthermore, the second design of the find function also utilizes the concept of distance in
Euclidean space for all past x frames to find the most similar model from the database, but with
different weighting values, where x is set to 3, 5, and 10, respectively. In particular, the weighting
value of yth frames is set to 1/y. Hence, for the setting of the past 3 frames as the references, we
have the weighting value 1/1 for the first past frame, 1/2 for the second past frame, and 1/3 for the
third past frame. The results are shown in Figures 12–14. We can observe that due to the design of
different weighting values for distinct past frames, it can avoid the inclusion of obsolete and insufficient
information. Thus, in Figure 14, we were able to obtain the best result among all the experiments,
where the accuracy is more than 71 percent after 1.25 s, and 64 percent after 1.5 s.

Figure 12. Use of three past positions with different weightings, as per the references.
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Figure 13. Use of five past positions with different weightings, as per the references.

Figure 14. Use of 10 past positions with different weightings, as per the references.

5. Conclusions and Future Work

In this paper, we proposed an interesting method to predict the future position of a vehicle based
on a well-known, real-time object detection project, YOLOv3. Since our algorithm can predict the future
position of a vehicle by finding the most proper model from the database, where the data is collected
from a particular road segment, such as highway or intersection, it can be applied to every possible
case. Therefore, applying our design to predict the vehicle’s position along two different roads which
intersect in the same crossroad, possible collisions can be predicted. The experimental results have
shown the ability of the proposed method to predict the vehicle’s position, which makes IoV-based
collision avoidance of vehicles possible without onboard communication systems. In addition, the
proposed method can efficiently predict the vehicle’s position using inferior past information.

In future work, we intend to design distinct comparing methods to find the best model from
the database for all automatically moving objects, and to challenge even further the predictions of
the future.
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