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Featured Application: The agent-based model driven decision support system can handle the
delay in the arrival of raw materials while considering planning scenarios reflecting the context
of the green coffee production, scenarios where the demand is skewed towards the end of the
planning horizon, where the demand is skewed towards the beginning of the planning, and where
demand peaks in the middle of the planning horizon and falls under the available capacity on
the first and last days of the horizon. The exhibition of the management process within the green
coffee supply chain context may help practitioners and managers interested in implementing
the agent-based modeling and simulation approach to increase the possibilities of successful
adopting of the reactive aggregate production scheduling.

Abstract: The aim of this paper is to contribute to the thread of research regarding the need for
logistic systems for planning and scheduling/rescheduling within the agro-industry. To this end,
an agent-based model driven decision support system for the agri-food supply chain is presented.
Inputs in this research are taken from a case example of a Mexican green coffee supply chain. In this
context, the decision support agent serves the purposes of deriving useful knowledge to accomplish
(i) the decision regarding the estimation of Cherry coffee yield obtained at the coffee plantation, and
the Parchment coffee sample verification decision, using fuzzy logic involving an inference engine
with IF-THEN type rules; (ii) the production plan establishment decision, using a decision-making
rule approach based upon the coupling of IF-THEN fuzzy inference rules and equation-based
representation by means of mixed integer programming with the aim to maximize customer service
level; and (iii) the production plan update decision using mathematical equations once the customer
service level falls below the expected level. Three scenarios of demand patterns were considered to
conduct the experiments: increasing, unimodal and decreasing. We found that the input inventory
and output inventory vary similar over time for the unimodal demand pattern, not the case for both
the increasing and decreasing demand patterns. For the decreasing demand pattern, ten tardy orders
for the initial production schedule, an 88% service level, and nineteen tardy orders from the estimated
production results, a 77% service level. This value falls below the expected level. Consequently,
the updated aggregate production schedule resulted in ten tardy orders and an 88% service level.

Keywords: decision support system; agent based modeling and simulation; production scheduling;
green coffee supply chain
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1. Introduction

A main challenge for the agri-food supply chain (ASC) relates to the need for logistic systems
for planning and scheduling/rescheduling due to unpredictable variations in quality, moment and
quantity in primary production; the need for high efficiency of technical equipment despite long food
industry production times; and an intricate network structure where many farms and food processors
trade with multinationals in the wholesaler/retail sector. This challenge is derived from the following
ASC characteristics [1]: (i) for the primary producer echelon, the seasonal growth is often limited to a
specific period in a geographic region, dependent on weather and agricultural practices management,
(ii) for the food processor echelon, high volume and low variety production systems combined with
high volume frequent deliveries, and (iii) for the wholesaler/retailer echelon, the variability of quality
and quantity of supply of farm-based inputs coupled with high demands from consumers, including
food safety legislation and quality standards. This challenge calls for joint decision making in order to
leverage the knowledge resources in the ASC.

From an agent-based modeling and simulation approach, a system is modeled as a set of
autonomous agents that interact with each other and the environment; the agents have behaviors
that are influenced by agent’s interactions [2]. According to an agent’s behavior [3] (i) agents can
respond in an event-action-mode (reactive agent), (ii) agents can have domain knowledge to undertake
a sequence of actions in order to achieve a goal (deliberative agent), and (iii) agents can encompass both
of this features. These behaviors have important implications in the use of the agent-based modeling
approach as a valid methodology to model the supply chain (SC). Moreover, for SC researches and
practitioners, Hilletofth and Lättilä [4] stressed the benefits of agent-based decision support systems
including the ability to convert manager experience into agents, the ability to conduct experiments and
what-if analysis through simulation-based decision support systems and the increased predictability of
operations in the real system. The core functionality component of a simulation model-driven decision
support system is a quantitative model and is used by decision-makers to help in analyzing a real
system by means of modeling and data collection, model validation, system parameter setting, and
system evaluation [5].

Agent-based modeling use and simulation for decision-making within the agri-food industry has
been applied considering the integration of logistics, quality decay and sustainability modeling [6,7].
According to findings from the review conducted by Utomo et al. [8], most agent-based modeling and
simulation applications in agri-food supply chains focus on the simulation of production planning
and investment decisions. However, although there is a volume of literature about applications of
agent-based modeling and simulation in the agri-food supply chains, there is a lack of studies that
consider important actors, such as food processors and retailers in the scope of the model, since most
agent-based modeling and simulation applications focus on one echelon [8].

A make-to-order ASC is considered for this study. For these types of chains, Chatfield et al. [9]
classified the improvement opportunities for the SC modeling approaches into three categories:
model building, model quality, and model execution. Regarding the agent-based modeling approach,
the authors highlighted the issue with model quality as a measure of how well a model represents the
aspects of interest in a real system and how a completely agent-based approach is not the best way to
represent the entire supply chain. Consequently, as the agent-based approach focus on the behavior
and decision processes of individual participants, often at the expense of event-oriented aspects of the
supply chain, hybrid configurations are often necessary.

The aim of this paper is to contribute to these strands of research. To this end, an agent-based
model driven decision support system for the agri-food supply chain is presented. The agent-based
modeling and simulation and discrete-event simulation (DES) combination is the agent-related hybrid
configuration used for the development decision support system. The agent-based modeling and
simulation and DES combination are one of the agent-related hybrid configurations that have received
the most attention. According to Macal [10], a hybrid modeling challenge exists and refers to the
understanding of how agent-based modeling can be effectively used with other simulation and
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modeling techniques operating together in the same hybrid model in such a way that each technique
addresses the part of the problem that it does best.

Inputs in this research are taken from a case example of a Mexican green coffee SC. The green
coffee SC comprises four stakeholders from Cherry coffee cultivation to processed green coffee: (i)
Cherry coffee growers; (ii) Parchment coffee producers; (iii) green coffee producers; and (iv) green
coffee toasters. In this context, the decision support agent serves the purposes of deriving useful
knowledge to accomplish (i) the decision regarding the estimation of Cherry coffee yield obtained at the
coffee plantation, and the Parchment coffee sample verification decision, using fuzzy logic involving
an inference engine with IF-THEN type rules; (ii) the plan production establishment decision, using
a decision-making rule approach based upon the coupling of IF-THEN fuzzy inference rules and
equation-based representation by means of mixed integer programming with the aim to maximize
customer service level; and (iii) the production plan update decision using mathematical equations
once the customer service level falls below the expected level.

This paper is structured as follows: Section 2 presents an overview of the strands of theory used
to underpin the proposed system. Section 3 describes the methodology, while Section 4 presents the
results of the system assessment in the case study. Finally, Section 5 summarizes our conclusions.

2. Literature Overview and Work Position

The present work will try to integrate the following strands of theory to underpin the decision
support system for the ASC. The first strand related to the use of agents in SC modeling and
simulation. Based on the concept of SC uncertainty revised by van der Vorst and Beulens [11] as a
decision-making situation in which the decision-maker lacks understanding; information processing
capacities and effective control actions; the authors assert that SC uncertainty could be reduced through
the implementation of specific-scenario redesign strategies regarding configuration, control structure,
information systems, and governance structures. Supply chain value stream mapping is a technique to
leverage the knowledge of a company’s supply actors [12].

van der Zee and van der Vorst [13] proposed a modeling framework for decision-making
improvement based on agents modeling the SC actors as autonomous objects assigned with decision
making intelligence, jobs representing the SC activities, and types of flows (goods, information,
resources, and job definitions). Broadly, an agent possesses skills and knowledge to interact with
the environment including applications for cooperation, communication, command and control [14].
A multi-agent system is defined by Turban et al. [15] as: “a computer-based environment that contains
multiple software agents to perform certain tasks”; therefore, its scope refers to the breakdown
of a complex solution into sub-problems then assigned to agents supported by a knowledge base.
Furthermore, decision support systems agents could be classified into five types [15]: data monitoring,
data gathering, modeling, domain managing, and preference learning. Indeed, agent-based decision
support systems enable decision-making activities such as knowledge representation, knowledge reuse,
reasoning, and inference techniques [16]. These properties have implications on industrial environment
agent-based solution adoption, feasibility, breakdown robustness, ready reorganizability, effective
response to external disruptions, and reconfigurability. Nevertheless, the adoption barriers comprise
cost, guarantees for operational performance, scalability and standards definition [17]. Other issues
related to barriers of agent-based decision support systems comprise [4] the difficulty to access data
from partners in the SC, long development and validation time, long learning time, and the difficulty
to develop agent rules that generates the wanted behavior. Consequently, the next generation of
decision agents in SC management must consider these barriers in order to develop agents embedded
in systems that will be distributed, dynamic, intelligent, integrated, responsive, reactive, cooperative,
interactive, reconfigurable, and adaptable [18].

In the review conducted by Méndez et al. [19] regarding optimization methods for short-term
scheduling, the authors stated that within the artificial intelligence field, scheduling problems have
been solved by a set of individual agents which can work parallel and their coordination may bring
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a more effective way to find an optimal solution; the agents are expected to interact together to
achieve the goals of the overall system. The second strand of theory comprises to agent-based decision
making for scheduling in supply chains. According to Phanden et al. [20], the agent-based modeling
technique is the most promising distributed approach to tackle the integration of process planning
and scheduling adaptiveness. For their part, Barbati et al. [21] asserted that a relevant number of
applications of agent-based models are devoted to SC planning problems. In that sense, industrial
agent-based solution adoption has focused in following areas [17]: (i) distributed solutions for real-time
manufacturing control problems; (ii) distributed solutions for complex operations management
problems such as planning, scheduling, initiating execution, and monitoring; and (iii) distributed
solutions for coordinating supply chains that will integrate manufacturing, sales networks, suppliers,
customers, and third-party coordinators. The application areas of multi-agent systems designs have
recently evolved from intra-business processes such as job scheduling and production planning
and coordination to complicated decision procedures involving the management of independent
companies but interacting supply chain management partners [22]. Within the manufacturing context,
an agent is an intelligent entity is capable of acting and decision making to accomplish tasks, such as
distributed production planning, scheduling, and execution control [3]. In multi-agent scheduling,
agents manipulate both resource and order variables under their own authority [23].

The third strand of theory encompasses the issues regarding production planning and quality
sorting in the ASC with focus on the coffee SC. An ASC is defined by van der Vorst et al. [24] as
chains where: “agricultural products are used as raw materials for producing consumer products with
higher added value.” For the primary producer echelon of the ASC, the decision-making processes can
broadly be divided into three stages [25]: production planning, cultivation practices, and post-harvest
management and marketing; production planning relates to crop production planning based on market
forces, soil testing and crop rotation practices, whilst cultivation practices encompasses decisions
regarding crop nutrition and irrigation management for maximization of the total production of each
crop. Indeed, a challenge for the agricultural sector relates to the need for a reactive and flexible
crop production supply chains with high yield at low cost [26]. From an agricultural value chain
point of view, Higgins et al. [27] argue: “multi-agent models provide a capacity to accommodate the
complexity of relationships between and within value chain segments by representing these segments
(or their activities) as agents.” For their part, Tsolakis et al. [28] enlisted the decisions for tactically
and operational planning in an ASC, including the planning of harvesting operations and logistics
operations and the adoption of quality management policies. With regards to quality sorting and
grading, van der Vorst et al. [29] stated that quality controlled logistics in the ASC entails an adaptive
control based upon customer requirements and current agri-product quality.

From an agent-based simulation perspective, Handayati et al. [30] identified the value co-creation
in a sustainable ASC, understanding sustainability as a the integration of the moral, ecological, technical,
economic, and social dimensions of human activity [31]: (1) Planning: agro-input selection, cultivating
and harvesting scheduling, more certain demand and price, more certain supply; (2) Cultivating
and Harvesting: exporters requirement fulfillment, and good agricultural practice; (3) Post-harvest
and Distribution: good post-harvest handling, cold storage system for maintaining the freshness of
agri-product; and (4) Consumption: customer’s requirement fulfillment.

From a sustainability perspective and with regard to the Central American coffee supply, Killian
et al. [32] found that organic and fair trade certification production schemes seem to be a viable strategy
for Central American farmers to receive better pricing and to improve productivity to maintain or
increase farm income. Moreover, Killian et al. [33] determined the carbon footprint of the SC of Costa
Rican coffee, sources of the most intense emission and mitigation possibilities.

Regarding coffee yield analysis, Espinosa-Solares et al. [34] found that Cherry coffee yield is
affected more by cultivar characteristics than by harvest date in a two year study in Mexico. For their
part, the study of Bosselmann et al. [35] demonstrated that shade trees not be planted with the purpose
of improving beverage quality in small holder coffee agroforestry systems in Southern Colombia.
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For quality sorting in the Green coffee SC, Green coffee assessment focus on Acidity, Body,
and absence of Defects [36]. Livio and Hodhod [37,38] developed a fuzzy expert system for sensorial
evaluation of coffee bean attributes to derive quality scoring comprising 11 attributes: fragrance,
flavor, aftertaste, acidity, body, uniformity, balance, clean cup, sweetness, overall and defects. Testing
results of the system shown 95% of matching results compared to the experts’ evaluations. Flores and
Pineda [39] also presented a fuzzy logic expert system with the aim to train Honduran coffee cuppers;
testing results of the system shown 97% of matching results evaluating the attributes brew, aroma,
taste, aftertaste, and body.

3. Methodology

3.1. Case Study

Green coffee production is generally characterized by both the necessity of management
agricultural practices improvement and production technology implementation, which is related to
production yield and quality in coffee in coffee plantations with an average yield of 2408 hectograms
per hectare (hg/ha), against 5333 to 25,487 hg/ha reported by the eight countries with highest
productivity [40]. The case study is an order-driven Mexican green coffee SC.

The green coffee SC actors are described below and depicted in Figure 1. The second tier suppliers
are the Cherry coffee growers. In this echelon, the cultivation and harvest of the Cherry coffee take
place in the coffee plantations. In the region where the case study chain is located, there is an altitudinal
gradient from sea level to above 3000 m above sea level. The average annual temperature ranges from
12 ◦C to 24 ◦C, the coffee soils of the region can be classified as suitable, medium and unfit and the
annual precipitation oscillates between 1000 and 3000 mm [41]. These geo-agro climatic characteristics
provide a very varied mosaic wherein each of the regions you can find sites of high, medium, and low
potential both production and quality of coffee.
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Figure 1. The green coffee SC under investigation.

The harvest refers to the cut of ripe Cherry coffee, with the cut of the fruits in a mature state,
weight is gained in the scale in the sale process, the benefit process is facilitated, the production loss is
reduced when the green coffee is prepared, and organoleptic quality is gained. Cherry coffee is the
most frequent form of sale with a local or industrial intermediary-collector, where the process of wet
profit is carried out. Cherry coffee is transported in plastic sacks or tarpaulins usually used in livestock
feed or various grains.
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The first tier supplier is the Parchment coffee producer, local and industrial intermediary that
carry out the wet benefit process. The wet benefit process consists of mechanically removing the pulp
(exocarp) of the coffee Cherry in the presence of water or without it, and followed either by (i) the
removal of the mucilage (mesocarp) by fermentation or mechanical method, followed by the washing
to obtain Parchment coffee, or (ii) direct drying of the pulpless grains inside the mucilaginous [42].
Parchment followed by threshing to produce semi-washed green coffee. Next, drying of the coffee
beans either through the combined effect of sunlight and aeration or drying machines, to obtain coffee
in the shell. The drying time is variable in each of the methods, the goal being in any case that the
humidity in the coffee bean reaches within the parameter of 11.5–12.5%. The final product of the
wet processing process is called Parchment coffee; the name comes from the fibrous parchment-like
husk which covers the grain at the end of the process. The storage is carried out in warehouses using
mainly jute bags. The process of commercialization of Parchment coffee is carried out mainly between
individual producers, or through their organizations, towards industrial exporters, who will sell it in
the national and international markets.

The focal company of this study is an industrial green coffee producer that stores and distributes
both regional and nationally. In this echelon, the Parchment coffee refinement takes place, the dry
benefit process. In the dry benefit process, the Parchment coffee received and graded is threshed to
release the green coffee bean, to later be classified by its size, density, and color, as well as being cleaned
of foreign objects. In the threshing process, the dry endocarp is removed from the Parchment coffee
to produce green coffee. The dry benefit process starts with the Parchment coffee reception where
the coffee is sampled to perform an organoleptic evaluation and physical revision. The organoleptic
evaluation of coffee sample is the process of sensorial evaluation of coffee beans. In this process, the
toasting and grinding of a sample of Parchment coffee are carried out, an infusion of the roasted and
ground coffee sample is prepared in freshly boiled water, from which the gustatory and olfactory
characteristics of the grain are evaluated, such as flavor, body, aroma, and acidity. In the physical
analysis, defects are visually identified; the defects refer to irregularly shaped coffee beans and coffee
beans of irregular appearance [43].

The purchase decision depends on the results of these evaluations. If the coffee is purchased, the
coffee entry quality grading takes place, namely, the defective beans percentage in the coffee lot is
determined, and then, the lot is stacked on pallets in the warehouse area designated for each coffee
type. Next, in the pre-cleaning process, the coffee enters the pre-cleaning machine, where foreign
materials of a different origin than coffee are eliminated. After the pre-cleaning process, the threshing
process takes place. The pre-cleaning is the technological operation used to reduce the percentage of
humidity of the Parchment coffee to a level of 10 to 12.5%, which allows threshing under satisfactory
technical conditions. In the threshing process, the dried endocarp is removed from the Parchment
coffee of natural coffee to produce green coffee. At the entrance to the thresher, a quality control
point is present in which the metals that Parchment coffee could carry are eliminated. Finally, the
sorting process is the technological operation used to eliminate foreign matter, fragments of coffee
and defective grains of green coffee, and to separate healthy coffee beans according to their shape,
size, and weight. The machinery, the manual labor or the combination of both, can be variable but in
general the methods of this process are classified into sorting by sieve, sorting by vibration-gravity,
pneumatic sorting, and optical sorting. The result of the process is the production of green coffee, with
a defective beans percentage in a coffee lot called percentage of stain, and composition of defined grain
size. In the sorters by sieve, the husk and the stain are separated through a fan, where the coffee that
does not have the appropriate weight is discriminated. In the sorters by vibration-gravity, the coffee is
classified by size and shape, separating it into first, second, third, shell, pellet (amount of broken coffee
beans) and dry Cherry. In pneumatic sorters, coffee is classified by weight in first, second and third,
and stones and sticks of smaller size are also eliminated. In electronic sorters, coffee is classified by
color, eliminating mainly the black and yellow grain, by a computerized optical system that eliminates
undesirable color grains, according to the required preparation and quality standards.
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The typical demand for green coffee declines in autumn (September–December) and peaks in
spring (March–June) as depicted in Figure 2. Green coffee orders from wholesale customers (industrial
coffee toasters) require processing only in some sorting processes or in a certain sequence of these
(pneumatic sorting, optical sorting, and sift sorting). Sorting process scheduling decision is based on
(i) the size of the green coffee order and its requirement of stain percentage, and (ii) the percentage
of defective beans resulted from the physical analysis of the Parchment coffee entries necessary to
complete the wholesale customer’s order. If the requirements of the client’s order are not met, two
consequences arise. The first consists of the re-entry of the coffee lot to another sequence of sorting
processes, which generates reprocessing. The second consequence refers to an over-processing of the
coffee bean when the quality that the customer is willing to pay is exceeded, which results in the
storage of the coffee lot or its sale at a lower price.
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3.2. General Methodology

The proposed methodology encompasses data collection and model definition, model validation,
system configurations definition, and output data analysis. The relationships between them are shown
in Figure 3.
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The data collections refer to collect and analyze information on case study operating procedures
and control logic which is used to formulate the decision-making rules in the simulation. Once
the model is built and verified, the validation process compares simulation output with the real
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data. The agent-based simulation model is used to support the decision-making of the case study
through repeated simulations. The decision support system allows the decision-maker to iteratively
set parameters and define system configurations, run simulations, and analyze the output data in
order to generate strategies to implement the decisions.

3.3. Modeling the Green Coffee Supply Chain

From a process-oriented supply chain management approach, cross-functional business processes
are used to structure the activities between members of a SC [44]. The SC can be represented, analyzed
and configured through the application of the reference model Supply Chain Operations Reference
(SCOR) developed by the Supply Chain Council [45]. The description of supply chains is made
using these building blocks of processes, from simple to complex networks using a common set
of definitions of performance metrics, processes, best practices, and the necessary skills to carry
out the processes of the SC. The SCOR model has a sweeping overview of the SC, viewing it as
something ranging from suppliers’ suppliers to customers’ customers and incorporating the financial,
organizational and societal aspects of performance [46]. Through an exploratory study, Lockamy III and
McCormack [47] investigated the relationship between supply chain management planning practices
and SC performance based on four decision areas provided in SCOR: plan, source, make and deliver.
The authors stated that planning processes are important in all SCOR SC planning decision areas.

The SCOR comprises three levels of process detail. Level one defines both the scope and the
content for the supply network. Additionally, the competition performance targets are set. At the
second level, companies implement their specific SC operations strategy through three core business
models, namely, process categories (i) make-to-stock, (ii) make-to-order, and (iii) engineer-to-order.
At level three, companies “fine tune” their operations strategy through (i) process element definitions,
(ii) process element information inputs, and outputs, (iii) process performance metrics and iv) best
practices and system capabilities required to support best practices. For the decision support system,
the SCOR-process oriented approach is used to represent the ASC activities from an “as-is” state to a
“to-be” state [48]. To this end, a diagram of level three SCOR process is constructed.

In this section, we attempt to fit the green coffee SC activities in the frame of the SCOR model in
order to construct a diagram of level three process elements of the desired “to-be” future state, from
the analysis of the “as-is” state of the chain processes. For the green coffee SC actors, the “to-be” future
state of the current study scope covers the following processes.

For Cherry coffee producers, M1.3 Produce and test includes the activities of adding value for the
products by having the raw material pass through several activities, in this case meaning the Cherry
coffee growth yield in a coffee plantation; M1.6 Release Finished Product to Deliver relates to the
harvest process and D1 Deliver Stocked Product relates to the market demand satisfaction. For the
Parchment coffee producer, S1.2 Receive Product refers to the process and associated activities of
receiving Cherry coffee lots from the producers; in this case, M1.3 Produce and test represents the
wet benefit process in an industrial intermediary and evaluates Cherry coffee volume to determine
Parchment coffee lots according to type and percentage of defective coffee beans. The different stages
of the wet benefit process involve Cherry coffee receiving and feeding, mechanical removal of the pulp,
mechanical removal of the mucilage, coffee bean washing, coffee bean drying, and Parchment coffee
grading; and M1.6 Release Finished Product to Deliver refers to the Parchment coffee lot quality and
D1 Deliver Stocked Product relates to the market demand satisfaction.

For the green coffee producer, S1.2 Receive Product refers to the process and associated activities of
receiving Parchment coffee from the producer; the amount of received coffee is defined by S1.1 Schedule
Product Deliveries. S1.3 Verify Product relates to the process and actions required determining product
conformance to requirements and criteria, in this case, both an organoleptic evaluation and physical
revision of a coffee sample. After the coffee entry quality grading, in S1.4 Transfer Product, the accepted
coffee lot is stacked on pallets in the warehouse area designated for each coffee type.
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P3 Plan Make comprises the establishment of courses of action over specified time periods
that represent a projected appropriation of production resources to meet production requirements,
while M2.1 Schedule Production Activities has the purpose of scheduling the activities, in this case,
the processes of M2.3 Produce and Test: coffee bean pre-cleaning, coffee bean threshing, coffee bean
sorting, and green coffee customer order quality control. M2.2 Issue Material relates to the selection
of Parchment coffee entries from the warehouse. The inventory availability record will determine
the coffee lots to be issued to support the production operations. Finally, and M1.6 Release Finished
Product to Deliver refers to the gGreen coffee lot quality and D2 Deliver Make-to-order Product relates
to the market demand satisfaction.

For the industrial coffee roasters, S2.1 Schedule Product Deliveries places the green coffee order.
Figure 4 depicts the level three process elements comprising the make-to-order process at the green
coffee producer. The organizational units involved in the Parchment coffee refinement are the
Parchment coffee supplier, the internal departments of the green coffee producer and green coffee
toaster. The Parchment coffee Delivery and Parchment Procurement level one processes are related by
means of a customer-supplier connection that reflects the temporal relation between them and that the
former process has a container-element link with one instance of the D1 level process. Furthermore,
the instance of the M2 level two process, which is planned by an instance of the P3 level two process,
is comprised of four instances of level three process elements. Regarding process elements, Figure 3
shows some of the resources created and used by them; for instance, Production Plan and Customer
Reception Schedule, which are instances of the Production Schedule class. The former is created by the
instance of Establish Production Plan process element, an element of a P3 level two process, and used
by the instance of Schedule Production Activities. Each of these two processes perceives the Production
Plan resource from a different perspective; two instances of the Resource Perspective class, named
Production Orders and Production Plan. In the same way, the Delivery Orders resource perspective is
presented for the Customer Reception Schedule resource, which is created by the instance of Schedule
Production Activities, and it is used by the instance of Reserve Inventory Capacity and Determine
Delivery Date, a level three process element corresponding to the D2 level two process.
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3.4. Agent Description

Derived from this mapping in the framework of the SCOR model, the identified agents and
activities for the green coffee SC are listed in Table 1. The simulation model implements the Parchment
coffee refinement process at the focal company that interprets historical data from 2016 to 2018 fed by
the green coffee SC actors under investigation.

Table 1. Agents and activities for the green coffee SC.

Agent Activities

Cherry-coffee producer Production Agent (CP Agent) Production
Cherry-coffee producer Delivery Agent (CD Agent) Satisfy market demand
Parchment-coffee producer Source Agent (PS Agent) Source Products

Parchment-coffee producer Delivery Agent (PD Agent) Satisfy market demand

Green-coffee producer Source Agent (GS Agent) Source Products
Verify Products

Green-coffee producer Production Agent (GP Agent) Plan Production
Production

Green -coffee producer Inventory Agent (GI Agent) Update inventory
Green-coffee producer Reschedule Agent (GR Agent) Update Plan Production

Green-coffee producer Delivery Agent (GD Agent) Satisfy market demand
Wholesale Market Agent (WM Agent) Place order

The decision support agents serve the purposes of deriving useful knowledge to accomplish the
decisions: (i) for the Cherry-coffee producer Production Agent (CP Agent), the decision regarding
the estimation of Cherry coffee yield obtained at the coffee plantation; (ii) for the Green-coffee
producer Source Agent (GS Agent), the Parchment coffee sample verification decision; (iii) for the
Green-coffee producer Production Agent (GP Agent), the production plan establishment decision,
and (iv) for the Green-coffee producer Reschedule Agent (GR Agent), the plan production update
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decision. The decision-making rule approach for the CP Agent and the GS Agent is rule-based
representation using Fuzzy Logic involving an inference engine with IF-THEN type rules. For the
GP Agent, a decision-making rule approach based upon the coupling of IF-THEN fuzzy inference
rules and equation-based representation using mixed integer programming with the aim to maximize
customer service level is used. Finally, the decision-making rule perspective used for the GR Agent is
equation-based representations using mathematical equations once the customer service level falls
below the expected level.

In this study, the decision-making rule approach using fuzzy logic is used to generate a knowledge
base for the CP Agent, the GS Agent, and the GP Agent. The diverging opinions of the experts are
represented as blurred triangular and trapezoidal numbers, which describe the coded knowledge of
the expertise of the green coffee SC actors. Accordingly, a Mamdani model codifies the decision criteria
related to (i) agricultural practices for growing Cherry coffee in coffee plantations (CP Agent); (ii)
the process of sensorial evaluation of coffee beans from which gustatory and olfactory characteristics
of the grain are evaluated for quality scoring of a Parchment coffee sample (GS Agent); and (iii)
the sorting process scheduling of Parchment coffee entries based on coffee entry quality grading,
the percentage of defective coffee beans percentage in the coffee lot (GP Agent). In the Mamdani
type model, multiple inputs and outputs represent information using Fuzzy Logic; each input and
output variable is represented through a Linguistic variable. The rule base representation is developed
according to the IF-THEN type, which constitutes the inference method based on the knowledge base
and consequent inference engine. The defuzzification process uses the centroid calculation method.

Fuzzy lLogic is used to mimic the knowledge and expertise of the agricultural field dynamics
for coffee growth. We consider variables related to five agricultural practices that are common in
any plantation, soil nutrition, control of pests, control of diseases, planting density, and pruning,
and two uncertain events that are ever-present in agricultural setting i.e., rainfall and temperature.
The consideration of agricultural practices as decision variables by considering two uncertain events
for Cherry coffee production makes scenario agricultural field modeling closer to reality, with the
simultaneous objectives of maximizing the yield of Cherry coffee obtained at the coffee plantation.
Table 2 describes the variables related to agricultural practices, and uncertain events defined in the
knowledge database for the CP Agent as Input elements (I), and the operations variables defined as
Output elements (O). The knowledge base for coffee growing yield is composed of 1620 inference rules.

Table 2. Variable codification in the knowledge base of the Mamdani type model for coffee growing yield.

Variables Definition Measurement Units

Nutrition (N) Agricultural practice related to the transfer of
nutrients to the coffee plantation Number of applications

Rainfall (R) Uncertain event that supplies water to the
coffee plantation mm/month

Control of pests (CP) Agricultural practice that controls pests that
affect yield Number of applications

Control of diseases (CD) Agricultural practice that controls the disease
that affects yield Number of applications

Planting density (PD) Operational variable related to the amount of
planted bushes in the coffee plantation m2/ha

Pruning (P)
Agricultural practice related to the cutting of
undergrowth to leave a vegetative cover and

prevent erosion
q/ha

Temperature (T) Uncertain event that supplies heat to the
coffee plantation

◦C

Yield (Y)
Linguistic expression that represents the

Cherry coffee growth yield obtained at the
coffee plantation

q/ha



Appl. Sci. 2019, 9, 4903 12 of 32

Fuzzy Logic is also used to mimic the organoleptic evaluation of the Parchment coffee sample.
This process comprises the sensorial evaluation of coffee beans, from which the gustatory and olfactory
characteristics of the grain are evaluated in order to determine a quality score for two coffee types,
Robusta and Parchment. Negative or poor flavors detract from the quality of the coffee. For quality
scoring of the Robusta coffee sample, we consider the variables ferment, sour, malodorous, earthy,
mold and old.

For quality scoring of the Parchment coffee sample, the following variables are taking into account:
aroma; flavor; acidity; body; vinous, fruity, sweetness; green, immatureness; cereal, wood, paper; dry,
old; chemical, medicinal; ferment, sour, malodorous; and earthy, mold.

Table 3 describes the variables related to the gustatory and olfactory characteristics defined in
the knowledge database for the GS Agent as Input elements (I), and the operations variables defined
as Output elements (O). The knowledge base for quality scoring of a Robusta coffee sample and
Parchment coffee sample is composed of 4096 inference rules and 96000 inference rules, respectively.

Table 3. Variable codification in the knowledge base of the Mamdani type models for quality scoring of
a coffee sample.

Variables Definition Measurement Units Status

Robusta coffee sample

Ferment (F) Operational variable related to the fermented taste that
detracts from the quality of the coffee Numerical score Input

Sour (S) Operational variable related to the sour taste that detracts
from the quality of the coffee Numerical score Input

Malodorous (M) Operational variable related to the acetic acid smell related to
the fermented taste Numerical score Input

Earthy (E) Operational variable related to the earthy taste and smell that
detract from the quality of the coffee Numerical score Input

Mold (M) Operational variable related to the mold taste that detracts
from the quality of the coffee Numerical score Input

Old (O) Operational variable related to the aged taste that detracts
from the quality of the coffee Numerical score Input

Robusta Class (RC) Linguistic expression that represents the robusta coffee class
obtained from the organoleptic evaluation Quality score Output

Parchment coffee sample

Aroma (A) Operational variable related to the aromatic impression due to
the volatile substances of coffee Numerical score Input

Flavor (F)
Operational variable related to the balanced impression due to

the combination of gustatory and olfactory attributes
perceived in coffee

Numerical score Input

Acidity (A)
Operational variable related to the gustatory impression due

to organic acids contributing to liveliness, sweetness and
fresh-fruit coffee’s character

Numerical score Input

Body (B)
Operational variable related to the feeling of fullness and

consistency in the mouth, particularly when it is perceived
between the tongue and the palate

Numerical score Input

Vinous, Fruity,
Sweetness (VFS)

Operational variable related to a pleasing fullness of flavor
due to the presence of certain carbohydrates Numerical score Input

Green,
Immatureness (GI)

Operational variable related to the astringent taste that detract
from the quality of the coffee Numerical score Input

Cereal, Wood,
Paper (CWP)

Operational variable related to the cereal taste that detract
from the quality of the coffee Numerical score Input

Dry, Old (DO) Operational variable related to the aged taste that detract from
the quality of the coffee Numerical score Input

Chemical,
Medicinal (CM)

Operational variable related to the chemical taste that detract
from the quality of the coffee Numerical score Input

Ferment, Sour,
Malodorous (FSM)

Operational variable related to the ferment taste and smell
that detract from the quality of the coffee Numerical score Input

Earthy, Mold (EM) Operational variable related to the earthy taste and smell that
detract from the quality of the coffee Numerical score Input

Parchment Class
(PC)

Linguistic expression that represents the Parchment coffee
class obtained from the organoleptic evaluation Quality score Output
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For the GP Agent, fuzzy logic is used to mimic the sorting process scheduling of coffee entries
based on coffee entry quality grading in the dry benefit process. Sorting process scheduling decision
is based on the percentage of defective beans resulted from the physical analysis of the Parchment
coffee entries necessary to complete the wholesale customer’s order. For sorting process scheduling
of not-washed Robusta coffee inputs, we consider the variables serious defects, minor defects, pellet,
green aspect, and weight. For sorting process scheduling of Robusta coffee inputs, we contemplate
the variables humidity, serious defects, minor defects, pellet, green aspect, and weight. Finally, for
sorting process scheduling of Parchment coffee inputs, humidity, serious defects, minor defects, pellet,
green aspect were taking into consideration. With regards to Output, sift sorting refers to the process
by which the coffee is classified by size and shape, pneumatic sorting comprises coffee classification
by size and weight, and optical sorting the coffee is classified by a computerized optical system that
eliminates undesirable color grains. Table 4 describes the variables related to the wet benefit process
defined in the knowledge database for the GP Agent as Input elements (I), and the operations variables
defined as Output elements (O). The knowledge base for sorting process scheduling of not-Robusta
coffee, Robusta coffee, and the Parchment coffee, is composed of 216 inference rules, 864 inference
rules, and 128 inference rules, respectively.

Table 4. Variable codification in the knowledge base of the Mamdani type models for sorting process
scheduling of coffee entries.

Variables. Definition Measurement Units Status

Serious defects (SD)
Operational variable related to the number of defective coffee beans
associated with appearance (black, white, amber, and with irregular

spots)
% of defective beans Input

Minor defects (MD) Operational variable related to the amount of malformed (shell and
ear) coffee beans % of defective beans Input

Pellet (P) Operational variable related to the number of broken coffee beans % of defective beans Input

Green aspect (GA) Operational variable related to the number of immature coffee
beans of black-Green color % of defective beans Input

Weight (W) Operational variable related to the number of kilograms entering
the process schedule kilograms Input

Humidity (H) Operational variable related to the water content of the coffee beans % of humidity Input
Not-washed Robusta coffee entry

Not-washed robusta
Schedule 1 (nrS1)

Linguistic expression that represents the process schedule: mix,
pneumatic sorting, optical sorting, and sift sorting Number of processes Output

Not-washed robusta
Schedule 2 (nrS2);

Not-washed robusta
Schedule 3 (nrS3)

Linguistic expression that represents the process schedule:
pneumatic sorting, optical sorting, and sift sorting Number of processes Output

Robusta coffee entry
Robusta Schedule 1

(rS1)
Linguistic expression that represents the process schedule: mix,

pneumatic sorting, optical sorting, sift sorting, dry, and dry little Number of processes Output

Robusta Schedule 2
(rS2); Robusta

Schedule 3 (rS3);
Robusta Schedule 4

(rS4)

Linguistic expression that represents the process schedule:
pneumatic sorting, optical sorting, sift sorting, dry, and dry little Number of processes Output

Parchment coffee entry
Parchment Schedule 1

(pS1)
Linguistic expression that represents the process schedule: mix,

pneumatic sorting, optical sorting, sift sorting, dry, and dry little Number of processes Output

Parchment Schedule 2
(pS2); Parchment
Schedule 3 (pS3);

Parchment Schedule 4
(pS4)

Linguistic expression that represents the process schedule:
pneumatic sorting, optical sorting, sift sorting, dry, and dry little Number of processes Output

In order to determine the reliability of the aforementioned fuzzy models, a paired t-test was
applied, which is used to compare the estimated values from each model to real recorded case data.
Each record has specific values for each input variable and the output result by the decision-maker.
This test produced a confidence interval that includes zero, which shows there is no significant
difference between the estimated results and real data, so it can be concluded that the Fuzzy models
are valid.
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For the GP Agent, the production plan establishment decision is supported by a decision-making
rule constructed by equation-based representation using mixed integer programming. Broadly,
production planning comprises the determination of the type and quantity of commodities to be
produced and resource allocation. The mathematical programming relies in the endeavor made
by Sawik [49]. The author proposes a mixed integer programming formulation for customer order
assignment over a planning horizon, to maximize service level. The index, parameters, and variables
of this model are shown in Tables 5–7, and the description of the problem is explained below.

Table 5. Indices.

Index Definition

i Processing stage, I ∈ I = (1, . . . , m)
j Wholesaler order, j ∈ J = (1, . . . , n)
k Coffee type, k ∈ K = (1, . . . , r)
t Planning period, t ∈ T = (1, . . . , h)

Table 6. Model parameters.

Parameter Definition

aj, dj, sj Arrival date, due date, size of order j
bj Production lot for order j
cit Processing time available in period t on each machine in stage i
mi Number of identical, parallel machines in stage i
n Number of customer orders to be scheduled
pij Processing time in stage i of each product in order j

Ji ⊆ J {j ∈ J: pij > 0} subset of wholesaler orders to be processed in stage i
J1 ⊆ J Subset of small wholesaler orders
J2 ⊆ J Subset of large wholesaler orders

Jk Subset of wholesaler orders for coffee type k

Table 7. Variables.

Variable Definition

uj 1, if order j is completed after due date; otherwise uj = 0
xjt 1, if order j is performed in period t; otherwise xjt = 0
yjt Fraction of customer order j to be processed in period t

The green coffee producer can be identified as a flexible flow production system made up of six
processing stages in series, and each stage i ∈ I = (1, . . . , m) is made up of m1 ≥ 1 parallel identical
machines (Figure 5). In the system, three types of coffee are produced in a make to- order environment
responding directly to wholesale customer-requested orders. Let J be the set of customer orders that
are known ahead of a planning horizon. Each order j ∈ J is described by a triple (aj, dj, sj), where aj is
the order arrival date, dj is the customer-requested due date, and sj is the size of order (the number
of ordered products of specified type). Each order requires processing in various processing stages;
however, some orders may bypass some stages.
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The processing stages are the following: pre-cleaning, threshing, sorting by sieve1, sorting by
vibration-gravity, pneumatic sorting, and optical sorting. Let pij ≥ 0 be the processing time in stage i
of each product in order j ∈ J. The orders are processed and transferred among the stages in lots of
various sizes that depend on the ordered product type and let bj be the size of production lot for order j.
The coffee beans are feed into the pre-cleaning machine, m1, and then, it goes to the threshing machine,
m2; this machine has 2 outputs, good coffee beans, and straw, the straw leaves the system and the
coffee continues its way to the next processing stage. The sorting by sieve machines in stage 3, m3 y
m4, have three outputs, (1) good coffee beans, (2) pellet and (3) straw; the good coffee beans continues
its way to enter the next machine, while the broken coffee beans and straw leave the system, separately.
The sorting by vibration-gravity machine, m5, has four outputs, (1) good coffee beans, which passes
to the next machine, or failing that, leaves the system as the final product; (2) pellet, (3) dust and (4)
dried cherries that leave the system definitively as waste. The pneumatic sorting machines, m6, m7 y
m8, have three outputs (1) good coffee beans that leave the system as final product; (2) stain coffee
beans that leave the system as waste, and (3) coffee beans that re-enter the machine to be reprocessed.
The optical sorting machines, m9, m10 y m11, have two outputs (1) good coffee beans that leave the
system as final product; (2) stain coffee beans that leave the system as waste.

The planning horizon consists of h planning periods, and L is the length of each planning period,
in this case, working hours per week. Let T = {1, . . . , h} be the set of planning periods and cit the
processing time available in period t on each machine in stage i. Customer orders are split into
production lots of fixed sizes, each to be processed as a separate job. The following two types of
customer orders are considered: (1) small customer order, where each order must be completed in two
consecutive time periods, and (2) large customer order, where each order must be completed in four
consecutive time periods. In practice, the two types of customer orders are scheduled simultaneously.
Denote by J1 ⊆ J, and J2 ⊆ J, respectively, the subset of small customer orders, and large customer orders.

The mathematical formulation for the initial production schedule for the original customer orders
known ahead of the planning horizon is as follows, where all materials are assumed to be available at
the beginning, i.e., aj = 1 for each order j ∈ J.

Maximize:
1 −
∑

(j∈J) uj/n (1)

Subject to:

xjt + x(jt + 1) + x(jt + 2) + x(jt + 3) ≤ 4, j ∈ J2, t ∈ T: aj ≤ t ≤ h−3 (2)

xjt + x(jt + 1) + x(jt + 2) ≤ 3, j ∈ J2, t ∈ T: aj ≤ t ≤ h−2 (3)

xjt + x(jt + 1) ≤ 2, j ∈ J2, t ∈ T: aj ≤ t ≤ h−1 (4)
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xjt + xjt’ ≤ 1, j ∈ J, t ∈ T, t’ ∈ T: aj ≤ t ≤ h−2, t’ ≥ t + 2 (5)

∑
(t∈T:t ≥ aj) yjt = 1, j ∈ J (6)

xjt ≥ yjt, j ∈ J, t ∈ T: t ≥ aj (7)

yjt ≥ bj xjt/sj, j ∈ J, t ∈ T: t ≥ aj (8)

uj ≥
∑

(t∈T:t > dj) yjt, j ∈ J (9)

uj ≤
∑

(t∈T:t > dj) xjt, j ∈ J (10)

∑
(j∈J) pij sj yjt ≤ cit mi, I ∈ I, t ∈ T (11)

∑
(j∈J:τ∈T:aj ≤ τ ≤ t) sj yjτ ≥

∑
(j∈J:dj≤t) sj (1 − uj), t ∈ T (12)

uj ∈ {0, 1}, j ∈ J (13)

xjt ∈ {0, 1}, j ∈ J, t ∈ T: t ≥ aj (14)

0 ≤ yjt ≤ 1, j ∈ J, t ∈ T: t ≥ aj (15)

The objective function (1) aims to maximize service level. Each large customer order must be
completed in four consecutive time periods and each small customer order must be completed in two
consecutive time periods (2)–(5). Each order must be completed (6), each order is allocated among
all the periods that are selected for its assignment (7), and the minimum portion of a divisible order
allotted to one period is not less than the batch size (8). Regarding tardy order constraints, a tardy order
is partly assigned after its due date (9)–(10). The demand for capacity at each processing stage cannot
be greater than the maximum available capacity in every period (11). The cumulative production is
not less than the cumulative demand minus the tardy demand (12).

In industrial environment agent-based solution adoption, real-time scheduling and rescheduling
are becoming increasingly important [17]. The master production schedule has to deal with seasonal
fluctuations of demand and to calculate a frame for necessary amounts of overtime, whilst short-term
production planning comprises the determination of lot-sizes according to their due dates and the
available capacity with minute accuracy [50]. There are two basic elements in this approach [51]:
(i) scheduling algorithms are used to generate initial schedules and repair obsolete schedules and (ii)
control policies are used to adjust the frequency of repairing a schedule. Considering these control
policies from the agent-based modeling and simulation approach, an adaptive agent is capable of
modifying them during a simulation based on evolving circumstances [52]. Consequently, the adaptive
control approach is based on the control of a set of performance indicators of a system by means
of a decision model that analyzes them and selects an appropriate control policy. For SC planning,
this approach relates to a partial or even the full change of a previously accepted plan triggered by a
new event such as new order arrival, a cancellation of already allocated orders, the availability of a new
resource, a failure of existing resources, or changes of the chain objectives [53]. The GR Agent monitors
the customer service level and once the indicator falls below the expected level, the Agent updated the
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production plan. Rescheduling is the process of updating an existing production schedule in response
to disruptions or other changes; This includes the machine failures, processing time delays, rush orders,
quality problems, and unavailable material [51], in this case, the disturbance relates to delay in the
arrival or shortage of materials. The mathematical formulation for the rescheduling algorithm is as
follows considering the rescheduling parameters in Table 8. Let tmod be the first planning period
immediately after the order modification.

Table 8. Rescheduling parameters.

Parameter Definition

h’ new planning horizon
E− upper limit on maximum earliness

tmod the planning period immediately following modification of orders
Jmod set of modified orders
Jold subset of orders in J remaining for completion without modification

JN
old, JS

old subset of orders in Jold, respectively non-reschedulable, reschedulable
Tnew {h + 1, . . . , h’} set of new planning periods
Told {tmod, . . . , h} subset of remaining planning periods in T

TN
old subset of periods in Told with fixed assignment of orders in Jold

Prime (‘) denotes updated parameters after modification of orders.
Step 0. Split the set Jold of orders remaining for completion into two disjoint subsets: JS

old of
reschedulable orders and JN

old of fixed, non-reschedulable orders:

JN
old = {j∈Jold:

∑
(tmod ≤ t ≤ tmod + E*max) xjt = 1} (16)

JS
old = Jold/JN

old (17)

Step 1. Set TN
old = {tmod, . . . , tmod + E−}

Step 2. Do not change the assignment of non-reschedulable orders j∈JN
old, i.e.,:

y’(j,tmod + E− +1) = y(j, tmod + E*max + 1), j ∈ JN
old ∩ J: x(j,tmod+E−) = 1 (18)

The algorithm is for rescheduling of the remaining customer orders awaiting material supplies [49].
For each order j, product-specific materials are assumed to be unavailable earlier than E− periods
ahead of the order due date dj. Therefore, each order j cannot be assigned to periods earlier than
dj − E−. In particular, in period tmod product-specific materials are not available for orders due
in periods greater than tmod + E−, and hence all such orders can be rescheduled. On the other
hand, the unmodified orders with product-specific materials supplied by period tmod are considered
non-reschedulable in the algorithm. In the algorithm, the planning horizon is progressively shifted
to take into account modifications of the customer orders (changes of order size and/or due date)
occurring during the horizon.

3.5. Model Validation

The AnyLogic® Personal Learning Edition multi-method simulation platform that supports not
only agent-based general-purpose simulations but also it supports DES modeling was used to build
the agent-based simulation model that underpins the decision support system in a HP Workstation
with an Intel Zeon CPU operating at 3.40 GHz and equipped with 8 GB RAM. The decision-making
rules for the decision support agents, IF-THEN fuzzy inference rules and mixed integer programming,
were implemented in Python through the integration AnyLogic®–Python.

To validate the simulation model and to check if it is an adequate representation of the real
system, a paired t-test was applied, which is used to compare the results from the simulation model to
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the historical data of the real system. The indicator refers to the amount of good green coffee beans
resulting from the sequence of processes, sift sorting, pneumatic sorting, and optical sorting, with an
intake of 37,740 kg of Parchment coffee. The results of 10 replicas are shown in Table 9, where Xj is
the number of kilograms of good green coffee beans resulting from the sequence of processes (1) sift
sorting, (2) pneumatic sorting, and (3) optical sorting, with an intake of 37,740 kg of Parchment coffee,
in the real system. In the same way, Yj is the number of kilograms of good green coffee beans result
from the simulation model.

Table 9. Model validation data.

Replicate Xj Yj Zj = Xj − Yj (Zj − Z−10)2

1 27,176.00 27,935.05 −759.05 360,735.09
2 27,901.00 27,811.70 89.30 61,373.56
3 27,348.00 27,734.25 −386.25 51,899.30
4 28,004.00 28,754.03 −750.03 349,980.98
5 27,733.00 27,417.09 315.91 225,007.48
6 27,914.00 28,561.69 −647.69 239,364.85
7 27,682.00 27,270.03 411.97 325,361.82
8 28,412.00 28,461.21 −49.21 11,929.89
9 27,197.00 26,779.30 417.70 331,930.58

10 27,996.00 28,223.02 −227.02 4,703.48
Sum −1,584.36 1,962,287.05

Average 27,736.30 27,894.74 −158.44

A 95% confidence interval is constructed using Equations (19)–(21):

Z−(n) =
∑n

(i = 1) Zi)/n
Z−(10) = −1584.36/10

Z−(10) = −158.43
(19)

Varˆ [Z−10 ] =
∑10

(i = 1) [(Zj − Z−10)2]/n (n − −1)
Varˆ [Z−10 ] = 1,962,287.05/10 (10 − −1)

Varˆ [Z−10 ] = 21,803.18
(20)

Z−(n) ± t(n−1,1-(1−∝)⁄2)
√

Var[̂Z−n]
−158.43 ± t9,0.975

√
21,803.18

−158.43 ± 2.26(147.65)
(−492.46,175.59)

(21)

It is observed that the confidence interval includes zero, so it is concluded, with a confidence
index of 95% that the difference between the means of the real data and the simulation results is not
statistically significant.

The optimal number of replicas of the simulation model was determined using the procedure of
estimating the mean µ = E (x) with a specific error. Table 10 shows the results of 10 independent pilot
replicas, where each replica represents the number of kilograms of good green coffee beans resulting
from the sequence of processes (1) sift sorting, (2) pneumatic sorting, and (3) optical sorting, with an
intake of 37,740 kg of Parchment coffee.
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Table 10. Simulation results of the pilot replicas.

Replicate Good Green Coffee Beans (Kilograms)

1 27,900.2004
2 27,907.4386
3 27,905.3017
4 27,889.3183
5 27,895.6686
6 27,853.6233
7 27,934.5803
8 27,896.9872
9 27,863.0423
10 27,889.3104

Average 27,894.7358
Standard deviation 24.9877

The average amount of coffee beans leaving the process, in kilograms, was estimated with an
absolute error of β = 15 kg and a 95% confidence level. The calculations for the number of replications
are shown below, where i is the number of replicas, and where the calculation performed must be less
than or equal to the absolute error (β = 15 kg), where x−n = 27,894.73, S2

n = 624.38, β = 15 and α = 0.05.

min
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√
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√
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Therefore, the optimal number of replicas is 14.

4. Results and Discussion

4.1. Simulation Results of the Demand Scenarios

The selection of the demand pattern scenarios responds to the need of the decision-maker
for production scheduling during the typical demand for green coffee that declines in the
September-December period and peaks in the March-June period. The planning horizon considered
was h = 13 weeks, with a length of each planning period of working hours per week. The following
three demand patterns were considered.

Increasing, with demand skewed towards the end of the planning horizon, 60 customer orders.
Decreasing, with demand skewed towards the beginning of the planning horizon, 84 customer

orders.
Unimodal, where demand peaks in the middle of the planning horizon and falls under the

available capacity on the first and last days of the horizon, 63 customer orders.
Figures 6–8 show the initial aggregate production schedule and the estimated production results

along with the cumulative aggregate production and cumulative aggregate demand for each case for
the increasing demand pattern, the unimodal demand pattern, and the decreasing demand pattern,
respectively. The negative values in these figures indicate the tardy demand.
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For the initial aggregate production schedule, all materials are assumed to be available at the
beginning of the planning horizon, while for the estimated production results, delay in the arrival of
raw materials occurred.

The customer service level results for the increasing demand pattern are as follows (Figure 6): no
tardy orders for the initial production schedule, i.e., 100% service level, and two tardy orders for the
estimated production results, a 96% service level.
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Regarding the unimodal demand pattern, the results are five tardy orders for the initial production
schedule, a 92% service level, and nine tardy orders from the estimated production results, an 85%
service level. Figure 7 shows that the aggregate production is best leveled over time for the unimodal
demand pattern. The study of Sawik [54] for production scheduling in make-to-order manufacturing
systems found the aggregate production is best leveled over time for the increasing demand pattern.

4.2. Reactive Scheduling for the Decreasing Demand Scenario

For the decreasing demand pattern, the results indicated the application of the reactive aggregate
production scheduling approach in the green coffee SC. For this demand pattern: ten tardy orders for
the initial production schedule, an 88% service level, and nineteen tardy orders from the estimated
production results, a 77% service level (Figure 8). This value falls below the expected level. Consequently,
Figure 9 shows the updated aggregate production schedule with tmod = 7 and E−= 2, resulting in ten
tardy orders and an 88% service level.
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4.3. Discussion

We undertake the analysis of the response surfaces of these fuzzy logic-based decision-making
rules. Fuzzy logic is the decision-making rule approach used to generate a knowledge base for the CP
Agent, the GS Agent, and the GP Agent as described in Section 3.3. The CP Agent comprises the Cherry
coffee-growing yield estimation model, the hectares available for planting and the precipitation and
agricultural practices data are used as input. The GS Agent uses the Parchment coffee sample’ quality
scoring model with the gustatory and olfactory attributes of the sample as input data. The GP Agent
comprises the Parchment coffee entries sorting process scheduling model, the percentage of defective
coffee beans and the percentage of humidity of the coffee entry are used as input data. Appendix A
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describes the operating values for the fuzzy sets of the Fuzzy models of Cherry coffee-growing yield;
quality scoring of the Robusta coffee sample; quality scoring of the Parchment coffee sample; sorting
process scheduling of not-washed Robusta coffee entries; sorting process scheduling of Robusta coffee
entries; and sorting process scheduling of Parchment coffee entries.

Regarding the Cherry coffee-growing yield model, the factors that have a significant effect on
coffee yield are nutrition, pruning, and control of pests. The factors that have a significant effect from
high values are nutrition and pruning. The factor that has a significant effect from low values is control
of pests. The factors that do not have a negative effect on coffee yield are rainfall and temperature.
The study of Paulo and Furlani Jr. [55] also found that adequate nutrition along with optimal planting
density is expected to show high yield responses in coffee plantations.

For the Parchment coffee samples’ quality scoring model, ferment, sour, malodorous (FSM) is
the factor that has a significant effect on coffee samples’ quality score. For the Altura coffee, acidity,
chemical taste, flavor, aroma, and body must have high values. For the Extra prima coffee, aroma,
acidity, and body must be contained in the medium values. For the Robusta coffee samples’ quality
scoring model, the malodorous factor has a significant effect on the quality score, from medium values
the coffee can be rejected, likewise, when sour is in the high values and ferment in the medium values.
The factors that do not have a significant effect on the quality score are old and earthy. The factor that
has a significant effect from high values is mold and sour. The presence of both factors, mold and old,
has a significant effect on the quality score when they occur at high values. Through the development
of a fuzzy expert system for sensorial evaluation of coffee bean attributes to derive quality scoring,
Livio and Hodhod [38] found the ranges of the values of the attributes for the lowest and highest
quality scores considering Fragrance, flavor, aftertaste, acidity, body, uniformity, balance, clean cup,
sweetness, overall, and defects. Also from a fuzzy logic approach, the study of Flores and Pineda [39]
conducted a similar analysis with the attributes brew, aroma, taste, aftertaste, and body.

Regarding the Parchment coffee entry sorting process scheduling model, both, Serious defects
and minor defects, have a significant effect on sorting process scheduling. The green aspect factor does
not have an effect on sorting process scheduling. The pellet factor has a significant effect from low
values on sorting process scheduling. The humidity factor has a significant effect from medium to
high values and results in complex sorting sequences. For the Robusta coffee entry sorting process
scheduling model, both, serious defects and minor defects, have a significant effect from medium to
high values on sorting process scheduling. The pellet factor has a significant effect from low to medium
values on sorting process scheduling. The humidity factor has a significant effect from high values on
sorting process scheduling. According to the a review study of the green coffee processing, Ghosh and
Venkatachalapathy [42] asserted that achieving a 12% of humidity of coffee contributes to obtaining
acceptable color, size along with the removal of pests for longer safe storage.. The weight factor does
not have an effect on sorting process scheduling. Finally, for the not-washed Robusta coffee entry
sorting process scheduling model, factors, serious defects, and minor defects have a significant effect
from medium to high values on sorting process scheduling and result in complex sorting sequences.
Factors, the green aspect, and humidity do not have an effect on sorting process scheduling.

Regarding the demand pattern scenarios analyzed, Figure 10 shows the input inventory of
Parchment coffee and the output of green coffee. We noted that the input inventory and output
inventory vary similar over time for the unimodal demand pattern, not the case for both the increasing
and decreasing demand pattern. The ending input inventory level is at its highest for the increasing
demand pattern and its zero for the decreasing demand pattern.
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Computational experiments aim to explore use cases for the decision support system to investigate
different demand patterns. For the decreasing demand pattern, the results indicated the application
of the reactive aggregate production scheduling approach in the green coffee SC due to service level
value below the expected level. However, it is important to keep in mind that these results are
subject to the assumptions of the model, as well as to the selected parameters and the defined system
configurations. Decisions are based on case information, consequently, the limitations relate to this
aspect of a case-study- based research. This can lead to situations in which the selection of the
decision-making rule approach used for the decision support agents presented in this study results in
decisions that could impair the performance of the system.

5. Conclusions and Future Work

In this study, we attempt to tackle the challenge for the ASC regarding the need for logistic systems
for planning and scheduling/rescheduling within the agro-industry. To this end, an agent-based model
driven decision support system for a Mexican green coffee SC was depicted. Three scenarios of demand
patterns were considered to conduct the experiments: increasing demand, unimodal demand, and
decreasing demand. A simulation model underpins the decision support system taking into account
the use of the SCOR-process oriented approach, a hybrid modeling perspective, agent-based modeling
and DES, and an adaptive control approach. A theoretical implication of the use of the hybrid modeling
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perspective refers to its contribution to achieving model quality as a measure of how the agent-based
simulation model appropriately represents the aspects of interest in the green coffee SC, as well as
simultaneous execution of events and performance improvement through agent coordination, both
benefits of agent-based modeling and simulation with DES combination reported by Zhou et al. [56].

A general perception of the decision-makers within the focal company regarding the functionality
of the decision support system the effective response of the system to the disturbance caused by the
delay in the arrival or shortage of raw materials, which requires a change in the production schedule.
The decision support system can handle these changes while considering scenarios reflecting the
context of green coffee production, scenarios where the demand skewed towards the end of the
planning horizon, where the demand skewed towards the beginning of the planning, and where
demand peaks in the middle of the planning horizon and falls under the available capacity on the first
and last days of the horizon. The exhibition of the management process within the green coffee SC
context may help practitioners and managers interested in implementing the agent-based modeling
and simulation approach in order to increase the possibilities of successful adopting of the reactive
aggregate production scheduling.

A social implication for the Cherry coffee producers relates to the determination of the agricultural
practices that have a significant effect on coffee yield: nutrition, pruning, and control of pests. Regarding
agricultural practices in the study region, Hernández et al. [41] assert that producers generally do
not have regulations or recommendations on the use of different varieties of coffee available to
them, the culture of soil analysis is practically non-existent, and chemical fertilization is carried out
through recommendations from fellow producers, for economic convenience and in some cases, on the
recommendation of a commercial agrochemical company. Also, the authors state that there is a culture
of control of plantation density with machete, leaving vegetal cover to avoid erosion. However,
negative experiences are registered with the use of herbicides both for poisoning in the personnel
who apply the product and for the degradation of the soils with frequent use, which has generated a
posture of reserved use of the pesticide. Therefore, there are no experiences of pesticide use to control
pests or coffee diseases. In regard to the pruning of coffee trees, the practices include sanitary pruning.
Finally, the authors report that the producers do not have a multi-year management plan for plant
tissue, including renewal.

Future work may consist of including decision support regarding coffee harvesting scheduling and
coffee commercialization. The first refers to the decision to harvest ripe Cherry coffee. The cutting of
Cherry fruits in mature state results in weight gained in the scale, plus facilitates the wet benefit process,
decreases waste when Parchment coffee is processed and the coffee beans gain organoleptic quality.

The second is related to the negotiation in the coffee commercialization among the actors in the
chain. The Cherry coffee purchasing parameters include the region of the crop, height and average
annual temperature of the coffee plantation, the variety of coffee, the percentage of mature grains,
the Parchment coffee yield and the time elapsed since the cut. Parameters for trade-in Parchment
coffee include dry Cherry percentage; humidity percentage; yield to green coffee; uniformity of color;
the number of defective coffee beans with respect to the weight of the sample analyzed; coffee beans
significantly free of improper aromas; and defective beans percentage in the coffee lot.
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Appendix A

Tables A1–A6 describes the operating values for the fuzzy sets of the Fuzzy models of coffee
growing yield; quality scoring of the Robusta coffee sample; quality scoring of the Parchment coffee
sample; sorting process scheduling of not-washed Robusta coffee inputs; sorting process scheduling of
Robusta coffee inputs; and sorting process scheduling of Parchment coffee inputs.

Table A1. Fuzzy model for coffee growing yield: fuzzy sets and operating intervals.

Coffee Growing

Input
Knowledge

Base

Output

Variable
Fuzzy Set

Variable
Fuzzy Set

Definition Interval Definition Interval

Nutrition (N)

Very low [1, 1, 1]

1620
inference

rules
Yield (Y)

Very low [0, 3, 6, 10]
Low [1, 2, 2]

Appropriate [2, 3, 3]
High [3, 4, 4]

Very high [4, 5, 5]

Rainfall (R)
Low [600, 600, 820, 1450]

Low [7.5, 11, 13, 16]
Appropriate [1400, 1500, 1600, 1850]

High [1800, 1941, 2500, 2500]

Control of pests (CP) Null-minimum [0, 1, 1]
Protection [1, 2, 2]

Control of diseases (CD) Null-minimum [0, 1, 1]

Medium [15, 20, 25, 32]
Protection [1, 2, 2]

Planting density (PD)
Low [0, 1, 1]

Appropriate [1, 2, 2]
High [2, 3, 3]

Pruning (P)
Not performed [0, 0, 0.27]

High [30, 32, 40, 40]

Moderate [0.2, 0.5, 0.89]
Intense [0.75, 1, 1]

Temperature (T)
Low [10, 10, 14, 22]

Appropriate [21, 23, 24, 26]
High [26, 28, 50, 50]

Table A2. Fuzzy model for quality scoring of the Robusta coffee sample: fuzzy sets and operating
intervals.

Robusta Coffee Organoleptic Evaluation

Input
Knowledge

Base

Output

Variable
Fuzzy Set

Variable
Fuzzy Set

Definition Interval Definition Interval

Ferment (F)

Not present [0, 0, 1]

4096
inference

rules

Robusta
class (RC)

7.2 [7.2, 7.2, 7.31]

Low [0.8, 1, 2]
Medium [1.8, 2, 3]

High [2.8, 3, 4]

Sour (S)

Not present [0, 0, 1]
Low [0.8, 1, 2]

Medium [1.8, 2, 3]
High [2.8, 3, 4]

Malodorous (M)

No [0, 0, 1]

7.3 [7.3, 7.3, 7.41]

Low [0.8, 1, 2]
Medium [1.8, 2, 3]

High [2.8, 3, 4]

Earthy (E)

Not present [0, 0, 1]
Low [0.8, 1, 2]

Medium [1.8, 2, 3]
High [2.8, 3, 4]

Mold (M)

Not present [0, 0, 1]

Rejected [7.41, 7.41, 7.5]

Low [0.8, 1, 2]
Medium [1.8, 2, 3]

High [2.8, 3, 4]

Old (O)

Not present [0, 0, 1]
Low [0.8, 1, 2]

Medium [1.8, 2, 3]
High [2.8, 3, 4]
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Table A3. Fuzzy model for quality scoring of the Parchment coffee sample: fuzzy sets and operating
intervals.

Parchment Coffee Organoleptic Evaluation

Input
Knowledge

Base

Output

Variable
Fuzzy Set

Variable
Fuzzy Set

Definition Interval Definition Interval

Aroma (A)

Null-little [0, 2, 2]

96,000
inference

rules

Parchment
class (PC)

Altura [2, 2.8, 3,3]

Very low [2, 3, 3]
Low [3, 4, 4]

Medium [4, 5, 5]
High [5, 6, 6]

Flavor (F)

Null-little [0, 2, 2]
Very low [2, 3, 3]

Low [3, 4, 4]
Medium [4, 5, 5]

High [5, 6, 6]

Extra
prima [2.8, 3, 3.8, 4]

Acidity (A)

Null-little [0, 2, 2]
Very low [2, 3, 3]

Low [3, 4, 4]
Medium [4, 5, 5]

High [5, 6, 6]

Body (B)
Low [1, 2, 2]

Medium [2, 3, 3]
High [3, 4, 4]

Vinous, Fruity, Sweetness
(VFS)

Not present [0, 1, 1]

Oro [3.8, 4, 4.8, 5]

Low [1, 1, 2]
Medium [2, 2, 3]

High [3, 3, 4]

Green Immatureness (GI) Not present [0, 1, 1]
Present [1, 2, 2]

Cereal, Wood, Paper (CWP) Not present [0, 1, 1]
Present [1, 2, 2]

Dry, Old (DO) Not present [0, 1, 1]

Rejected [4.8, 5, 5.8, 6]

Present [1, 2, 2]

Chemical, Medicinal (CM) Not present [0, 1, 1]
Present [1, 2, 2]

Ferment, Sour, Malodorous
(FSM)

Not present [0, 1, 1]
Present [1, 2, 2]

Earthy, Mold (EM) Not present [0, 1, 1]
Present [1, 2, 2]

Table A4. Fuzzy model for process scheduling of not-washed Robusta coffee entries: fuzzy sets and
operating intervals.

Sorting Process Scheduling for Not-washed Robusta Coffee Entries

Input
Knowledge

Base

Output

Variable
Fuzzy Set

Variable
Fuzzy Set

Definition Interval Definition Interval

Serious defects
(SD)

Normal [−13.5, −5.58, 9.17, 10.53]

216 inference
rules

Not-washed
robusta

Schedule
1 (nwrS1)

Mix [0, 0.16, 0.33]
Regular [10.3, 10.5, 13, 13.5] Pneumatic [0.16, 0.33, 0.5]
Many [13, 13.5, 22, 22] Optical [0.33, 0.5, 0.66]

Minor defects
(MD)

Normal [−7.2, −0.8, 9, 9.2] Sift [0.5, 0.66, 0.83]
Many [9, 9.2, 20.23, 20.23]

Pellet (P)
Normal [−1.79, 0.106, 3.32, 3.5] Not-washed

robusta
Schedule
2 (nwrS2)

Pneumatic [0, 0.2, 0.4]
Regular [3.29, 3.68, 4.5] Optical [0.2, 0.4, 0.6]
Many [4.3, 4.64, 11.9, 11.9] Sift [0.4, 0.6, 0.8]

Green aspect
(GA)

Appropriate [−7.2, −0.8, 13.8, 14.9]
Low [14.7, 15.27, 15.8]

Very low [15.5, 16.4, 16.86]
Null-minimum [16.2, 17.01, 20, 20] Not-washed

robusta
Schedule
3 (nwrS3)

Pneumatic [0, 0.2, 0.4]

Weight (W)
Little [−1.7 × 104, −7400, 9080, 9180] Optical [0.2, 0.4, 0.6]

Normal [7250, 8250, 1.44 × 104, 1.45 × 104]
Sift [0.4, 0.6, 0.8]

Much [1.38 × 104, 1.48 × 104, 2.33 × 105,
2.35 × 105]
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Table A5. Fuzzy model for process scheduling of Robusta coffee entries: fuzzy sets and operating
intervals.

Sorting Process Scheduling for Robusta Coffee Entries

Input
Knowledge

Base

Output

Variable
Fuzzy Set

Variable
Fuzzy Set

Definition Interval Definition Interval

Humidity (H)

Exceeded [7.87, 9.47, 10.48, 11.4]

864 inference
rules

Robusta
Schedule

1 (rS1)

Mix [0, 0.16, 0.33]
Appropriate [10.8, 11, 12.5, 12.75] Pneumatic [0.16, 0.33, 0.5]

Low [12.5, 12.75, 13] Optical [0.33, 0.5, 0.66]
Null-little [12.75, 13, 15.7, 17.9] Sift [0.5, 0.66, 0.83]

Minor defects
(MD)

Normal [−9, −1, 9.497, 9.81] Dry [0.6, 0.83, 1]
Regular [9.5, 10, 13, 13] Dry little [0.83, 1, 1.16]
Many [12.83, 13.2, 20.5, 30]

Robusta
Schedule

2 (rS2)

Pneumatic [0, 0.2, 0.4]
Serious defects

(SD)
Normal [−7.2, −0.8, 10, 10.5] Optical [0.2, 0.4, 0.6]
Many [10, 10.5, 20.23, 20.23] Sift [0.4, 0.6, 0.8]

Pellet (P)
Normal [−4.814, −1.614, 2.286, 2.536] Dry [0.6, 0.8, 1]
Regular [2.29, 2.49, 3.49, 3.779] Dry little [0.8, 1, 1.2]
Many [3.5, 3.75, 10, 10]

Robusta
Schedule

3 (rS3)

Pneumatic [0, 0.2, 0.4]

Green aspect
(GA)

Appropriate [7.32, 8.95, 11, 12.75] Optical [0.2, 0.4, 0.6]
Low [12.5, 12.75, 13] Sift [0.4, 0.6, 0.8]

Very low [12.75, 13, 14] Dry [0.6, 0.8, 1]
Null-minimum [13, 14, 18, 18] Dry little [0.8, 1, 1.2]

Weight (W)

Little [−2988, −188, 8958, 9058]
Robusta
Schedule

4 (rS4)

Pneumatic [0, 0.2, 0.4]

Normal [8100, 9100, 8.17 × 104, 8.18 × 104]
Optical [0.2, 0.4, 0.6]

Sift [0.4, 0.6, 0.8]

Little [7.98 × 104, 8 × 104, 4.82 × 105,
4.83 × 105]

Dry [0.6, 0.8, 1]
Dry little [0.8, 1, 1.2]

Table A6. Fuzzy model for process scheduling of Parchment coffee entries: fuzzy sets and operating
intervals.

Sorting Process Scheduling for Parchment Coffee Entries

Input
Knowledge

Base

Output

Variable
Fuzzy Set

Variable
Fuzzy Set

Definition Interval Definition Interval

Humidity (H)

Exceeded [7.87, 9.47, 10.48, 11.4]

128 inference
rules

Parchment
Schedule

1 (pS1)

Mix [0, 0.16, 0.33]
Pneumatic [0.16, 0.33, 0.5]

Appropriate [10.8, 11, 12.5, 12.75] Optical [0.33, 0.5, 0.66]
Sift [0.5, 0.66, 0.83]

Low [12.5, 12.75, 13] Dry [0.6, 0.83, 1]
Dry little [0.83, 1, 1.16]

Null-little [12.75, 13, 15.7, 17.9]
Parchment
Schedule

2 (pS2)

Pneumatic [0, 0.2, 0.4]

Serious defects
(SD)

Normal [−9, −1, 2, 2.5] Optical [0.2, 0.4, 0.6]
Sift [0.4, 0.6, 0.8]

Many [2, 2.5, 20.5, 21.4] Dry [0.6, 0.8, 1]

Minor defects
(MD)

Normal [−14.4, −8.05, 2, 2.5] Dry little [0.8, 1, 1.2]

Parchment
Schedule

3 (pS3)

Pneumatic [0, 0.2, 0.4]
Many [2, 2.5, 22, 22.4] Optical [0.2, 0.4, 0.6]

Pellet (P) Normal [−3.6, −0.4, 0.5, 0.75] Sift [0.4, 0.6, 0.8]
Dry [0.6, 0.8, 1]

Many [0.5, 0.75, 11, 11] Dry little [0.8, 1, 1.2]

Green aspect
(GA)

Appropriate [7.32, 8.95, 11, 12.75] Parchment
Schedule

4 (pS4)

Pneumatic [0, 0.2, 0.4]
Optical [0.2, 0.4, 0.6]

Low [12.5, 12.75, 13] Sift [0.4, 0.6, 0.8]
Very low [12.75, 13, 14] Dry [0.6, 0.8, 1]

Null-minimum [13, 14, 18, 18] Dry little [0.8, 1, 1.2]
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17. Mařík, V.; McFarlane, D. Industrial adoption of agent-based technologies. IEEE Intell. Syst. 2005, 20, 27–35.
[CrossRef]

18. Mattia, A. A multi-dimensional view of agent-based decisions in supply chain management. Commun.
IBIMA 2012, 2012. [CrossRef]

19. Méndez, C.A.; Cerdá, J.; Grossmann, I.E.; Harjunkoski, I.; Fahl, M. State-of-the-art review of optimization
methods for short-term scheduling of batch processes. Comput. Chem. Eng. 2006, 30, 913–946. [CrossRef]

20. Phanden, R.K.; Jain, A.; Verma, R. Integration of process planning and scheduling: A state-of-the-art review.
Int. J. Comput. Integr. Manuf. 2011, 24, 517–534. [CrossRef]

21. Barbati, M.; Bruno, G.; Genovese, A. Applications of agent-based models for optimization problems:
A literature review. Expert Syst. Appl. 2012, 39, 6020–6028. [CrossRef]

22. Lee, J.H.; Kim, C.O. Multi-agent systems applications in manufacturing systems and supply chain
management: A review paper. Int. J. Prod. Res. 2008, 46, 233–265. [CrossRef]

23. Monostori, L.; Váncza, J.; Kumara, S.R.T. Agent-based systems for manufacturing. CIRP Ann. 2006, 55,
697–720. [CrossRef]

24. Van der Vorst, J.G.A.J.; Beulens, A.J.M.; van Beek, P. Innovations in logistics and ICT in food supply chain
networks. In Innovations in Agri-Food Systems. Product Quality and Consumer Acceptance; Jongen, W.M.F.,
Meulenberg, M.T.G., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005;
pp. 245–292.

25. Ali, J.; Kumar, S. Information and communication technologies (ICTs) and farmers’ decision-making across
the agricultural supply chain. Int. J. Inf. Manag. 2011, 31, 149–159. [CrossRef]

26. Borodin, V.; Bourtembourg, J.; Hnaien, F.; Labadie, N. Handling uncertainty in agricultural supply chain
management: A state of the art. Eur. J. Oper. Res. 2016, 254, 348–359. [CrossRef]

http://dx.doi.org/10.1007/s00170-005-0345-x
http://dx.doi.org/10.1108/02635571211264636
http://dx.doi.org/10.1016/j.dss.2005.05.030
http://dx.doi.org/10.1080/00207540802356747
http://dx.doi.org/10.1016/j.ejor.2017.10.041
http://dx.doi.org/10.1016/j.simpat.2006.09.018
http://dx.doi.org/10.1057/jos.2016.7
http://dx.doi.org/10.1108/09600030210437951
http://dx.doi.org/10.1108/IJQRM-11-2014-0171
http://dx.doi.org/10.1111/j.1540-5915.2005.00066.x
http://dx.doi.org/10.1016/S0167-9236(99)00008-1
http://dx.doi.org/10.1109/MIS.2005.11
http://dx.doi.org/10.5171/2012.658483
http://dx.doi.org/10.1016/j.compchemeng.2006.02.008
http://dx.doi.org/10.1080/0951192X.2011.562543
http://dx.doi.org/10.1016/j.eswa.2011.12.015
http://dx.doi.org/10.1080/00207540701441921
http://dx.doi.org/10.1016/j.cirp.2006.10.004
http://dx.doi.org/10.1016/j.ijinfomgt.2010.07.008
http://dx.doi.org/10.1016/j.ejor.2016.03.057


Appl. Sci. 2019, 9, 4903 31 of 32

27. Higgins, A.J.; Miller, C.J.; Archer, A.A.; Ton, T.; Fletcher, C.S.; McAllister, R.R.J. Challenges of operations
research practice in agricultural value chains. J. Oper. Res. Soc. 2010, 61, 964–973. [CrossRef]

28. Tsolakis, N.K.; Keramydas, C.A.; Toka, A.K.; Aidonis, D.A.; Iakovou, E.T. Agrifood supply chain management:
A comprehensive hierarchical decision-making framework and a critical taxonomy. Biosyst. Eng. 2014, 120,
47–64. [CrossRef]

29. Van der Vorst, J.G.A.J.; van Kooten, O.; Luning, P.A. Towards a diagnostic instrument to identify improvement
opportunities for quality controlled logistics in agrifood supply chain networks. J. Food Syst. Dyn. 2011, 2,
94–105.

30. Handayati, Y.; Simatupang, T.M.; Perdana, T. Value Co-creation in Agri-chains Network: An Agent-Based
Simulation. Procedia Manuf. 2015, 4, 419–428. [CrossRef]

31. Zimon, D.; Domingues, P. Proposal of a concept for improving the sustainable management of supply chains
in the textile industry. Fibres Text. East. Eur. 2018, 26, 8–12. [CrossRef]

32. Killian, B.; Jones, C.; Pratt, L.; Villalobos, A. Is sustainable agriculture a viable strategy to improve farm
income in Central America? A case study on coffee. J. Bus. Res. 2006, 59, 322–330. [CrossRef]

33. Kilian, B.; Rivera, L.; Soto, M.; Navichoc, D. Carbon Footprint across the Coffee Supply Chain: The Case of
Costa Rican Coffee Bernard. J. Agric. Sci. Technol. B 2013, 3, 151–170.

34. Espinosa-Solares, T.; Cruz-Castillo, J.G.; Montesinos-López, O.A.; Hernández-Montes, A. Raw coffee
processing yield affected more by cultivar than by harvest date. J. Agric. Univ. P. R. 2005, 89, 169–180.

35. Bosselmann, A.S.; Dons, K.; Oberthur, T.; Olsen, C.S.; Ræbild, A.; Usma, H. The influence of shade trees on
coffee quality in small holder coffee agroforestry systems in Southern Colombia. Agric. Ecosyst. Environ.
2009, 129, 253–260. [CrossRef]

36. Feria-Morales, A.M. Examining the case of green coffee to illustrate the limitations of grading systems/expert
tasters in sensory evaluation for quality control. Food Qual. Prefer. 2002, 13, 355–367. [CrossRef]

37. Livio, J.; Flores, W.C.; Hodhod, R.; Umphress, D. Smart fuzzy cupper: Employing approximate reasoning
to derive coffee bean quality scoring from individual attributes. In Proceedings of the IEEE International
Conference on Fuzzy Systems, Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–7.

38. Livio, J.; Hodhod, R. AI Cupper: A Fuzzy Expert System for Sensorial Evaluation of Coffee Bean Attributes
to Derive Quality Scoring. IEEE Trans. Fuzzy Syst. 2018, 26, 3418–3427. [CrossRef]

39. Flores, W.C.; Pineda, G.M. A type-2 fuzzy logic system approach to train Honduran coffee cuppers.
In Proceedings of the 2016 IEEE Latin American Conference on Computational Intelligence, Cartagena,
Colombia, 2–4 November 2016; pp. 1–7.

40. FAO Faostat. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 27 March 2019).
41. Hernández, G.; Escamilla, S.; Velázquez, T.; Martínez, J.L. Análisis de la cadena de suministro del café en el

Centro de Veracruz: Situación actual, retos y oportunidades. In Cafeticultura en la Zona Centro del Estado de
Veracruz. Diagnóstico, Productividad y Servicios Ambientales; López, R., Sosa, V.D.J., Díaz, G., Contreras, H.A.,
Eds.; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias: Veracruz, Mexico, 2013;
pp. 8–36.

42. Ghosh, P.; Venkatachalapathy, N. Processing and Drying of Coffee—A review. Int. J. Eng. Res. Technol. 2014,
3, 784–794.

43. Ramalakshmi, K.; Kubra, I.R.; Rao, L.J.M. Physicochemical characteristics of green coffee: Comparison of
graded and defective beans. J. Food Sci. 2007, 72, 333–337. [CrossRef]

44. Lambert, D.M.; García-Dastugue, S.J. An evaluation of process-oriented supply chain management
frameworks. J. Bus. Logist. 2005, 26, 25–51. [CrossRef]

45. Persson, F. SCOR template—A simulation based dynamic supply chain analysis tool. Int. J. Prod. Econ. 2011,
131, 288–294. [CrossRef]

46. Estampe, D.; Lamouri, S.; Paris, J.L.; Brahim-djelloul, S. A framework for analysing supply chain performance
evaluation models. Int. J. Prod. Econ. 2013, 142, 247–258. [CrossRef]

47. Lockamy, A., III; Mccormack, K. Linking SCOR planning practices to supply chain performance An
exploratory study. Int. J. Oper. Prod. Manag. 2004, 24, 1192–1218. [CrossRef]

48. Bolstorff, P.; Rosenbaum, R. Supply Chain Excellence: A Handbook for Dramatic Improvement Using the SCOR
Model, 2nd. ed.; AMACOM: New York, NY, USA, 2007.

49. Sawik, T. Integer programming approach to reactive scheduling in make-to-order manufacturing. Math.
Comput. Model. 2007, 46, 1373–1387. [CrossRef]

http://dx.doi.org/10.1057/jors.2009.57
http://dx.doi.org/10.1016/j.biosystemseng.2013.10.014
http://dx.doi.org/10.1016/j.promfg.2015.11.058
http://dx.doi.org/10.5604/01.3001.0011.5732
http://dx.doi.org/10.1016/j.jbusres.2005.09.015
http://dx.doi.org/10.1016/j.agee.2008.09.004
http://dx.doi.org/10.1016/S0950-3293(02)00028-9
http://dx.doi.org/10.1109/TFUZZ.2018.2832611
http://www.fao.org/faostat/en/#data/QC
http://dx.doi.org/10.1111/j.1750-3841.2007.00379.x
http://dx.doi.org/10.1002/j.2158-1592.2005.tb00193.x
http://dx.doi.org/10.1016/j.ijpe.2010.09.029
http://dx.doi.org/10.1016/j.ijpe.2010.11.024
http://dx.doi.org/10.1108/01443570410569010
http://dx.doi.org/10.1016/j.mcm.2007.01.010


Appl. Sci. 2019, 9, 4903 32 of 32

50. Fleischmann, B.; Meyr, H.; Wagner, M. Advanced Planning. In Supply Chain Management and Advanced
Planning: Concepts, Models, Software and Case Studies; Stadtler, H., Kilger, C., Eds.; Springer: Berlin, Germay,
2002; pp. 81–106.

51. Vieira, G.E.; Herrmann, J.W.; Lin, E. Rescheduling manufacturing systems: A framework of strategies,
policies, and methods. J. Sched. 2003, 6, 39–62. [CrossRef]

52. Swaminathan, J.M.; Smith, S.F.; Sadeh, N.M. Modeling supply chain dynamics: A multiagent approach.
Decis. Sci. 1998, 29, 607–632. [CrossRef]

53. Rzevski, G.; Andreev, M.; Skobelev, P.; Shveykin, P.; Tugashev, A.; Tsarev, A. Adaptive Planning for Supply
Chain Networks. In Proceedings of the Holonic and Multi-Agent Systems for Manufacturing; Springer:
Berlin, Germany, 2007; pp. 215–224.

54. Sawik, T. Multi-objective master production scheduling in make-to-order manufacturing. Int. J. Prod. Res.
2007, 45, 2629–2653. [CrossRef]

55. Paulo, E.M.; Furlani, E., Jr. Yield performance and leaf nutrient levels of coffee cultivars under different plant
densities. Sci. Agric. 2010, 67, 720–726. [CrossRef]

56. Zhou, R.; Lee, H.P.; Nee, A.Y.C. Simulating the generic job shop as a multi-agent system. Int. J. Intell. Syst.
Technol. Appl. 2008, 4, 5–33. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1022235519958
http://dx.doi.org/10.1111/j.1540-5915.1998.tb01356.x
http://dx.doi.org/10.1080/00207540600847152
http://dx.doi.org/10.1590/S0103-90162010000600015
http://dx.doi.org/10.1504/IJISTA.2008.016357
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Overview and Work Position 
	Methodology 
	Case Study 
	General Methodology 
	Modeling the Green Coffee Supply Chain 
	Agent Description 
	Model Validation 

	Results and Discussion 
	Simulation Results of the Demand Scenarios 
	Reactive Scheduling for the Decreasing Demand Scenario 
	Discussion 

	Conclusions and Future Work 
	
	References

