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Abstract: The subject matter of this research article is automatic detection of pavement distress on
highway roads using computer vision algorithms. Specifically, deep learning convolutional neural
network models are employed towards the implementation of the detector. Source data for training
the detector come in the form of orthoframes acquired by a mobile mapping system. Compared to
our previous work, the orthoframes are generally of better quality, but more importantly, in this work,
we introduce a manual preprocessing step: sets of orthoframes are carefully selected for training
and manually digitized to ensure adequate performance of the detector. Pretrained convolutional
neural networks are then fine-tuned for the problem of pavement distress detection. Corresponding
experimental results are provided and analyzed and indicate a successful implementation of
the detector.

Keywords: pavement distress; defect detection; image recognition; image processing; deep
neural network

1. Introduction

The condition of roads is easily one of the more important signs of economic standards and
general well-being in a given country or region. Early detection and repair of pavement defects avoid
further degradation and bring down the overall road maintenance cost. Efficient and timely road
inspection is therefore one of the key elements of a successful pavement management system. Yet,
periodical road surveys tend to be rather costly and time consuming if carried out in the traditional
way, i.e., by human visual inspection of the road surface.

In recent years, automatic image based road distress evaluation has become an option [1].
Although it is still an open research problem and subject to environmental conditions such as
illumination level, shadows cast by nearby objects, etc., great progress has been made in this area,
and various methods ranging from filtering and thresholding to artificial neural networks have been
employed to carry out the task.

Public infrastructure undergoes aging, as well as degradation due to weather conditions.
The present research is motivated by the fact that in Estonia, the daily temperature can fluctuate
around 0 ◦C for more than five months a year. Therefore, ice and snow melt during the day and freeze
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again at night. This leads to accelerated expansion of cracks and other defects, thus requiring frequent
road inspections.

1.1. Problem Setting and Initial Data

Toward the goal of efficient analysis of roads, Reach-U Ltd., a company specializing in geographic
information systems, location based solutions, and cartography, has developed a fast speed mobile
mapping system employing six high resolution cameras for recording panoramic images of roads
(Figure 1). The data, panoramic images and orthophotos assembled from the very same panoramic
images using essentially a ground plane projection technique, collected by the system are further
visually inspected, and detected deformations are localized and digitized. All this is carried out
manually by experienced operators. The resulting information is used by the Estonian Road
Administration via a web application called EyeVi.

Figure 1. Left: Vehicles carrying the MMS. Right: Ladybug 5+ Imaging System.

Compared to our previous work on the same topic [2], several changes were introduced. First
of all, Reach-U Ltd. has recently upgraded from the Ladybug 5 360◦ Spherical Camera Imaging
System to Ladybug 5+, which is equipped with Sony Pregius global shutter CMOS sensors that
provide more consistent overall quality of acquired images across a wide range of lighting conditions.
Secondly, we decided to focus on individual 4096 × 4096 pixel orthoframes, the building blocks of
the orthophotos that we employed in [2] to avoid some side-effects of the assembly process (e.g.,
inherent blurring of interpolated regions in the orthophotos). Finally, the orthoframes were manually
redigitized for the defects by the authors of this paper because the digitization of defects carried out by
experienced operators occasionally suffers from spatial inaccuracy and thus does not necessarily meet
the demands of machine learning. The existing defect layer, however, was used as a template in the
process of redigitization.

The initial selection pool consisted of over 30,000 orthoframes from 14 defect-ridden roads
covering about 100 kilometers that, incidentally, contained over 25,000 pavement defects. There are
two companion files for each orthoframe, a mask setting the boundaries of the orthoframe and a .vrt
file that supplements geographical data to the image. The defect information provided by operators
appears in the form of .shp files. This is the initial data that must be processed in an appropriate
manner so that information about road distress is most efficiently extracted from the images.

1.2. Literature Review

In past decades, multiple research and development projects have addressed the problems arising
from road pavement distress. This includes research on pavement distress prediction [3], association
between pavement distress and risk of road accidents [4], and pavement distress prevention [5,6].
In addition, considerable research efforts have been focusing on pavement distress detection.

Pavement distress detection research can be categorized based on input data and methods of
collecting input data (see Table 1). While images remain the most widely used input data type, (ground
penetrating) radar and 3D data (laser or LiDAR scanning and stereo-imaging) are also quite commonly
used, whereas acoustic and other types of input data are employed rarely.
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Table 1. Research by input data and data collection.

Source Input Data and Data Collection

[2,7–34] Image

[35–37] Radar

[38–46] 3D images or point clouds

[47,48] Acoustic

In order to obtain better detection performance, many systems combine several approaches for
data acquisition and measurement. For example, LiDAR technology allows acquiring a subsurface
profile with elevation information in addition to discovering changes in the properties of material [49],
while laser based systems provide the possibility of performing automatic analysis of surface
characteristics such as evenness and skid resistance. Unfortunately, these otherwise excellent solutions
have one important drawback: most of such systems operate at relatively low speed, e.g., under
10 km/h. Not only does this increase the time and cost of data acquisition, operation at such a low
speed in daily traffic will also decrease road traffic safety [50]. Good examples of such complex systems
are ARAN 9000 developed by University of Catania and a mobile mapping system S.T.I.E.R. [12,51].
Both systems consist of several laser based measurement devices for texture analysis and range finding,
as well as of several high speed cameras. It is worth mentioning that in all works, cameras are placed
orthogonally downward, facing the road pavement [12,51–53]. Moreover, in most cases, surface
cameras are synchronized with a high performance lighting unit that makes the system independent
of exterior lighting conditions and shadows cast by various roadside objects and allows working with
different types of pavement, from concrete to dark asphalt, one lane at a time.

Additionally, pavement distress detection research can be categorized based on which defects
are detected. While most research is aimed at detecting cracks (with or without other defects), some
approaches, such as [40,41,54], focus solely on detecting potholes.

In this paper, we focus on image based crack detection methods (see Section 1.1 for a discussion
on input data). Pavement distress detection research on image based input data has applied a variety
of methods to enhance input data and to detect or classify defects.

Image-based pavement crack detection methods fall into the following main categories (see also
Table 2): intensity thresholding, edge detection, graph theory, texture analysis, machine learning
algorithms (e.g., support vector regression), and (deep) neural network based methods. Thresholding
algorithms are based on the assumption that cracks are represented by local intensity minima; thus,
binarization of the images will distinguish image areas with cracks from non-crack areas. The very
well known Otsu thresholding method was widely used for pavement crack detection [55,56]. In
order to avoid illumination variations and shadows, the thresholding of the localized area has been
applied [57,58]. In [59], automation of the threshold selection was proposed. For more complex cases,
advanced image analysis such as Gabor filters [23] have been used. Edge detection techniques include
the usage of Canny filters, the Sobel edge detector, and other morphological filters [60–62]. With
the development of artificial intelligence methods, new automated techniques for pavement distress
detection have been designed. Support vector machines are commonly used for classification problems
in computer vision based applications [63–65]. However, with the advent of deep learning technology,
Convolutional Neural Networks (ConvNets) have started to dominate the field of object detection and
recognition in vision based areas [13,51,55,66], as those methods perform feature extraction without
requiring a separate feature extraction system. Some auto-encoders and fuzzy logic based neural
networks have been used as well (Table 3).
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Table 2. Image-based pavement distress detection methods.

Source Method

[2,7–14] Neural network

[15,17–20] Support vector regression

[21–25] Filtering

[16,26–30] Thresholding

[31–34] (Minimal) Path

Table 3. Research on 2D image-based pavement distress detection using neural networks.

Source Type of Neural Network Recall Precision Dataset Images

[14] Convolutional neural network 98.00% 99.40% Custom 3900

[7] Convolutional neural network 92.46% 82.82% CrackForest 117

[8] Convolutional neural network 93.55% 96.37% CrackForest 117

[13] Convolutional neural network 93.9% 93.5% Custom 2 × 30,000

[10] Recurrent convolutional neural network 98.82% 96.67% Custom 1400

[11] Convolutional neural network 92.51% 86.96% Custom 500

[9] Convolutional neural network ≈80% ≈75% Custom 9053

While most neural network methods utilize custom made neural networks, there are papers that
build on existing neural networks. For example, the work in [67] partly used a pretrained VGG; the
work in [9] utilized YOLOv2 [68]; whereas the works in [7,8] built on U-Net [69]. Neural networks
combined with image histograms and other separate feature extraction methods have been applied for
these problems as well [70].

Note that the training and testing datasets differ considerably from one research project to another.
It is possible that some of the differences in results are due to the quality of input data. For example, the
work in [7,8] used the publicly available CrackForest dataset with 117 images. The work in [14], on the
other hand, used 3900 raw images captured by a NIKON digital camera with a resolution of 3456 ×
4608 pixels where the camera took pictures between the ground and the camera with an approximate
distance from 80 cm to 100 cm. Similarly, the work in [2,10,13] used custom datasets. In addition, the
work in [9,11] used a low cost approach of obtaining images using mobile phones.

1.3. Contribution

The goal of this research work is to investigate whether the obtained orthoframes provide sufficient
information to detect cracks and other pavement defects automatically and to develop such a method
based on deep learning convolutional neural networks. This method should be able, in principle, to
detect defects on multi-purpose datasets, such as images obtained from Google Street View. Note that
using the data provided by Reach-U Ltd, the method enables defect detection with precise real-world
coordinates. As a result of this research and development effort, a Python software package was
developed for the company that can be used to prepare training data based on existing datasets and
also process arbitrary new road images to obtain pavement distress information.

2. Methodology

2.1. Analysis and Preprocessing of Source Data

Closer observation of orthoframes that were collected with Ladybug 5+ in April 2019 revealed the
following characteristics:
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1. Inconsistent sharpness across the image. This stemmed from the horizontal placement of some of
the Ladybug cameras. Due to the simple laws of optics, road surface gradually loses detail as the
distance from the original camera shooting location increases. See Figure 2.

2. Inconsistent brightness from image to image. This was related to the availability of light at the
moment when an image was taken. Note that the situation has improved considerably not only
because of the CMOS sensors of Ladybug 5+, but also because Reach-U Ltd. has instructed
the MMSdriver to adjust the shutter speed manually during the data collection if the lighting
conditions change on the road to avoid under- or over-exposure.

3. Comparatively high number of shadows cast by various objects on the road, near the road, by the
camera rig, or by the car itself doing the mapping. The intensity of shadows is directly correlated
with the availability of light, and their extent is (among other things) dependent on the angle of
Sun rays, which is illustrated in Figure 3.

In addition, there were various artifacts found in some images (vehicle fragments, people, etc.).
However, there were only a few of these, so in general, they can be treated as statistically irrelevant
and ignored.

Figure 2. Gradual loss of detail when the distance from the camera increases. The area above the white
circle is considerably sharper than the rest of the image.

Figure 3. Shadows in the orthoframe cast by roadside objects and the vehicle body.
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Inconsistent quality of the images may mislead the ConvNet training [71], and although by
forsaking the orthophoto format, we were able to avoid the “stitching seams” among individual
orthoframes, the gradual loss of detail as we moved away from the position of the camera still
presented a problem. We therefore focused on the sharper part of the orthoframe. The original
orthoframe mask was multiplied with a filled circle with a radius of 1500 pixels. The resulting mask
(Figure 4) was then used to extract the more detailed part of the orthoframe. As the consecutive
orthoframes were overlapping, there was no loss of ground. Note also that in the resulting image, the
area that was not road surface became much smaller and was most often present on one side of the road
only and could be thus typically separated with a single line (Figure 5). Therefore, the road extraction
procedure that was automated in [2] was now delegated to the digitizers (a digitizer in the context
of this work refers to a person engaged in digitization of defect information based on the provided
orthoframes and initial defect data) who processed the orthoframes as part of the preprocessing step
for obtaining more accurate training data for the automatic detector.

Figure 4. Obtaining the mask for the more detailed part of the orthoframe.

Figure 5. Due to the decreased area of interest, non-road surface is present only at the right side of
the orthoframe.

Out of 33,288 orthoframes, 20,318 that contained defects in the area of interest were algorithmically
picked out for further consideration. Out of this selection, orthoframes with poor lighting conditions,
poorly distinguishable defects, or other problems were abandoned after visual inspection. For actual
digitization, 1572 orthoframes were used.
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2.2. Pavement Distress Digitization

The defect layer provided by Reach-U Ltd. contained information about the pavement defects
listed in Table 4 based on general polyline, polygon, or point defect types. The number of defects per
defect class counted from the orthoframes is given in Table 5. The overall number of defects obtained
this way (61408) was considerably larger than the actual number of defects (25771) on observed roads
because usually, the same defect can be found from up to three consecutive orthoframes.

Table 4. Types of pavement defects.

Polyline Defect Types Polygon Defect Types Point Defect Types

narrow longitudinal crack network cracking pothole

narrow joint reflection crack patched road

patched road (line) weathering

transverse cracking

edge defect

Table 5. Distribution of defect classes.

Defect Count

narrow longitudinal crack 13,475

narrow joint reflection crack 1792

patched road (line) 4108

transverse cracking 7139

edge defect 20,877

network cracking 11,709

patched road 1036

weathering 1240

pothole 32

From the distribution of defect classes, it appeared that the data were imbalanced, i.e., there
were too few examples of defects of specific classes for training the convolutional neural network [72].
For this reason, all defects were lumped together, and no attempt was made to train the network to
distinguish between individual defect classes, resulting in a binary classification problem.

To visualize pavement distress, e.g., cracks, clearly, it is customary to use very strong illumination
while taking the shots with the camera [73]. This was not the case here, and defects could be found
in shadowed regions with soft and hard shadows. Defects could be also found near other consistent
visual features, e.g., road markings. This will inevitably reduce the accuracy of detection.

Most importantly, defect coordinates in the defect layer were often not very accurately determined
(Figure 6, left). This is not critical in the application in which they were used originally and thus
not the primary concern of the original digitizers. For machine learning purposes, however, it is
highly important that the samples that are exploited for defect recognition depict actual defects
and, conversely, that the samples that are supplied for defect-free pavement recognition not contain
any defects. To provide this level of accuracy, 1572 selected orthoframes were redigitized yielding
12,728 training samples (6364 for each of two classes).
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Figure 6. Left: The original defect layer. Displayed are two annotated transverse cracks (yellow) and
a patch (cyan). Right: Redigitized image. The part of the orthoframe removed from further analysis
is marked with red color. Note that the roadside area on the right has been cut off by digitization.
The annotated defects are highlighted with blue color. One can see the difference in annotation accuracy
in these two images.

2.3. Image Partitioning

Since the original images were of high resolution, they were partitioned into smaller fragments
that we refer to as segments throughout this paper. The idea was to study the contents of each segment
and to determine whether it depicted a pavement defect or not. The total of all of these segments
formed the basis for training the artificial neural network.

Segments were extracted automatically from the annotated images described in the previous
section. The resulting dataset may also be augmented as needed, i.e., the number of images depicting
the defects was artificially increased by applying various transformations to existing images such as
translation and rotation; in theory, this should improve the efficiency of the ConvNet training.

The partitioning algorithm extracted the initial segments based on a simple grid also capturing
some redundant segments on the edges to ensure maximum coverage of the orthoframe area of interest.
Only those segments that fell unto the unmasked area were kept, though there was also the option
to ignore segments that were partially masked. The segments were exported into a large number of
PNG image files into two folders: defect_0 containing segments that depicted no defects and defect_1
containing segments with pavement defects. The procedure of division into these two classes was
carried out based on the defect masks manually obtained via digitization during the preprocessing
step, as discussed above.

2.4. Further Data Processing and Augmentation

Previously, it was observed that the neural networks were sensitive to different lighting conditions.
Models trained on images in certain types of lighting conditions were unable to generalize well to
make unbiased predictions for brighter or darker images. To combat this, we experimented with
gamma correction and normalization methods. However, these correction methods might result in
a loss of information by intensifying the noise present in the image, which is especially undesirable
for inference.

Therefore, image preprocessing methods were abandoned. Instead, training data were augmented
by applying a random amount of change to brightness and contrast values. For each new epoch, all the
training samples were subject to up to a 35% increase or decrease to both brightness and contrast values.
An added benefit of this method was the effective increase in different training samples. Additionally,
training data were augmented by random horizontal and vertical flips, as well as random rotations up
to ±180 degrees, where the missing pixels were filled by reflecting the border pixels. Various potential
outputs of the transformation function can be seen in Figure 7.
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Figure 7. The original training sample (left, framed) and its transformations that can potentially be
used for data augmentation.

2.5. Classification Performance Evaluation

In this work, we were concerned with developing an accurate detector of pavement distress based
on image data supplied to it. There were four possible outcomes concerning the judgments of road
segments given by the classification system:

• true negative (TN): there is no defect, and the system does not detect a defect;
• true positive (TP): there is a defect, and the system correctly detects it;
• false negative (FN): there is a defect, but the system does not detect it;
• false positive (FP): there is no defect, but the system detects a defect.

Based on this, it is possible to impose accuracy criteria for the system, where TN, TP, FN, and FP
denote the total counts of the corresponding detection outcomes. First, we argue that the bare accuracy
measure given as:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

is not as meaningful as the recall and precision measures since it is critical to identify actual defects
properly. The recall measure shows the percentage of how many actual defects were detected by the
system and is defined as:

Recall =
TP

TP + FN
(2)

and precision shows the percentage of how many of the detected defects were actual defects and is
defined as:

Precision =
TP

TP + FP
. (3)

We also used the so-called Matthews correlation coefficient (MCC) metric, which is defined as:

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

because it provides a more reliable measure in the case of imbalanced data.
Finally, since ConvNets returns probabilities and not discrete values, one must use two threshold

values: detection threshold Pdet and suspicion threshold Psus, such that:

P(defect) > Pdet ⇒ defect is detected

and
P(defect) > Psus ⇒ defect is suspected.

2.6. Deep Neural Networks’ Setup

Convolutional neural networks are deep neural networks specifically tailored for analyzing visual
imagery. The major advantage of ConvNets is that they require little preprocessing compared to other
image classification algorithms. Three main types of layers that make up ConvNet architectures are
convolutional layers, pooling layers, and fully connected layers. The main building block of ConvNets
is the convolutional layer.
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A convolution is the application of a filter to the layer input that results in a map of activations
(feature map), indicating the locations and strength of a detected feature in an input [74]. The
convolution is performed by sliding a K × K convolution filter (kernel) over the input image with
a predetermined step size (stride). The innovation of using the convolution operation in a neural
network is that the values of the filter are learned during the training of the network. Under stochastic
gradient descent, the network is forced to learn to extract features from the input that are most useful
for classifying images.

ConvNets usually learn multiple (32–512) filters in parallel for a given input. A filter must have
the same number of channels (depth) as the input and can have specific filter values for each of the
input channels. Regardless of the depth of the input and depth of the filter, each filter produces a
2D feature map because eventually, the channels are summed together to form one single channel
(element-wise addition).

The Rectified Linear Unit (ReLU) is a supplementary step to the convolution operation. Its
purpose is to increase the non-linearity in feature maps. The result of the convolution operation is
passed through the ReLU activation function so the values in final feature maps are not just the sums,
but the ReLU function applied to the sums. The ReLU activation function has rapidly become the
default activation function for most types of neural networks. It provides true zero and acts like a
linear function for the most part, but is actually a nonlinear function allowing complex relationships
in the data to be learned. ReLU is also easy to implement, and networks trained with this activation
function avoid the problem of vanishing gradients [75].

The depth of the output of a convolutional layer is determined by the number of filters because
each of them creates a distinct feature map. The width and height of the output of a convolutional
layer are, on the other hand, determined by the formula:

Do = 1 +
Di − K + 2P

S
, (5)

where Do and Di are the height/length of the output and input, S is the stride, and P is the width of
the added border of zeros (zero-padding). Note that commonly, K = 3, P = 1, S = 1, and Do = Di.

Pooling layers do not affect the depth dimension, but perform a downsampling operation along
the spatial dimensions (width, height) of the input for the next convolutional layer. The decrease
in size leads to less computational overhead for the upcoming layers of the network, works against
over-fitting, and improves local translation invariance. Much like the convolution operation, the
pooling layer takes a sliding window that is moved in stride across the input and transforms its
values into a more representative value by selecting, e.g., the maximum value from the window
(max pooling). Contrary to the convolution operation, however, pooling has no trainable parameters,
although window (kernel) size and stride must be specified. Commonly, K = 2, S = 2.

Fully-connected layers are ordinary neural network layers that are fully connected with the output
of the previous layer and are typically used in the last stages of the ConvNet. They are also used to
construct the desired number of nodes in the output layer. A fully connected layer expects a 1D vector
of numbers as its input so the 3D output of the final pooling or convolution layer must be flattened
into a 1D vector of numbers before it becomes the input to the fully connected layer.

The most common form of a ConvNet architecture stacks a few convolutional layers (CONV),
followed by a (optional) pooling layer (POOL), and repeats this pattern until the image has been
reduced spatially to a small size. At this point, it is customary to introduce the fully connected layers
(FC). The standard final layer for a multiclass classification problem is a fully connected layer with
a number of nodes that corresponds to the number of classes and that uses the softmax function as
its activation function that converts the numbers into probabilities. The ConvNet architecture thus
appears as:
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Input → CONV × N → POOL ×M→ FC ×L→ FC , (6)

where N ∈ [1, 3), M ≥ 0, L ∈ [0, 3).
Typically, ConvNets are trained with the stochastic gradient descent, and its weights are updated

using the backpropagation method. The objective function to be minimized (loss function) is defined
as the cross-entropy between the training data and the network response.

Deep neural networks frequently incorporate a regularization technique called dropout to prevent
overfitting [76]. At each training iteration, a neuron is temporarily disabled with probability p
(all the inputs and outputs to it will be disabled). The dropped out neurons are resampled with
probability p at every training step, so a dropped out neuron at one step can be active at the next one.
The hyperparameter p is called the dropout rate, and it is typically a number around 0.5, corresponding
to 50% of the neurons being dropped out.

A ConvNet model can be thought as a combination of two components: the feature extraction
part and the classification part. The convolution and pooling layers perform feature extraction. The
fully connected layers act as a classifier on top of the extracted features and assign a probability for the
input image representing a class. The lower layers encode/detect simple structures (colors, edges, and
simple shapes), and as we go deeper into the network, the layers build on top of each other and learn
to encode more complex patterns.

One of the problems using deep ConvNets is the requirement to have large annotated image
datasets. For some domains, obtaining such data can be difficult, time consuming, and costly.
To overcome those difficulties, transfer learning can be used by applying the ConvNets pretrained on
large datasets (such as VGG-16, AlexNet [77], GoogLeNet [78], and ResNet) to a new classification
task. Networks with architectures that perform well on large scale classification tasks such as the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [79] have been found to be able to
generalize to other tasks of image classification by retraining the fully connected layers that are near
the output of the network while keeping the feature extraction part of the network with the pretrained
weights ([80–82]).

In this work, we considered three architectures optimized for the ImageNet dataset for our task of
pavement distress detection:

• VGG16 [83], which was the best performing classifier of ILSVRC in 2014 along with GoogLeNet.
This architecture has 16 weight layers, 13 of which consist of 3 × 3 convolutional filters with
a total of 4224 filters, followed by three fully connected layers of length 4096, 4096, and 1000,
respectively. In total, it has 15,252,034 trainable parameters.

• ResNet34 and ResNet101 [84], which introduced residual blocks to the typical ConvNet
architecture and won ILSVRC in 2015. The residual block allows connections from earlier
preceding convolutional layers, not only the immediately preceding one. This allows deeper
models to be trained while also maintaining information only a shallower network would be able
to capture [85]. As for the convolutional layers, ResNet follows the design of VGG16 with 3 ×
3 convolutional filters, except for the first layer, which has 7 × 7 filters. In our work, ResNet34
had 33 convolutional layers and two fully connected layers of length 1024 and 512 and a total
of 21,813,570 trainable parameters. Its deeper counterpart ResNet101 had 100 convolutional
layers and two fully connected layers of length 4096 and 512, with a total of 44,608,066 trainable
parameters.

3. Experimental Results

3.1. Data Selection

The 1572 selected orthoframes were partitioned into segments each having dimensions of
224 × 224 pixels, which is the size many transfer learning architectures take as a default input
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[84,86]. Smaller and larger dimensions could also be considered, but there is a trade-off for both
of these cases. Smaller segment sizes allowed us to capture more of the road, leaving fewer blind
spots. However, it is more difficult to make predictions on smaller segments due to missing context.
Conversely, larger segments provide more context for better accuracy, but at the cost of leaving more
blind spots at the edge of the road (assuming non-overlapping segments).

In order to classify a segment as defect or not defect, we considered the percentage of defect pixels
on the image. If more than 5% of the pixels on a segment were masked by the digitizer, it would be
labeled as a defect segment. With this criterion, 15% of all segments would have a defect, and 85%
would not. It is known that class imbalance during training reduces the performance of deep neural
networks [87]. To balance our dataset, only N non-defect segments were sampled for each orthoframe
containing N defect segments. This way, ~8 segments per orthoframe were sampled on average.

For the purposes of neural network training, the obtained 12,728 segments with dimensions
224 × 224 pixels were split into training and validation sets, with the ratio of 0.85 and 0.15, respectively.
As is typical for deep learning cases, the training set was used to optimize the parameters of the model
with respect to the cross-entropy loss function, and the validation set was used to measure if the model
was overfit to the training data.

In addition, a test set consisting of 55 new orthoframes from different roads was used to evaluate
how well the model generalized to new conditions. As opposed to the training and validation set,
for the test set, we extracted all of the possible segments, so a total of 1007 defect-free and 185 defect
segments were obtained.

3.2. Deep Learning

Throughout the process, the Python library PyTorch [88] was used along with fastai [89], which
provides a layer of abstraction upon PyTorch to simplify the experimentation process.

In the choice of hyperparameters, a “learning rate range test” was performed, as suggested by
L.N. Smith [90,91]. The network was trained for an epoch with a linearly increasing learning rate,
while the loss was measured after each processed batch. The maximum learning rate for the given
model was then heuristically decided upon such that it was not in the region where the loss had a
rising trend (refer to Figure 8). The learning rates chosen can be seen in Table 6.

Figure 8. Learning rate range tests for models used in this work.

For all model architectures, we used the pretrained weights optimized for the ImageNet dataset.
Then, all of the layers except for the fully connected layers of length 4096 and 512 respectively were
frozen, meaning we did not optimize the convolutional filters. In this configuration, the model was
trained for two epochs. This selective freezing of the weights was done to speed up the training and
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ensure the earlier layers of the pretrained network were subject to less noise. After training for two
epochs, all of the model parameters were unfrozen for fine-tuning purposes.

Discriminative fine-tuning was used for further training of the model [92]. The idea was to train
the layers towards the output at higher learning rates than the earlier layers. In our case, we used
logarithmically stepped learning rates:

η(l) =
η(L)

N
(N( 1

L−1 ))l−1, (7)

where η(l) is the learning rate of the layer l, L is the number of layers, and N is η(L)
η(1) , which we chose

to be 10. Additionally, the learning rates were cyclical throughout the process, which was shown to
speed up the training process [93]. For the optimizer algorithm, we chose to use Adam [94].

The 25 epoch training process can be seen in Figure 9.

Table 6. Hyper-parameters for training the models used in this work.

Model Base
Learning

Rate

Maximum
Learning
Rate for
Layer L

Momentum
Lower
Bound

Momentum
Upper
Bound

Weight
Decay

Batch
Size

VGG16 4.0× 10−7 1.0× 10−5 0.85 0.95 0.01 32

ResNet34 3.2× 10−6 8.0× 10−5 0.85 0.95 0.01 32

ResNet101 4.0× 10−5 1.0× 10−4 0.85 0.95 0.01 32

Figure 9. Fine-tuned training of ResNet101. Training loss is displayed for each processed batch and
validation loss for each epoch. The cyclical learning rate throughout the training process can be seen
on the right.

It can be observed that throughout the initial epochs, the validation loss was actually lower than
the training loss. This can be explained by the fact that the validation data were not subjected to the
aggressive brightness and contrast preprocessing. Additionally, the dropout layers were disabled
while evaluating the model. After 25 epochs, which corresponded to 8300 training batches in Figure 9,
the training loss reached below the validation loss; therefore, in order to prevent overfitting, training
was stopped.

3.3. Results

From the tests (the results of which are presented in Table 7), it can be noted that the problem
of crack detection benefited from the more sophisticated architecture of ConvNets as the 101 layer
ResNet slightly outperformed the 34 layer ResNet. Further inspection of the obtained results revealed
that many of the misclassifications were due to our labeling methodology. A manually masked defect
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at the corner of the image may not have passed the 5% threshold, therefore confusing the classifier
(refer to Figure 10d). A few of the false positives were due to miscellaneous shapes on the road, such
as tire marks, spills, etc. (refer to Figure 10b). Most of the other misclassifications included segments
that were ambiguous due to low image quality and lack of context.

Table 7. Performance metrics of the obtained ConvNets computed over the test set discussed in
Section 3.1.

Model Accuracy Precision Recall MCC

VGG16 net fine-tuned 0.95 0.90 0.79 0.82

ResNet34 fine-tuned 0.96 0.92 0.82 0.84

ResNet101 fine-tuned * 0.97 0.90 0.87 0.87

* Validation set figures are 0.96 for precision and 0.93 for recall.

(a) True positive (b) False positive (c) True negative (d) False negative

Figure 10. A selection of outputs from the ResNet101 classifier.

Any trained network can be employed to find and localize the defects from the whole orthoframe.
Figure 11 depicts an orthoframe that can be considered highly problematic due to a number of sharp
contoured shadows. Yet, the network was able to localize a definite crack on the left side of the image.
It also suggested another damaged area on the right where the pavement was apparently problem free,
however.

3.4. Software Solution

As a result of this research and development project, a fully-fledged Python software package
was developed for Reach-U Ltd. that could be used to generate the data for training and inspect
them; annotate (digitize) the images as needed for creating defect masks and also updating the
initial image masks; train the deep learning ConvNets and apply them to arbitrary new images. The
package comprised back-end functionality in two separate Python libraries and also had graphical
user interfaces developed using PyQt5. The intended end-user application entitled nnapply included
a graphical user interface and allowed processing arbitrary road images using the trained ConvNets,
showing the detected and suspected defects. It also generated a report in Microsoft Excel format.
Examples of both types of output from this application are depicted in Figures 11 and 12.

The implementation of the back-end described in [2] is now being updated to use the newly
introduced deep learning libraries, but thanks to the proper separation of back- and front-end
functionality, this is a relatively straightforward process.
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Figure 11. Example image with defect location suggestions generated by the nnapply application. The
highlighted area is unmasked, and therefore, only segments fully belonging to this area are considered
during partitioning of the image. The segments are extracted at 75% overlap to provide more detail
and color coded as red where the intensity of the color corresponds to classifier certainty to having
discovered a defect. The regions of the orthoframe having a defect probability over 0.6 are displayed at
a higher zoom level.

Figure 12. Example report concerning potential pavement defects generated by the nnapply application.
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4. Discussion

In this paper, we presented a fully working prototype of a computer vision system designed to
detect pavement distress based on orthoframes captured by a mobile mapping system. The prototype
has to be tested in the appropriate transportation system analysis environment; therefore, the presently
claimed technology readiness level (TRL) is four (i.e., tested in a laboratory environment).

Further items for discussion are presented next:

• In [2], it was claimed that detection of shadow regions in the orthoframe is a critical component of
the complete pavement distress detection system. However, our current tests did not completely
confirm this as the system seemed to be robust to such visual artifacts. Hard shadows from tree
branches still presented a problem, however, as they resembled pavement cracks.

• Ensemble classifiers were not introduced in this work as acceptable performance was obtained
without complicating the system architecture. An attempt to make the detector context sensitive,
i.e., use progressive zoom where a defect was suspected in the orthoframe, was considered as a
possible next step in improving detection performance especially as a countermeasure for hard,
fine-detail shadows.

• Data augmentation was updated to include orthoframe segment exposure variation and
apparently led to improved generalization ability of the resulting ConvNet.

• Finally, the current classifier could only be regarded as a detector since the predictions about
orthoframe segments were essentially binary, whether a defect was detected or not, with the
additional possibility to consider suspected defects. In the future, a more advanced segmentation
feature can be implemented whereby different types of defects will have related ground truth
information provided by means of manual annotation for which the corresponding software
package was also developed as part of this effort. In this case, however, as was shown previously,
the issue of imbalanced data will have to be solved.

5. Conclusions

In the present work, a deep learning convolutional neural network model based on several
existing architectures of image classifiers was obtained using fine-tuning. The data for fine-tuning
were carefully selected from thousands of existing orthoframes freshly provided by the company and
having better image quality compared to the images used in [2].

The manual preprocessing step that included digitizing the orthoframes, i.e., manually painting
defect masks and updating the road mask by eliminating image areas with poor sharpness and also
areas outside the pavement part, while time consuming and tedious, was proven to be critical for the
success of the implementation of the detector. In previous work, we used the data provided by the
company for generating ground truth information. However, it must be taken into account that the
internal purposes of digitization in the company were different, so pixel annotation accuracy was
not the most important factor. Therefore, to ensure that the detection model was developed based
on relevant information, a more accurate localization of defects had to be introduced. Due to this
redundant approach in annotating images, the proposed solution while not completely foolproof
should be fairly robust with respect to annotation mistakes, at least from the point of view of
visual inspection.

Furthermore, data augmentation was proven to be useful to combat differing lighting conditions
that still presented a challenge while analyzing the image. The next step for data augmentation is the
implementation of distortion tuning [71].

Instead of attempting to train convolutional neural networks from scratch, we only considered
pretrained neural networks in this work. The reason for this was that significantly better results were
obtained with pretrained networks compared to the results reported in [2], and therefore, using simpler
network structures was not considered a benefit. Indeed, precision and recall metrics increased from
0.22 and 0.35, respectively, to 0.90 and 0.87. This was a significant improvement and was very likely
related to several factors, including better quality orthoframes, using only sharp image areas, and
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manually digitizing the images, annotating defects and updating pavement masks as needed. The
latter also contributed to solving the problem that appeared in [2] where the majority of false positive
detections was due to the classifier incorrectly identifying road edges as pavement distress.

Finally, the software package proposed to the company was updated and also included an efficient
image annotation tool tailored to the specific purpose of preparing higher quality ground truth files for
defect detection and pavement area extraction. Although a different deep learning backend was used
(PyTorch and FastAI instead of TensorFlow and Keras), the software is easy to update and hence it will
soon be ready for deployment, further testing, and its eventual application for improving highway
road pavement conditions.
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