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Abstract: We present a flexible, robust approach to predictive decision-making using simple, modular
agents (WoC-Bots) that interact with each other socially and share information about the features
they are trained on. Our agents form a knowledge-diverse crowd, allowing us to use Wisdom of the
Crowd (WoC) theories to aggregate their opinions and come to a collective conclusion. Compared
to traditional multi-layer perceptron (MLP) networks, WoC-Bots can be trained more quickly, more
easily incorporate new features, and make it easier to determine why the network gives the prediction
that it does. We compare our predictive accuracy with MLP networks to show that WoC-Bots can
attain similar results when predicting the box office success of Hollywood movies, while requiring
significantly less training time.

Keywords: classification; prediction; multi-agent; wisdom-of-crowds; Hollywood; feature-extension;
collective-intelligence; swarm

1. Introduction

We, humans, want to predict the future; disease outbreak and risk factors, business success,
economics, and many more applications can benefit from better forecasting. Researchers have
developed many tools to help us make predictions, with artificial neural networks (ANNs) being a
current popular choice. ANNs can be used for classification, allowing us to take, for example, a series
of features about an upcoming movie and determine, with fairly high accuracy, if the movie will
be successful. ANNs, however, typically require a large amount of training data and compute time,
and they do not generalize well to other topics. We cannot use an ANN trained on Hollywood movies
to help us determine if some sports team will win an upcoming game or where the next ‘hot spot’ in
an epidemic will be; they are inherently inflexible. Recent efforts are improving their flexibility by
adding to their basic design, as seen in transfer learning [1], however this increases complexity and
compute/data requirements while further obfuscating the internal workings of an ANN, making it
even more difficult to answer the “why" about some outputted classification [2].

Prediction markets (PM) are designed to determine the probability of a future event taking
place. Well-designed PMs encourage agents, human or computer-based, to contribute information to
the market through trading shares and incentivizing correct, truthful information sharing, and then
aggregate the information from individual agents into a collective knowledge [3]. PMs work because
the aggregate knowledge of the group will generally be more precise and complete than the knowledge
that any individual within the group holds. However, participants are expected to be well-informed in
the topic being predicted, which as of current technology, requires human participants [4]. Additionally,
computer agent-based PMs are difficult and programmer-intensive to create. Othman said on
computer-based agents, “agent-based modeling of the real world is necessarily dubious. Attempting
to model the rich tapestry of human behavior within economic structures—both the outstandingly bad
and the terrifically complex—is a futile task [5].” Even if it were possible to model the complexity of
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human knowledge and decision-making within some narrow topic it would be extremely difficult to
generalize across topics. We can consider simpler agents that don’t attempt to model human interaction.
These agents have been studied in simple, academic, scenarios with some success when their behavior
is limited in possible actions and their opponents are not adversarial [6,7]. However, work done by
Othman and Sandholm [8] has shown that simply changing the order in which the agents participate
in the market can drastically impact the outcome of the market, indicating that “markets may fail to do
any meaningful belief aggregation.”

An alternative to PMs is Wisdom of the Crowd (WoC). WoC takes the approach that the opinion
of a large, diverse group will be more accurate than any individual opinion within the group given
a sufficiently competent aggregation mechanism [9]. The classic example that demonstrates this is
guessing how many jelly beans are in a jar at a county fair. Typically no individual is consistently able
to get close to the correct amount, but the aggregate opinion of the group is generally very close to
the correct number of jelly beans. WoC doesn’t expect or require expert knowledge, Scott Page said
“the squared error of the collective prediction equals the average squared error minus the predictive
diversity” [10]. This means the more diverse the crowd, the smaller the predictive error.

In this paper we present a robust, computer-agent-based approach to making predictions about the
success of Hollywood movies that can be easily distributed across multiple computational nodes [11].
We take a WoC approach, using simple agents (WoC-Bots) without expert knowledge that are trained
with different, small, subsets of features that describe the movies. This initially gives us a group of
agents with a diverse and independent set of knowledge. The agents interact with one another socially,
sharing some knowledge, determining the trust they have in other agents and the confidence they have
in their own opinion, and changing their opinion given enough evidence. Following this interaction
an overall conclusion is drawn from the crowd using a trust and performance-based aggregation
mechanism. Our system was compared with traditional multilayer perceptron (MLP) networks trained
with the full set of features available to the agents, as well as a subset of the most highly correlated
features. We show that WoC-Bots are able to achieve more accurate classification results, with reduced
training time and resistance to feature drop-out.

2. Methods & Design

The test scenario for this research involves predicting if a movie will be a success. Success was
defined as the reported revenue being greater than 2× the reported budget for the movie. It is difficult
to determine exactly what revenue is considered a success, and it differs on a movie-by-movie basis.
However, advertising and promotion budgets are generally less than the production budget, which
indicates studios should start to see some positive cash flow if a movie makes 2× the production
budget [12]. Additionally, defining success as we did split our data, discussed more in Section 2.1,
roughly equally between success (47.5%) and failure (52.5%).

2.1. Datasets & Libraries

We primarily used two datasets for this work:

1. The Movie Database (TMDb) (https://www.kaggle.com/tmdb/tmdb-movie-metadata/)
2. MovieLens (ML) https://www.kaggle.com/grouplens/movielens-20m-dataset/) [13]

The MovieLens dataset provides information for more than 27,000 movies, while the TMDb
dataset includes 5000 movies. Only movies found in both datasets, with complete information for
all features used for classification, were considered. The features used for classification are listed in
Table 1. A note about the genre feature; only the first two listed genres were considered for each
movie in classifiers that used the genre feature(s). Each genre was assigned a unique numeric ID.
We were left with 4722 possible movies for testing and training, however 1023 movies appeared to
contain incorrect information, e.g., negative values for movie budget or movie revenue; these movies
were removed from our testing and training subsets. We used both datasets to help reduce sparse
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areas in the data for less popular and older movies. The data was split into two subsets, testing and
training, with 2959 randomly selected examples used for training and 740 examples used for testing.
The training subset was randomly selected from the full dataset at the start of each simulation, with the
remaining examples being used for testing.

Table 1. Features available for classification.

Features Description

budget given to all agents, reported budget for movie

tmdb_popularity
dynamic variable from TMDb API attempting

to represent interest in movie

revenue used for sanity checks, reported revenue

runtime unreliable metric for success without including genre information

tmdb_vote_average average score from TMDb, can be combined with ML average

tmdb_vote_count total votes for a movie from TMDb, can be combined with ML count

ml_vote_average average score from ML, can be combined with TMDb average

ml_vote_count total votes for a movie from ML, can be combined with TMDb count

ml_tmdb_genres
combined genre information from TMDb & ML;

first 2 listed genres used

vote_average combined tmdb_vote_average and ml_vote_average

vote_count combined tmdb_vote_count and ml_vote_count

The data was transformed in the following ways:

• Movies were matched between the two datasets based on ID, using “movieId” and “tmdbId”
values provided in the ML dataset.

• The ML dataset used a 0–5 rating system while the TMDb dataset used a 0–10 rating system,
the ML ratings were multiplied by 2.

• Only overlapping genres from each dataset were considered; e.g., if, for Toy Story, the ML dataset
lists it as “action, animation, family” and the TMDb dataset lists Toy Story as “family, adventure,
animation”, the movie was considered to fall into only the “animation” and “family” genres.

Sample training and testing CSV files encompassing the transformed data can be found
at the following url https://data.mendeley.com/datasets/gj66mt4s4j/2, while the code required
to reproduce the results presented in this article can be found at https://github.com/spg63/
MDPIApplSciCodeRepo. The code will be made available upon request to Sean Grimes or David E.
Breen. Eclipse Deeplearning4j (DL4J) (https://deeplearning4j.org/) [14] is “an open-source, distributed
deep-learning project in Java and Scala spearheaded by the people at Skymind (https://skymind.ai/),
a San Francisco-based business intelligence and enterprise software firm.” DL4J (versions 0.9.1 and
1.0.0-beta3) was used as a neural network library, providing the core multilayer perceptron classifier
used by each agent (discussed in more detail in Section 2.2.1). Additionally, DL4J was used to build
and test the larger MLP classifiers that were compared with our agent-based approach. All non-DL4J
library code was written in Kotlin (https://kotlinlang.org/) (versions 1.3.20 - 1.3.41), running on the
Java Virtual Machine (JVM) (https://www.java.com/en/download/) (versions 1.8.0_151 - 1.8.0_211).
All feature, agent history data, and trained agents were stored in various databases, using SQLite3
(https://www.sqlite.org/index.html) as the database engine.
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2.2. Agent Design

Agents are designed to be modular, presenting an interface that includes different algorithms
for all aspects of their behavior. Agents are responsible for coordinating and managing the
following functions:

• Classifier: MLP classifier with a single hidden layer
• Classifier configuration: shape, depth, activation and optimization algorithms
• Initialization algorithm: How the agents are initialized within the interaction space
• Movement algorithm: How the agents move within the interaction space
• Interaction algorithm: How (if) an agent interacts with other agents
• Scoring algorithm: How an agent reaches the conclusion it does; a combination of the internal

classifier and information learned while interacting with other agents

2.2.1. Classifier

Each agent contains a very small, very simple MLP classifier. All agents were configured with
similar classifiers, each containing 2–4 input nodes (one for each feature), a single hidden layer
containing numInputNodes * 2 number of nodes, and an output layer with two output nodes, one for
each of the two output classes, “success” and “failure”. All classifiers used the DL4J implementation
of the Adam updater [15] (learning rate), softmax activation function [16], and traditional stochastic
gradient descent for optimization.

Each agent’s classifier was given a single feature in common with all other agents, the movie
budget. Other features were spread across multiple agents, occasionally in pairs (e.g., budget &
vote_count & vote_average), but more frequently a single feature in addition to budget. Classification
performance was the determining characteristic in assigning features to agents, with very low
(<50% accuracy) performing combinations dropped during early testing in favor of decreased
computational complexity.

2.2.2. Agent Initialization & Movement

All agents currently participate and interact within a centralized ‘interaction arena’ (Arena)
managed by a central controller responsible for registering agents, confirming that their initial location
is valid, and validating each movement. All agents must be initialized within the bounds of the
arena and into an empty space. All movements must be within the bounds of the arena and there
can be at most two agents occupying any space within the arena. Interactions between three or more
agents at the same location are not currently supported. Centralized control is currently being used to
ease implementation, however it is not a requirement. Agents are capable of validating location and
movement on their own, or if required, having some number n other agents confirm all positioning as
valid in a decentralized manner. The Arena can take any 3D shape comprised of rectangles allowing
for arrangements from a simple 4 × 4 square to something more complex, with multiple rooms, floors,
and restricted movement between each, e.g., a simulated building.

Agents are currently responsible for maintaining a history of their movements within the arena,
a history of interactions, and a history of how each interaction affected their internal belief. Historical
information for each agent is stored in memory during each iteration and dumped to individual SQLite
tables for long-term storage.

Agents are initialized with an InitializationAlgorithm and a MovementAlgorithm which
implement simple interfaces, init() and move(), respectively. init() has a single goal, initialize
the agent in the arena in an empty space. Initialization can be random, or account for complexities
like location of other agents, placing agents with similar features close together, localizing similar
information, or spreading them out to facilitate transmission of information between dissimilar agents.
Localizing similar information may allow a group of similar agents to come to an optimal conclusion,
whereas spreading similar agents out may allow the best performing agents to convince others of their
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opinions [17]. The InitializationAlgorithm used in this work randomly initialized agents within a
rectangular arena.

move() also has a simple goal, move the agent within the arena. move() can be as simple or
complex as necessary; randomly selecting a space within the arena and ‘teleport’ the agent to the
new space, or it can require the agent to move towards some target location or another agent. Agents
interact when two agents move onto the same space. The MovementAlgorithm used for this work
randomly moved agents in a “Manhattan-like” fashion, allowing each agent to move one step north,
south, east, or west, within the bounds of the arena.

2.2.3. Interaction & Scoring

The InteractionAlgorithm and ScoringAlgorithm are both designed to be modular, with the
InteractionAlgorithm being responsible for deciding with whom an agent should interact,
truthfulness, and trust updating. The InteractionAlgorithm is required to implement three functions,
shouldInteract() which determines if the agent is interested in interacting with another agent,
truth() which determines if the agent should be truthful with another agent, and updateTrust()
which tries to update the other agent’s trust score. updateTrust() is allowed to be a NO-OP function
when it is not desirable to update other agents’ trust scores. This work assumes all interactions are
acceptable, doesn’t limit repeat interactions, and requires all interactions to be truthful.

The ScoringAlgorithm determines how interactions update an agent’s internal belief state.
Agents are initialized with specific internal values, referenced in Table 2, that are (in part) updated
during each interaction. Many of these values are made available to other agents during interaction,
allowing each agent to determine how certain another agent is, what that agent’s initial classification
values were, and how much influence it will allow the agent to have over its current belief.

Table 2. Internal scoring variables.

Variable Description

current_prediction true if prediction for movie is success

trust_score initialized to classifier precision, updated by other agents

features a list of features used by the agent’s classifier

prior_performance
long-term history of agent performance, varied between 0.7 and 1.3

where 1.0 is average performance

certainty
an average of classifier accuracy and precision, multiplied by

prior_performance, bounded by 0.5 and 1.5

eval_accuracy initial classification accuracy

eval_precision initial classification precision

eval_recall initial classification recall

confidence
biased value based on an average of accuracy, precision, and recall

favoring whichever is deemed most important

Similar to the previous algorithm interfaces, the ScoringAlgorithm used by each agent allows the
scoring to be implemented in a way most appropriate to the given problem. The algorithm is required
to implement a single function, updatePrediction which updates the current binary prediction based
on information from the most recent interaction. The ScoringAlgorithm used in this study works as
follows: initially the agent (agent a) determines how willing it is to accept information from another
agent (agent b), this is a function of a’s current certainty, where acertainty represents a’s current
certainty and aacceptance represents a’s willingness to accept information from b

aacceptance = 1.0 − acertainty (1)
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Agent a then determines how much influence b should have (bin f luence).

bin f luence = bcon f idence ∗ aacceptance ∗ btrustCertainty, (2)

where bcon f idence represents b’s confidence and btrustCertainty represents b’s trust_score ∗ certainty.
b’s influence is modified based on its prior performance where bpriorPer f represents b’s prior
performance, a value between 0.7 and 1.3, as noted in Table 2, and bcorrectedIn f luence represents this
modified value,

bcorrectedIn f luence = bpriorPer f ∗ bin f luence. (3)

bcorrectedIn f luence is multiplied by -1 if b’s opinion (success or failure) differs from a’s opinion. a’s new
certainty, acertainty is now calculated by Equation (4), where a’s certainty is increased if both a and b
have the same belief and is diminished if they disagree,

acertainty = acertainty + bcorrectedIn f luence. (4)

a now checks if it should flip its opinion, which it does if acertainty is less than 0.50. Finally, a updates
its certainty if its opinion changed,

acertainty = 1.0 − acertainty. (5)

2.3. Opinion Aggregation

Effective opinion aggregation is an open question with many different possible approaches [18].
This research hopes to contribute more to this area in the future. We implement a voting system, where
each agent receives a maximum of 100 possible votes for their preferred outcome, success or failure.
We considered three methods of vote aggregation. The first and simplest method gives equal weight to
each agent regardless of performance, the Unweighted Mean Model (UWM) [19]. The second method
gives each agent votes based on prior accuracy, where an 80% accuracy rate would result in 80 votes,
similar to the Weighted Voter Model presented in [20]. Agents are initially allowed 50 votes each until
an accuracy for prior performance can be determined. The third method we used is similar to the
second, however it also takes into account the trust score that other agents are allowed to modify,
giving more granular control over how much influence an agent has on the aggregate opinion. Total
votes for agent a is represented by atotalVotes, where apriorAccuracy represents a’s prior accuracy and atrust

represents a’s trust score,

atotalVotes =
((

apriorAccuracy + atrust
)

/2
)
∗ 100. (6)

During an interaction the agent, a, is allowed to modify another agent’s, b, trust score (btrust)
based on how agent b has performed in the past, if agent a and b are in agreement (doAgree), and if
prior information that a has received from b was correct. Agent a will check its interaction history,
look for any interactions with b to determine what percent of interactions gave advice that was correct
(bpercCorrect). If there are no prior interactions the trust score will not be modified. The trust score can
be modified a maximum of 5% during each interaction.

btrust = btrust + 0.05
(

bpercCorrect ∗ bpriorPer f

)
∗ doAgree (7)

A high-level overview of the training, interaction, and voting process can be seen in Figure 1.
The internal MLP for each agent is trained using available training data, the agents are presented with
a binary question, they are initialized in an arena where they move and interact for some number of
steps (based on time or total interactions). Agents are then assigned some number of votes based on
the system described in Section 2.3 and they vote at the end of the interaction period.
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Figure 1. Agent training, initialization, movement, interaction, and voting.

3. Results

We compared the results from our social, agent-based approach to the results produced by
multiple configurations of a traditional, monolithic MLP developed in DL4J. All agent classifiers
were trained on 4× Nvidia GTX 1070 GPUs using Cuda (versions 10.0–10.1 update 2) through the
DL4J library. Table 3 shows the configuration and accuracy under different training conditions for
each of the 10 agents. All agent classifiers were trained in parallel, taking an average of 2.8 s for
5 epochs and 22 s for 50 epochs; there was no accuracy improvement beyond 50 epochs. Once trained,
the agents can participate in any decision-making configuration without re-training their classifiers.
The best performing agent classifier was the budget, vote_count, vote_average agent, with the most
important feature being budget, followed by vote_count. The worst performing agent was the budget,
runtime agent.

Table 3. Agent Classifier Accuracy for 5 and 50 epochs.

Features 5 Epochs 50 Epochs

budget, revenue 98% 100%

budget, vote_average, vote_count 77.2% 77.6%

budget, tmdb_popularity, vote_average, vote_count 75.4% 75.7%

budget, vote_count 75.7% 75.5%

budget, tmdb_popularity, tmdb_vote_average, tmdb_vote_count 72.8% 74.9%

budget, tmdb_vote_count, ml_vote_count 73% 73.4%

budget, ml_vote_average, ml_vote_count 62.2% 64.1%

budget, ml_vote_count 60.3% 61.9%

budget, tmdb_vote_average 60.9% 61.4%

budget, runtime 53.9% 56.4%

Average (budget, revenue agent removed) 67.93% 68.99%

We tested 10 MLP networks, with a variety of feature sets, and with one containing the final
revenue. Figure 2a shows the accuracy for five classifier configurations when trained for 5 and
50 epochs. The figure shows the change in classifier accuracy when various features have been
removed as inputs into the network.



Appl. Sci. 2019, 9, 4653 8 of 14

98%

75.00%

75%

72.40%

71%

98%

75.50%

77.20%

75.90%

71.90%

60% 65% 70% 75% 80% 85% 90% 95% 100%

budget, revenue, runtime, vote_count, vote_average

budget, runtime, vote_average, vote_count

budget, vote_average, vote_count

budget, vote_count

budget, vote_average

ACCURACY FOR MLP NETWORK

50 Epochs 5 Epochs

(a) Accuracy for single hidden layer MLP classifier. The y-axis shows which feature were included.

83.1%

75.8%

74.5%

75.8%

74.2%

89.5%

78%

78.3%

77.6%

76%

93%

79.9%

80.2%

79%

77.1%

60.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90.0% 95.0%

budget, revenue, runtime, vote_count, vote_average

budget, runtime, vote_average, vote_count

budget, vote_average, vote_count

budget, vote_count

budget, vote_average

ACCURACY FOR WOC-BOTS

Classifer + Trust Combination Classifier Performance Votes Equal Votes

(b) Accuracy for agent interaction. The y-axis shows features included.

Figure 2. Comparison of MLP and Woc-Bots performance.
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All MLP classifiers were trained individually with an average training time of 2.6 s for 5 epochs
and 21.2 s for 50 epochs. Comparing training times with the social agents, training 10 MLP classifiers
in parallel took 1 min and 1 s (3 min and 32 s if computed sequentially) vs. 22 s to train 10 agents
for 50 epochs. It should be noted that inference is slower using WoC-Bots; it takes an average of
260 milliseconds to test 740 examples using an MLP classifier incorporating all the features listed in
Table 1, while it takes the WoC-Bots, encompassing the same feature set, an average of 13.4 s to test
the same 740 examples. But, once trained, the agents can be reconfigured to compute new prediction
results for different feature sets, without requiring retraining, unlike a monolithic MLP.

Accuracy results from five configurations of our social, agent-based prediction system can be
found in Figure 2b. We show results for three aggregation mechanisms after 50 epochs of training:
(1) unweighted equal voting, (2) votes assigned based on initial classifier performance, and (3) votes
assigned based on classifier performance and agent trust (described in Section 2.3), with method (3)
consistently out-performing methods (1) and (2). Method (1) is represented by the blue bar, method (2)
by the orange bar, and method (3) the grey bar. We tested similar configurations across our agents and
MLP networks. Data from Movielens and TMDb was combined, as described in Section 2.1, with no
agent receiving information from only one source.

Similar to Figure 2a, Figure 2b’s labels show which features were included in the interaction.
Feature distribution across agents was optimized for accuracy, within the limits of available features.
Five agents participated in each interaction, with the budget, vote_average and budget, vote_count
interactions being comprised of five copies of the same agent.

WoC-Bots out-performed the MLP classifier in all cases except where final revenue was included
as a feature, indicating that our aggregation method does not give enough weight to an agent with
exceptionally good performance. We tested removing a highly correlated (http://ibomalkoc.com/
movies-dataset/) feature, vote_count, which caused a performance decline in both the MLP and social
agents, with the MLP network accuracy declining 4% compared to a decline of 1.9% in WoC-Bots,
indicating our agents are more resistant to feature drop-out. We also tested removing an unimportant
feature, runtime which showed a 1.7% performance increase in the MLP network and only a 0.3%
increase for WoC-Bots, indicating poorly performing agents have little impact on other agents during
the interaction period and receive few votes during opinion aggregation. Statistical analysis confirms
that runtime is not highly correlated in both the TMDb dataset and an ensemble dataset combining
the Movielens and TMDb data, as used in this article [21,22].

Figure 3 shows the performance of MLP networks and WoC-Bots as features are systematically
added. The results presented in this figure are produced via the classifier performance & trust
aggregation mechanism. The agents are configured to allow for maximum agent participation
without duplicating agents in any simulation testing more than two features. Four copies of an agent,
representing budget and vote_count, participated in the first simulation. Four agents participated in
the budget, vote_count, popularity simulation, eleven agents participated in each of the following
four-feature simulation. Twenty-six agents participated in the budget, vote_count, vote_average,
runtime, popularity simulation with one agent receiving five features, five agents receiving four
features, 10 agents receiving three features, and 10 agents receiving two features.

http://ibomalkoc.com/movies-dataset/
http://ibomalkoc.com/movies-dataset/
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Figure 3. Accuracy of MLP vs WoC-Bots w/Max agent configuration while adding features.

In five out of six simulations WoC-Bots out-performed the MLP network, and significantly
out-performed the MLP network when the most important feature, budget, was removed. WoC-Bots
performed best when all features were available, and when the maximum number of unique agents
were participating in the simulation. The MLP network performed best when the three most highly
correlated features were the only features being considered. This performance difference indicates
WoC-Bots are able to gather additional information from features that are less correlated with revenue
without a net negative impact to their accuracy from the additional feature noise.

Figure 4 shows the accuracy for training epochs 1–50 for an MLP network and WoC-Bots.
The network was configured with five features, budget, vote_count, vote_average, runtime,
and popularity. Five agents participated in the simulation with four agents receiving two features
and one agent receiving five features. Each two-featured agent received budget as a feature and
one other feature from the list of features. No agent was duplicated. We choose this agent and
feature configuration to make as fair and direct comparison with an MLP network as possible despite
WoC-Bots performing better when more agents participate in the simulation, as seen in the budget,
vote_count, vote_average, runtime, popularity simulation in Figure 3 where 26 agents were allowed
to participate. WoC-Bots are out-performed in this configuration, slightly, by the MLP network when
trained for more than 40 epochs, however they are able to more quickly integrate information compared
to the MLP network, reaching an optimum (76.3%) at 20 epochs vs. the MLP optimum (76.8%) at
40 epochs.
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Figure 4. Accuracy of MLP and WoC-Bots for five features over 1–50 epochs.

4. Discussion

Our system can easily include new features by creating a new agent to represent those features,
allowing the agent to be added to the next “interaction” without the need to re-train a network
or employ complex, dynamically expandable networks found in [2] when incorporating new data.
Additionally, this design allows us to quickly test the impact of removing features or testing various
combinations of features without the time-consuming re-training step required when changing features
in a full MLP network. This allows us to easily removing features, like runtime, to test how they
impact the final prediction.

WoC performance, or a computer-agent-based version of it, depends on two attributes, a diverse
and independent crowd and an aggregation mechanism that assigns appropriate weights to individuals
within the crowd to reach the correct collective decision [23]. We also know from Othman [5] that
it is not reasonable to develop a computer agent that accurately represents the intricate and diverse
knowledge that humans have. Therefore, we need to find the right balance between independently
thinking agents within a crowd and information sharing to better represent the diverse knowledge of
human agents.

5. Conclusions & Future Work

We have demonstrated a robust, flexible alternative to traditional ANN methods for making
predictions about specific future events. Our implementation takes ideas from prediction markets,
wisdom of crowds, and multi-agent systems to use simple, modular agents in a social setting to answer
binary questions. Our results show that we can attain similar results to that of a multilayer perceptron
when classifying Hollywood movies, while requiring less training time and offering more flexibility
and prediction options. Further, our system is robust, demonstrating only a 1.9% loss in accuracy
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when losing the vote_count feature versus a 4% loss in accuracy when the same feature was removed
from the MLP network.

We have three main areas to focus on for improvement in the future. Recent work on deep neural
networks is starting to explain “why” we get certain output. However, there is still a long way to go
before we have the ability to easily answer this question [24]. Our system offers a framework, using a
multi-agent approach, that should allow us to answer “why” more easily; at the core of each agent
is a very simple, single hidden layer MLP. Agents track all interactions, how those interactions affect
their internal belief, and how they change the trust value of other agents. Given the state of the system
during a simulation, the internal belief and trust scores of each agent, as well as each agent’s interaction
history, we can follow the history of each agent, starting with its initial belief post-classification, through
each interaction, allowing us to see when and why an agent’s belief changed (or stayed the same).

The two other areas we will address in future work are (1) the interaction, movement,
and initialization algorithms, allowing us to change and optimize the distribution and flow of
information and (2) the aggregation mechanism. We will use theories from swarm intelligence [25] to
better aggregate the information that each agent possesses in a manner that better extracts information
from the correct agents while limiting the impact that incorrect agents have on the collective opinion.
Unanimous A.I. (https://unanimous.ai/) has a unique, swarm-based aggregation method that
is capable of arriving at a collective answer. Unanimous A.I. maintains a “human-in-the-loop”
approach [26], where their ‘swarm’ is comprised of humans, answering binary and non-binary
questions by working together to move a virtual puck to the collective answer [27]. We prefer
a computer-agent-based approach that allows for new agents to be created as needed to answer
questions as they come up. Our future work will focus on implementing a swarm-based algorithm to
produce an “emergent prediction” from a group of relatively simple, modular agents.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
WoC Wisdom of the Crowd
MLP Multi-layer Perceptron
ANN Artificial Neural Network
PM Prediction Market
TMDb The Movie Database
API Application Programming Interface
ML MovieLens
DL4J Deeplearning4j
JVM Java Virtual Machine
UWM Unweighted Mean Model
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9. Ertekin, Ş.; Rudin, C.; Hirsh, H. Approximating the crowd. Data Min. Knowl. Discov. 2014, 28, 1189–1221.
[CrossRef]

10. Page, S.E. The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies-New
Edition; Princeton University Press: Princeton, NJ, USA, 2008.

11. Helsinger, A.; Thome, M.; Wright, T. Cougaar: A scalable, distributed multi-agent architecture.
In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, The Hague,
The Netherlands, 10–13 October 2004; Volume 2, pp. 1910–1917.

12. De Vany, A. Hollywood Economics: How Extreme Uncertainty Shapes the Film Industry; Routledge: Abingdon,
UK, 2003.

13. Harper, F.M.; Konstan, J.A. The movielens datasets: History and context. ACM Trans. Interact. Intell. Syst.
2016, 5, 19. [CrossRef]

14. Team, D. Deeplearning4j: Open-source distributed deep learning for the JVM. Apache Softw. Found. Licens.
2018, 2.

15. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
16. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
17. Garnett, P.; Bissell, J. Modelling Social Networks Reveals How Information Spreads. 2013. Available online:

http://theconversation.com/modelling-social-networks-reveals-how-information-spreads-18776 (accessed
on 10 June 2019).

18. Du, Q.; Hong, H.; Wang, G.A.; Wang, P.; Fan, W. CrowdIQ: A New Opinion Aggregation Model.
In Proceedings of the 50th Hawaii International Conference on System Sciences, Hilton Waikoloa Village, HI,
USA, 4–7 January 2017.

19. Hastie, R.; Kameda, T. The robust beauty of majority rules in group decisions. Psychol. Rev. 2005, 112, 494.
[CrossRef] [PubMed]

20. Valentini, G.; Hamann, H.; Dorigo, M. Self-organized collective decision making: The weighted voter model.
In Proceedings of the International Conference on Autonomous Agents and Multi-Agent Systems, Paris,
France, 5–9 May 2014; pp. 45–52.

21. Awasthi, D. Exploratory Analysis of Movies on TMDB. Available online: https://rstudio-pubs-static.s3.
amazonaws.com/369891_b123051c3cb64da5a6d22a8d0b6e0d84.html (accessed on 19 October 2019).

22. Malkoc, I. The Movies Dataset. Available online: http://ibomalkoc.com/movies-dataset/ (accessed on
23 August 2019).

23. Surowiecki, J. The Wisdom of the Crowds; Anchor Books, a division of Random House: New York, NY,
USA, 2005.

24. Shwartz-Ziv, R.; Tishby, N. Opening the black box of deep neural networks via information. arXiv 2017,
arXiv:1703.00810.

25. Zhu, Y.F.; Tang, X.M. Overview of swarm intelligence. In Proceedings of the IEEE International Conference
on Computer Application and System Modeling, Taiyuan, China, 22–24 October 2010; Volume 9, pp. 9–400.

http://dx.doi.org/10.1111/j.1551-6709.2011.01223.x
http://www.ncbi.nlm.nih.gov/pubmed/22268680
http://dx.doi.org/10.1007/s10618-014-0354-1
http://dx.doi.org/10.1145/2827872
http://theconversation.com/modelling-social-networks-reveals-how-information-spreads-18776
http://dx.doi.org/10.1037/0033-295X.112.2.494
http://www.ncbi.nlm.nih.gov/pubmed/15783295
https://rstudio-pubs-static.s3.amazonaws.com/369891_b123051c3cb64da5a6d22a8d0b6e0d84.html
https://rstudio-pubs-static.s3.amazonaws.com/369891_b123051c3cb64da5a6d22a8d0b6e0d84.html
http://ibomalkoc.com/movies-dataset/


Appl. Sci. 2019, 9, 4653 14 of 14

26. Rosenberg, L. Artificial Swarm Intelligence, a Human-in-the-loop approach to AI. In Proceedings of the 30th
AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.

27. Rosenberg, L.; Pescetelli, N.; Willcox, G. Artificial Swarm Intelligence amplifies accuracy when predicting
financial markets. In Proceedings of the IEEE 8th Annual Conference on Ubiquitous Computing, Electronics
and Mobile Communication, New York, NY, USA, 19–21 October 2017; pp. 58–62.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods & Design
	Datasets & Libraries
	Agent Design
	Classifier
	Agent Initialization & Movement
	Interaction & Scoring

	Opinion Aggregation

	Results
	Discussion
	Conclusions & Future Work
	References

