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Featured Application: The major object of this research is to provide a small-signal modeling
method and controller design guidelines in wireless distributed and enabled battery energy
storage system (WEDES) battery system for electric vehicles applications.

Abstract: This paper presents small-signal modeling, analysis, and control design for wireless
distributed and enabled battery energy storage system (WEDES) for electric vehicles (EVs), which can
realize the active state-of-charge (SOC) balancing between each WEDES battery module and maintain
operation with a regulated bus voltage. The derived small-signal models of the WEDES system consist
of several sub-models, such as the DC-DC boost converter model, wireless power transfer model, and
the models of control compensators. The small-signal models are able to provide deep insight analysis
of the steady-state and dynamics of the WEDES battery system and provide design guidelines or
criteria of the WEDES controller. The derived small-signal models and controller design are evaluated
and validated by both MATLAB®/SIMULINK simulation and hardware experimental prototype.

Keywords: small-signal modeling; battery energy storage system; battery management system;
control; stability; dynamic response; wireless power; state-of-charge; electric vehicle

1. Introduction

Battery energy storage systems (BESS) have been widely used in various applications, such as
electric vehicles (EVs), consumer electronics, medical devices, smart grid, energy backup in data
centers, and among others [1–10]. For EV applications, what is referred to be as “range anxiety” is one
of the major reasons that prohibit or slows down the adoption of EVs [9–14].

To eliminate range anxiety in and extend the driving range of EVs, different methods have been
discussed in the literature [9–17], such as increasing battery pack capacity, utilizing a faster charging
method, utilizing a battery pack swapping method, achieving dynamic wireless charging, etc. While
these methods can be effective to extend the driving range of EVs, some design challenges or drawbacks
cannot be ignored.

When increasing capacity, the weight, size, and cost of the battery pack inevitably increase with
the increase in battery capacity [10]. Further, the needed recharge time is also increased. For faster
charging, the battery state-of-health (SOH) degrades at a higher rate if faster charging is applied [11,12].
In addition, the fast charger requires a high-power infrastructure that increases the cost of the overall
system. For conventional battery swapping, specialized equipment, as well as the experienced
personnel, are required to realize battery swapping [13]. For dynamic wireless charging, a large number
of transmitter (Tx) coils are required with corresponding power supply units, which increases the
infrastructure cost. In addition, this method might not be practical in all locations [14].
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Among these methods, the battery swapping concept is a good candidate to reduce recharging
time and extend the driving range with low infrastructure cost. To deal with the challenges in
the conventional battery swapping concept, a new distributed and enabled battery energy storage
(WEDES) system and WEDES controller for EVs are presented in [1], which allows for fast and
safe exchange/swapping of smaller and lighter battery modules with wireless power transfer (WPT)
technology [18,19].

An illustration of the WEDES system for EVs is shown in Figure 1b, and its example circuit
diagram is shown in Figure 1c. Each of the battery modules consists of multiple battery cells, a
dedicated electronics circuit, wireless power transmitter coil (Tx coil), wireless communication circuit,
and client controller. While the on-board-unit (OBU) consists of a wireless power receiver coil (Rx
coil), wireless communication circuit, and host controller. Different from the conventional battery
swapping concept where the battery pack as a whole is exchanged at one time, in the WEDES battery
system, the conventional single battery pack is divided into multiple small battery modules, which can
deliver power through wireless power transfer (WPT) technology to the OBU. The distributed nature
of the WEDES system combined with wireless power transfer (no physical connection between battery
modules and OBU) makes the battery exchange/swapping easier, safer, and faster.

The distributed WEDES battery system with the WEDES controller addresses state-of-charge
(SOC) balancing, bus voltage regulation, and battery module current/voltage regulation at the same
time inside the system. Therefore, an SOC balancing control loop, a bus voltage regulation control
loop, and a battery module current/voltage control loop are coupled with each other within one battery
module as well as between multiple battery modules. These couplings make the analysis and design of
the WEDES controller complex and critical. While the initial concept of the distributed WEDES battery
system is discussed in [1], the small-signal modeling and controller design analysis are not focused on.

The main contributions of this paper can be summarized as follows:

(1). The overall review of the wireless distributed WEDES system, which allows for fast and safe
exchange/swapping of battery modules when utilized in electric vehicles (EVs) applications to
deal with the range anxiety issue.

(2). The derivation of small-signal modeling of the WEDES battery system to comprehensively analyze
the steady-state stability and dynamic response of the WEDES battery system.

(3). The discussion of the guidelines for the controller design of multiple interacted control loops.
(4). The discussion of the simulation results and hardware experimental results to evaluate and validate

the accuracy and effectiveness of the derived small-signal model and designed compensators.

The next Section discusses the detailed small-signal derivation of the WEDES system. Section 3
presents the design of compensators for each control loop. Simulation models and experimental results
are presented and discussed in Section 4 to validate the derived small-signal models. Section 5 is the
additional comments, and Section 6 concludes the paper.
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Figure 1. Illustration diagrams of battery system for electric vehicle (EV) application. (a) The 
conventional battery pack and electrics drive system in EVs, (b) the wireless distributed and enabled 
battery energy storage (WEDES) battery system in EVs, and (c) example circuit diagram of the WEDES 
system [1]. 

2. Small-Signal Modeling of the Distributed WEDES System 

2.1. Overview of the WEDES System and Controller Operation Principle  

Figure 1c shows the illustration of an example circuit diagram of the WEDES system, which 
consists of two major parts: battery modules and on-board-unit (OBU).  

Inside each battery module, multiple battery cells are connected in series and/or in parallel to 
form a battery bank, which can provide voltage/current/power to the rest of the system. The output 
of the battery bank is then connected to the input of a DC-DC power converter, which is used to 
achieve bus voltage regulation, battery module current/voltage regulation as well as SOC balancing 
at the same time as described later in this section. The output of the power converter is connected to 
an inverter stage for DC-AC power conversion. At the end of the battery module, the AC power from 
the inverter is applied to the transmitter (Tx) for inductive wireless power transfer (I-WPT) to the 
OBU.  

The OBU mainly consists of receiver coils (Rx) followed by an AC-DC power 
conversion/rectification stage (rectifier). The outputs of each rectifier (Vo1 through VoN) are connected 
in series to the bus/output (Vbus = Vo1 + Vo2 + … + VoN).  

To realize the functionalities of SOC balancing, bus voltage regulation, and battery module 
current/voltage regulation, the WEDES controller consists of three different control loops: the SOC 

Figure 1. Illustration diagrams of battery system for electric vehicle (EV) application. (a) The
conventional battery pack and electrics drive system in EVs, (b) the wireless distributed and enabled
battery energy storage (WEDES) battery system in EVs, and (c) example circuit diagram of the WEDES
system [1].

2. Small-Signal Modeling of the Distributed WEDES System

2.1. Overview of the WEDES System and Controller Operation Principle

Figure 1c shows the illustration of an example circuit diagram of the WEDES system, which
consists of two major parts: battery modules and on-board-unit (OBU).

Inside each battery module, multiple battery cells are connected in series and/or in parallel to
form a battery bank, which can provide voltage/current/power to the rest of the system. The output of
the battery bank is then connected to the input of a DC-DC power converter, which is used to achieve
bus voltage regulation, battery module current/voltage regulation as well as SOC balancing at the same
time as described later in this section. The output of the power converter is connected to an inverter
stage for DC-AC power conversion. At the end of the battery module, the AC power from the inverter
is applied to the transmitter (Tx) for inductive wireless power transfer (I-WPT) to the OBU.

The OBU mainly consists of receiver coils (Rx) followed by an AC-DC power
conversion/rectification stage (rectifier). The outputs of each rectifier (Vo1 through VoN) are connected
in series to the bus/output (Vbus = Vo1 + Vo2 + . . . + VoN).
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To realize the functionalities of SOC balancing, bus voltage regulation, and battery module
current/voltage regulation, the WEDES controller consists of three different control loops: the SOC
balancing control loop (referred to be by the SOC balancing loop), battery module voltage control
loop (referred to be by the module voltage loop) and bus voltage control loop (referred to be by the
bus voltage loop). Figure 2 shows the diagram of the wirelessly distributed WEDES controller, where
Vbus_ref is the desired value of bus voltage, VMN-total is an intermediate value for voltage regulation,
C_re_MX1 though C_re_MXN are the remaining capacities of battery modules for SOC calculation, SOCMX1

though SOCMXN are the SOC values of battery modules, λDC1 through λDCN are weighting factors
to generate the reference values of VMX1-DC-ref through VMXN-DC-ref for each battery module, αMX1

through αMXN are the SOC multipliers and δMX1 through δMXN are enable/disable values.
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In the WEDES controller, the SOC balancing loop is used to generate multipliers αMX1 through
αMXN to realize SOC balancing between multiple battery modules, as given by Equation (1).

αMX1 = (SOCMX−re f − SOCMX1) ×GvSOC + 1
αMX2 = (SOCMX−re f − SOCMX2) ×GvSOC + 1

. . . . . . .
αMXN = (SOCMX−re f − SOCMXN) ×GvSOC + 1

, (1)

where SOCMX-ref is the average SOC value of all battery modules, as given by Equation (2).
When all battery modules are inserted and active, the sum of all δMX1 through δMXN equals to N
(δMX1 + δMX2 + . . .+ δMXN = N).

SOCMX−re f =
(δMX1 × SOCMX1) + (δMX2 × SOCMX2) + . . .+ (δMXN × SOCMXN)

δMX1 + δMX2 + . . .+ δMXN
, (2)

λDCr =
δMXr × αMXr

(δMX1 × αMX1) + (δMX2 × αMX2) + . . .+ (δMXN × αMXN)
(3)

If the SOC value of rth battery module is larger than others, the corresponding multiplier αMXr

will be set larger, and vice versa. These multipliers αMX1 through αMXN are then multiplied by
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enabled/disable values δMX1 through δMXN to further generate the weighting factors λDC1 through
λDCN, as given by Equation (3). The sum of weighting factors λDC1 through λDCN always equals to
one. These weighting factors are then used in the battery module voltage loop to regulate the output
voltage of the battery modules VMX1 through VMXN at the primary side (Tx side), and as a result,
achieve bus voltage regulation at the second side (Rx/OBU side).

It should be emphasized that due to the inevitable power loss during wireless power transfer (i.e.,
transmission efficiency is less than 100%), the bus voltage control loop is important to adaptively adjust
VMN-total value to compensate the conversion ratios and losses of multiple power conversion stages
(DC-AC-AC-DC) and realize bus voltage regulation. The relationship between different voltages can
be calculated as given by Equation (4).

VMX−total =
(
Vbus−re f −Vbus

)
×Gv−bus

VMX−total = VMX1 + VMX2 + . . .+ VMXN

VMXr−DC−re f=VMX−total × λDCr
Vbus = Vo1 + Vo2 + . . .+ VoN

(4)

To summarize, the presented WEDES controller can dynamically control SOC multipliers αMX1

through αMXN to adjust the discharging rate for each battery module to achieve SOC balancing, while
keeping λDC1 + λDC2+ . . . +λDCN = 1 such that the bus voltage is always regulated as Vbus-ref.

2.2. Small-signal Modeling

Based on the block diagram of the WEDES controller shown in Figure 2, the small-signal of the
distributed WEDES system with controller is shown in Figure 3. The transfer functions and symbols in
Figure 3 are summarized as follows. For simplicity, the rth battery module is used for illustration.

Lbus(s): Bus voltage control loop gain;
LMXr(s): Battery module voltage control loop gain;
LSOCr(s): SOC balancing control loop gain;
Gvdr(s): Duty cycle to DC-DC converter output voltage VMXN transfer function;
GidN(s): Duty cycle to cell current transfer function;
Gsocir(s): Cell current to cell SOC transfer function;
GiTR(s): Gain of the input current of the half-bridge inverter to the output current of rectifier;
GvTR(s): Gain of the input voltage of the half-bridge inverter to the output voltage of rectifier;
GPWM: PWM module gain;
Kdivr(s): Output voltage sensing gain (including voltage divider gain and ADC conversion gain);
Delaywr(s): Delay of wireless communication;
Delaydr(s): Delay of digital computation;
ZOHvr(s): Zero order hold model of voltage sampling;
ZOHir(s): Zero order hold model of current sampling;
ZOHSOCr(s): Zero order hold model of SOC sampling.
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2.3. Derivation of Transfer Functions

Since the design parameters and equilibrium operation point of all WEDES battery modules are
the same under steady-state operation (when SOC balancing is achieved), the derivation of transfer
functions of all battery modules follows the same procedure. The detailed derivation of rth battery
module is discussed as follows:

2.3.1. Transfer Function of DC-DC Boost Stage

The circuit diagram of the DC-DC boost stage is shown in Figure 4. When the lower side switch
SL-r is on and the upper side switch SU-r is off, the differential equation of the boost converter can be
derived as follows:  LMXr

diinr
dt = vinr

CMXr
dvMXr

dt = −iMXr
, (5)

where iinr and vinr are the input current and input voltage, respectively, and iMXr and vMXr are the
output current and output voltage of the boost converter, respectively. LMXr is the inductor value, and
CMXr is the output capacitor.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 16 
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The state-space form of Equation (5) can be rewritten as Equation (6).

K
[ .

x1
.

x2

]
= A1

[
x1

x2

]
+ B1

[
u1

u2

]
=

[
0 0
0 0

][
x1

x2

]
+

[
1 0
0 −1

][
u1

u2

]
. , (6)

where the variables are x1 = iinr, x2 = vMXr, u1 = vinr, u2 = iMXr, respectively. K =

[
L 0
0 C

]
.

Similarly, when the lower side switch SL-r is off and the upper side switch SU-r is on, the differential
equation of the boost converter can be derived as follows: LMXr

diinr
dt = Vinr −VMXr

CMXr
dVMXr

dt = iinr − IMXr
. (7)

The state-space form of Equation (7) can be rewritten as Equation (8).

K
[ .

x1
.

x2

]
= A2

[
x1

x2

]
+ B2

[
u1

u2

]
=

[
0 −1
−1 0

][
x1

x2

]
+

[
1 0
0 −1

][
u1

u2

]
(8)

By using the state-space averaging method [20], the average matrix A and B are calculated as
given by Equations (9) and (10).

A = A1Dr + A2(1−Dr), (9)
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B = B1Dr + B2(1−Dr), (10)

where Dr is the duty cycle of the boost converter.
The steady-state X is calculated as follows:

X = A−1BU =
[

IMXr
1−Dr

Vinr
]−1

. (11)

The small-signal equation becomes as given by Equation (12):

X̂ = Ax̂ + Bû + [(A1 −A2)X + (B1 − B2)U]d̂r, (12)

where A1 −A2 =

[
0 1
−1 0

]
, B1 − B2 = 0, and d̂r is the small signal variation of duty cycle around

its steady state operation point.
Equation (12) can be rewritten as Equation (13): LMXr

d ˆiinr
dt = −(1−Dr)vMXr + ˆvinr +

Vinr
1−Dr

d̂r

CMXr
d ˆVMXr

dt = (1−Dr) ˆiinr − ˆiMXr −
IMXr
1−Dr

d̂r
. (13)

To simply the analysis, the AC small-signal variation of ˆvinN and ˆiMXN is assumed to be 0
(negligible) because the dynamic variation of battery voltage and battery module output current is very
slow compared to the dynamic variation of the control signal d̂r (duty cycle) of the power converter.
Therefore, by performing the Laplace transformation, Equation (14) can be derived as: sLMXriinr(s) = −(1−Dr)vMXr(s) +

Vinr
1−Dr

dr(s)
sCMXrvMXr(s) = (1−Dr)iinr(s) −

IMXN
1−Dr

dr(s)
. (14)

Based on Equation (15), the output voltage to the control signal transfer function of the power
converter can be derived as

Gvdr =
vMXr(s)

dr(s)
=

1
CMXr

(
−

IMXr
1−Dr

s + Vinr
CMXr

)
s2 +

(1−Dr)
2

LMXrCMXr

. (15)

Similarly, the input current to control signal transfer function can be derived as

Gidr =
iinr(s)
dr(s)

=

1
LMXr

( IMXr
CMXr

+ Vinr
1−Dr

s
)

s2 +
(1−Dr)

2

LMXrCMXr

. (16)

2.3.2. Transfer Function of WPT Stage (Half-Bridge Inverter, WPT Coils, and Half-Bridge Rectifier)

Figure 5 shows the circuit diagram of the WPT stage. By writing the Kirchhoff’s voltage law (KVL)
equations as given by Equation (17), the ratio between the output voltage VRr and the input voltage
VTr at the resonance frequency can be calculated as given by Equation (18). jωLTr +

1
jωCTr

+ RpTr − jωMTR

− jωMTR jωLRr +
1

jωCRr
+ RpTr + RLr

[ ITr

IRr

]
=

[
VTr

0

]
, (17)

GvTRr|ω=ωo =
VRr

VTr
=

jωMTRrRLr

ZTrZRr + (ωMTR)
2 =

jωkTRr
√

LTrLRrRLr

ZTrZRr + (ωkTRr)
2LTrLRr

, (18)
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where ZTr = jωLTr +
1

jωCTr
+ RpTr is the equivalent impedance of Tx side and ZRr = jωLRr +

1
jωCRr

+ RpTr + RLr is the equivalent impedance of Tx side. By substituting s = jω into Equation (19),
the following transfer function can be obtained.

GvTRr(s) =
VRr(s)
VTr(s)

= −
skTRr

√
LTrLRrRLr

ZTrZRr + s2kTRr2LTrLRr
. (19)
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Similarly, the ratio between the Tx current and Rx current can be derived as given by Equation (20).

GiTRr(s) =
IRr(s)
ITr(s)

= −
s2kTRrCRr

√
LTrLRr

s2LRrCRr + sCRr(RpTr + RLr) + 1
. (20)

3. Compensator Design

3.1. Battery Module Voltage Control Loop Compensator Design

The WEDES system design parameters are shown in Table 1. Based on the small-signal model in
Figure 3, the uncompensated discrete-time transfer function of the battery module voltage loop for the
rth battery module Gbusr (Z) consists of GPWM, Gvdr, GvTRr, kdivr, ZOHvr, and digital computation delay
Delaydr. GbusN (Z) is calculated as given by Equation (21), and its bode plot is shown as the dashed
curve in Figure 6.

LMXruncomp(z) = Z
{
GPWM(s)·Gvdr(s)·GvTRr(s)·ZOHvN(s)·DelaydN

}
=
−0.0001999z− 0.000272
z3 − 1.977z2 + 0.9789z

, (21)
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where ZOHvr(s) = 1−e−s·Ts
s ; Delaydr(s) = e−sTdelay ; Tdelay is the digital controller computation delay

and it is equal to 10 µs in the experimental implementation; GPWM = 1/1024 ; Kdiv = 11 with 1 kΩ
and 10 kΩ resistors as the voltage divider.

Table 1. Design parameters of the wireless distributed and enabled battery energy storage
(WEDES) system.

Parameter Value Parameter Value

VMXr 0–20 V LT, LR 24 µH
Vbus-ref 30 V CT, CR 0.4 µF

Iout 2 A kTR 0.3
LMXr 47 µH RpT, RRT @ 50 kHz 0.1 Ω
CMXr 220 µF fsw_bridge 50 kHz

fsw_converter 100 kHz - -
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Figure 6. The bode plot of the uncompensated (red-dashed curve) and compensated (blue-solid curve)
battery module voltage control loop gain.

In the battery module voltage compensator design, there is a right-hand-plane-zero (RHPZ),
which is located at 4.86 kHz. This RHPZ is introduced due to the existing boost converter. To guarantee
the stability of the system, the compensated control bandwidth should be smaller than RHPZ. With a
compensator Gv-bus(z) given by (22), the compensated battery module output voltage control loop gain
(GMXr_comp = GMXr_uncomp(z)·GMXr(z)) achieves a control bandwidth of 1.62 kHz and a phase margin of
45◦, as shown on the solid curve in Figure 6.

GMXr(z) =
950.8z2

− 1850z + 899.7
z2 − z

(22)
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3.2. SOC Balancing Loop Compensator Design

According to the small-signal model shown in Figure 3, the uncompensated SOC loop gain
(i.e., with unity SOC loop compensator gain) is given by Equation (23), and its bode plot is represented
by the dashed curve in Figure 7.

Lsocr−uncomp(z) = Z
{
GidN(s)·ZOHicellN(s)·GsociN(s)·ZOHsocN(s)·GsocN·(−1)·δMXN·Gαλ·Delayw·Gv−bus

}
, (23)

where ZOHicellN(s) = 1−e−s·Ts
s , ZOHsocN(s) = 1−e−s·Tsoc

s , Tsoc is the sampling period for the SOC
value in the SOC balancing loop. Since the SOC value of a battery cell varies very slowly compared
to the switching period of the power converter, the sampling rate of the SOC balancing loop does
not have to be very fast. Tsoc =1 s is found to be a good trade-off between the hardware resource
consumption, system stability and SOC balancing speed.
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With a compensator given by Equation (24), the compensated SOC balancing loop gain achieves a
control bandwidth of 0.057 Hz and phase margin of 59.2◦, as shown on the solid curve in Figure 7.
Due to the slow sampling rate of SOC value (1 Hz), it is expected that the control bandwidth of the
SOC balancing loop is much lower than that of the voltage control loop.

GSOCr(z) =
2.5× 108

z− 1
(24)

3.3. Bus Voltage Control Loop Compensator Design

Based on the small-signal model shown in Figure 3, the uncompensated bus voltage control loop
gain (i.e., with gain = 1) is given by Equation (25), and its bode plot is represented by the dashed
curve in Figure 8. With a compensator given by Equation (26), the compensated bus voltage loop gain
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achieves a control bandwidth of 8.12 kHz and a phase margin of 52.3◦, as shown on the solid curve in
Figure 8.

Lbus−uncomp(z) = Z
{
ZOHv−bus(s)·Delayw

}
=

0.2555z− 0.1798
z2 − 1.977z + 0.9789

, (25)

Gbus(z) =
1.2z− 1.8

z− 1
, (26)

where ZOHv−bus(s) = 1−e−s·Ts
s .
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4. Simulation and Model Experiment Validation

In this section, the small-signal model was evaluated and validated in both simulation and
hardware experiments. The simulation model was built in MATLAB®/SIMULINK software (2018a,
MatchWorks, Natick, Massachusetts, USA) using the derived transfer functions in Sections 2 and 3.
The hardware control compensator was implemented with Texas Instrumental microcontroller
TMS320S28335. The design parameters are shown in Table 1. In the hardware experiment, three
WEDES battery modules were implemented and utilized.

For the verification of derived small-signal models of the WEDES system, the dynamic response
of both simulation and hardware experiments under different operation conditions was compared.
If the dynamic performance from simulation results and experimental results are in good agreement, it
can be implied that the developed model is valid.

As discussed in previous sections, there are three different control loops (battery module voltage
control loop, bus voltage control loop, and SOC balancing control loop) in the WEDES system. During
the test for a specific control loop, one of the operation parameters was changed while the rest of the
operation parameters were set constant.
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4.1. Experimental Results for Battery Module Voltage Control Loop

For the test of battery module voltage control loop, the reference output voltage for each battery
module was changed suddenly from 10 V (VMX1-DC-ref = VMX2-DC-ref = VMX3-DC-ref = 10 V under
steady-state operation) to VMX1-DC-ref = 13 V, VMX2-DC-ref = 9 V and VMX3-DC-ref = 8 V. The simulation
results and experimental results are shown in Figure 9.
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Figure 9. Waveforms for three battery module output voltage when the reference voltages were
changed from VMX1-DC-ref = VMX2-DC-ref = VMX3-DC-ref = 10 V to VMX1-DC-ref = 13 V, VMX2-DC-ref = 9 V
and VMX3-DC-ref = 8 V, (a) simulation results and (b) hardware experimental results.

From Figure 9, it can be observed that once the reference voltage values were changed, the
output voltage of battery module 1 was controlled to increase while the output voltages of battery
modules 2 and 3 were controlled to decrease. In Figure 9, the simulation model results and the
hardware experimental results are in good agreement. In other words, the shape, magnitude, and
overshoot/undershoot of the waveforms of simulation and hardware experiments match each other,
which validates the small-signal model for the battery module voltage loop.

4.2. Experimental Results for SOC Balancing Control Loop

For the test of SOC balancing control loop, the SOC value of three battery modules were changed
suddenly from SOC1 = SOC2 = SOC3 = 70% under balanced conditions to SOC1 = 75%, SOC2 = 70%,
and SOC3 = 65%. The experimental results are shown in Figure 10.

It can be observed from Figure 10 that once there was a change in SOC values, Vo1 increased
while Vo3 decreased. This is because the value of SOC1 was larger than the average SOC value of three
battery modules (i.e., (75% + 70% + 65%)/3 = 70%), therefore resulted in a larger value of the battery
module output voltage Vo1 for faster discharge. The variation of Vo3 for battery module 3 followed the
same behavior but in the opposite direction. The value of SOC2 was equal to the average SOC value,
and therefore, its corresponding battery module output voltage remained constant. Figure 10 also
shows that the simulation results and hardware experimental results are in good agreement under the
variation of SOC values test condition.
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4.3. Experimental Results for Bus Voltage Control Loop

The last test was implemented for the bus voltage control loop. In this test, the bus voltage
reference value was changed suddenly from 30 V to 37.5 V, as shown in Figure 11. It can be observed
from Figure 11 that as the bus voltage reference value increased, the battery module voltage values
changed from 10 V to 12.5 V correspondingly, which yielded a total bus voltage equal to its new
reference value. The waveforms shown in Figure 11 demonstrate the consistency between simulation
results and hardware experimental results.
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5. Additional Comment

It should be noted that the presented WEDES system in this paper is different from a traditional
Inductor-Capacitor (LC) compensation wireless power transfer (WPT) system or a traditional battery
energy storage system (BESS). Instead, it is a combination of both systems. Table 2 shows a comparison
between the presented WEDES system in this paper, conventional WPT system [18,21,22], and
conventional BESS system [23–25]. It is shown that the presented WEDES system combines the
advantages of both the conventional WPT system and BESS system, and can achieve bus voltage
regulation and SOC balancing, and allow for fast and safe exchange/swapping of smaller and lighter
battery modules with WPT technology.

Table 2. Comparison summary between the WEDES system, conventional Inductor-Capacitor (LC)
compensation wireless power transfer (WPT) system, and conventional battery energy storage system
(BESS).

Parameter WEDES System in this
Paper

Conventional LC
Compensation WPT

System [18,21,22]

Conventional BESS
System [23–25]

Typical
Components/Devices

Battery cells, power
converter, inverter, WPT

coils, and rectifier

Battery cells, inverter,
WPT coils, and rectifier

Battery cells and power
converter/inverter

System Complexity Medium Medium Low

Able to Realize SOC
Balancing Yes No Yes

Able to Realize Voltage
Regulation Yes Yes Yes

Typical Battery
Operation Discharging Charging Discharging

Able to Transfer Power
Wirelessly Yes Yes No

Able to Insert/Remove
Battery Module during

Normal Operation
Yes No No

Efficiency High (>85%) High (>90% at short
distance) Highest (>95%)

6. Conclusions

In this paper, the small-signal modeling of a distributed WEDES battery system was derived
to analyze the steady-state stability and dynamic response of the entire system, as well as provide
guidelines for the controller design of multiple interacted control loops. Based on the small-signal
models and associated transfer functions, all three control loops, including battery module output
voltage control loop, SOC balancing control loop, and bus voltage control loop with compensators, were
evaluated and validated by both simulations and a 3-module WEDES battery system. It was shown
that the experimental results from simulation and hardware prototype were in good agreement, which
validates the accuracy and effectiveness of the derived small-signal model and designed compensators.
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