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Abstract: Diode-pumped solid-state lasers using novel Yb:LaF3 and Tm,Ho:LaF3 crystals as laser
gain materials are demonstrated herein. The Yb:LaF3 and Tm,Ho:LaF3 crystals were grown using
the Bridgman method. By matching their absorption bands, continuous-wave laser operations were
achieved for the first time. The Yb:LaF3 laser obtained a maximum average output power of 1.19 W
with dual wavelengths of 1028 nm and 1033 nm. The maximum average output power and slope
efficiency of the Tm,Ho:LaF3 laser were 574 mW and 18.5%, respectively. The Tm,Ho:LaF3 laser
exhibited two peaks at 2043 nm and 2048 nm. Both the Yb:LaF3 and Tm,Ho:LaF3 crystals were
confirmed to be laser gain materials.
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1. Introduction

Diode-pumped solid-state lasers (DPSSLs) have attracted wide attention owing to their
advantages including high conversion efficiency, good beam quality, long life, and compact
construction [1,2]. Over the past few decades, DPSSLs have been fully developed and have been
extensively applied in scientific research, medical care, industry, and other fields, and they are now
still moving forward to provide more diversified applications [3,4]. For promoting the advancement of
DPSSLs, a major research topic is the study of laser gain materials.

For DPSSLs, the laser gain materials are formed by incorporating active ions into host materials
whose characteristics greatly affect the physical, chemical, and mechanical properties of the laser
gain materials. Fluoride crystals are of particular research interest as host materials because they
have distinctive properties: (i) wide wavelength-transparent areas ranging from near ultraviolet to
mid-infrared; (ii) a low phonon energy, which is beneficial for reducing non-radiative relaxation;
and (iii) a high damage threshold [5–8].

Yb3+ ions, as representative active ions emitting near 1 µm in lasers, have been successfully used
to realize tunable lasers, quasi-continuous devices, femtosecond pulse operations, and high-power
systems [9–12]. Yb3+ ions have a simple energy level structure: the 2F7/2 ground state and the 2F5/2
excited state [13]. Different from other rare-earth ions, Yb3+ ions have no other 4f electronic states;
therefore, there is no excited-state absorption or fluorescence up-conversion that has an adverse
influence on laser performance. Consequently, laser systems with Yb3+-doped materials would have a
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high conversion efficiency. After decades of development, Yb-doped fluoride crystals, such as Yb:CaF2,
have been comprehensively reported [14–17].

In recent years, thulium (Tm) and holmium (Ho) active ions have been investigated because of
their luminescence emissions near the 2 µm region in lasers, giving them great application potential
in human eye safeness and high atmospheric transmission [18–24]. Tm and Ho co-doped materials
are promising candidates to directly obtain 2 µm region lasers with a compact structure. The around
790 nm laser diode (LD) acts as a pumped source to excite Tm3+ ions, then, according to the energy
transfer between Tm3+ ions and Ho3+ ions, Ho3+ ions ultimately produce 2 µm laser radiation [25,26].
Therefore, Tm,Ho co-doped materials could be operated as laser gain materials for the DPSSL system.
Thus far, studies on Tm,Ho co-doped fluoride crystals have focused on Tm,Ho:YLF, Tm,Ho:KYF and
Tm,Ho:LLF [8,19–21,27–29].

In this work, we report two novel fluoride crystal materials: Yb:LaF3 and Tm,Ho:LaF3. Yb:LaF3

and Tm,Ho:LaF3 crystals are typical rare-earth-ion-doped fluoride crystals, so they possess the
luminescent properties of rare-earth ions and the excellent host advantages of fluoride crystals.
Moreover, La ions are of +3 valence, the same as Yb, Tm, and Ho ions; therefore, there is no charge
imbalance in the process of ion doping. However, to date, Yb:LaF3 crystals have not achieved laser
output as solid-state laser gain materials, and Tm,Ho:LaF3 crystals have not been reported [30].

Yb:LaF3 and Tm,Ho:LaF3 crystals were prepared via the Bridgman growth method. Yb:LaF3

crystals with a doping concentration of 1% had a maximum absorption coefficient of 0.25 cm−1 at
973 nm. Matching the strongest absorption, Yb:LaF3 continuous-wave (CW) lasers were demonstrated
with a maximum average output power of 1.19 W. When the output mirror had a transmittance value
of 5%, a Tm,Ho:LaF3 CW laser was built and the maximum average output power was 416 mW.
Employing an output mirror with a transmission value of 2%, the Tm,Ho:LaF3 CW laser obtained a
maximum average output power of 574 mW. The novel crystals, Yb:LaF3 and Tm,Ho:LaF3, were used
as laser gain materials to demonstrate CW laser operations as DPSSLs.

2. Spectral Properties of Materials

The growth method of the Yb:LaF3 crystals (Pujing Company, Suzhou, Jiangsu, China) was the
Bridgman method which has the advantage of inhibiting the volatilization of fluoride. The Yb:LaF3

crystals with dimensions 3 × 3 × 6 mm3 had a Yb doping concentration of 1%. As seen from Figure 1a,
the crystals had a relatively high absorption coefficient over a wide wavelength range. The maximum
absorption coefficient was 0.25 cm−1 at 973 nm. Figure 1b shows the broad emission band whose full
width at half-maximum (FWHM) was 52.4 nm with Gauss fitting (the red curve), revealing Yb:LaF3

crystals to be a candidate for wavelength-tunable lasers.
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Figure 1. (a) Absorption spectrum of Yb:LaF3 (1 atom % of Yb); (b) emission spectrum with an 896 nm
excitation source.

The Tm,Ho:LaF3 materials were also prepared using the Bridgman growth method. The doping
concentration was 5 atom % of Tm and 0.5 atom % of Ho ions, and the dimensions were
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3 × 3 × 10 mm3. The absorption and emission spectrum information at room temperature are shown
in Figure 2. It can be seen that the Tm,Ho:LaF3 materials had several peaks in the absorption spectrum.
Among them, a special absorption peak is presented deliberately in the inset of Figure 2a. This peak had
a center wavelength of 792.5 nm, which illustrated that the Tm,Ho:LaF3 materials could be stimulated
with a commercial LD. In general, LDs have the disadvantage of wavelength drift caused by changes
in the LD output power and temperature. The Tm,Ho:LaF3 crystals had a FWHM of 34.8 nm, so they
could avoid absorption instability caused by the wavelength drift of LDs. The emission spectrum had
a broad fluorescence range mainly centered at 1925–2075 nm.
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3. Continuous-Wave Laser Experiment Operation

The respective properties of CW lasers were researched with the Yb:LaF3 and Tm,Ho:LaF3 samples
by building laser systems, which are presented in Figure 3. Two commercial LDs were used as the
pump source. Matching their absorption wavelengths, an LD with a center wavelength of 974 nm was
applied to the Yb:LaF3 laser, and the Tm,Ho:LaF3 laser was used with an LD with a central wavelength
of 793 nm. The LDs both had a fiber core diameter of 200 µm and a numerical aperture of 0.22.
The pump source laser they sent was focused by a 1:1 optics coupling system. In order to effectively
dissipate the heat, the Yb:LaF3 and Tm,Ho:LaF3 samples were both wrapped with indium foil and
mounted in a water-cooled system where the water was maintained at 20 ◦C temperature. Two mirrors
(M1 and M2) formed a laser cavity with a length of 35 mm. One of them (M1) had a curvature of
100 mm, and the other (M2) was a flat mirror. For the Yb:LaF3 experiment, M1 was the input mirror
having high transmission at the pump wavelength and high reflection at 1030–1090 nm. M2 was the
output mirror, having transmission values of 1%, 2%, or 5% at 1030–1090 nm. M3 was the same type
of mirror as M1 and was used to separate the pump laser and the Yb:LaF3 laser. The pump laser of
974 nm was transmitted in Direction 2 (D2), and the Yb:LaF3 laser was reflected in Direction 1 (D1).
For the Tm,Ho:LaF3 laser, M1 had high transmission at a 793 nm wavelength and high reflection at
1.9–2.1 µm. There were two kinds of mirrors (M2) with transmission values of 2% and 5% at 1.9–2.1 µm.
M3 was a beam splitter mirror. At a 45◦ angle, the 793 nm laser was reflected in D1, whereas the
target laser was obtained in D2. The Yb:LaF3 and Tm,Ho:LaF3 samples were each placed near the
M1 mirrors.
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First, the absorption efficiency was measured for the Yb:LaF3 and Tm,Ho:LaF3 crystals in
non-lasing conditions. As shown in Figure 4, as the injection pump power was increased and the
absorbed pump power was added linearly. The absorption efficiency of the Yb:LaF3 crystal was
found to be 22.9%, and the maximum injection pump power was 20.13 W. For the Tm,Ho:LaF3 crystal,
the absorption efficiency and the maximum injection pump power were found to be 21.9% and 15.85 W,
respectively. Considering that a large amount of pump laser was not absorbed, the M3 mirror was
used to split the pump laser and target laser.
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After the cavity mirrors were adjusted, the CW lasers of the Yb:LaF3 crystal were obtained in
D1. The relationship between the average output power and the absorbed pump power for different
transmittance values is illustrated in Figure 5. When the transmittance of M2 was 1% and the absorbed
pump power was 1.54 W, the Yb:LaF3 laser was obtained. When the absorbed pump power was
increased to 4.91 W, a maximum average output power of 904 mW was achieved, corresponding to a
slope efficiency of 28.2%. With the highest transmittance of 5%, a maximum output power of 656 mW
with a slope efficiency of 32.2% was obtained. The optimal average output power was 1.19 W, when the
transmittance of output coupler was 2%. The highest slope efficiency was 37.1%.
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The spectra of the Yb:LaF3 lasers were recorded using a spectrometer (USB2000, Ocean Optics,
Largo, Florida, FL, United States). For different transmittance values of M2, the experimental results
are shown in Figure 6 at the maximum average output power. When M2 had transmittance values of
1% and 5%, the output spectra both exhibited a single peak. The central wavelengths were 1029 nm
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and 1018 nm, respectively. At a transmittance value of 2%, double peaks appeared with wavelengths
of 1028 nm and 1033 nm. Because the sampling resolution of the spectrometer was 0.7 nm, the fine
spectral components were not tested. However, our experimental results could reflect the information
of the output spectra to a certain extent.Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 8 
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Figure 6. Spectra of three different output parameters.

After the position of the cavity mirrors was carefully adjusted, Tm,Ho:LaF3 lasers were acquired
in D2. The experimental results of the relationship between the absorbed pump power and the average
output power are explained in Figure 7. For different output mirrors, it is obvious that the absorbed
pump power and average output power were almost linear functions. At the absorbed pump power of
3.53 W, the maximum average output power was 574 mW and the slope efficiency was 18.5% under 2%
transmittance by M2. When a higher transmittance of M2 of 5% was adopted, the maximum average
output power and the slope efficiency were decreased to 416 mW and 14.2%, respectively. The power
was tested using a power meter (30(150)A-BB-18, Ophir, Jerusalem, Israel).
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The spectra of the Tm,Ho:LaF3 lasers, shown in Figure 8, were measured using a spectrometer
(NIRQuest-512, Ocean Optics, Largo, Florida, FL, United States). The laser spectra exhibited two peaks
with both of the two output mirrors used in the laser test. When the transmittance was 2% and the
average output power was 574 mW, the spectra showed two peaks at 2043 nm and 2048 nm. At a
transmittance of 5% and output power of 416 mW, the peaks were 2039 nm and 2041 nm.
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According to the research, both Yb:LaF3 and Tm,Ho:LaF3 lasers were successfully obtained.
However, the laser stability and the size of the fundamental TEM00 mode were not measured.
The Yb:LaF3 and Tm,Ho:LaF3 crystals were uncoated and vertically incident with LDs, which increased
the loss of the laser cavity. Supposing that the crystal was doped to a higher concentration, coated with
antireflection film, and placed at the Brewster angle, the experimental data are expected to reach
a higher slope efficiency and average output power. Moreover, the orientation of the crystal,
the polarization in the spectra, and the polarization of the laser radiation need to be researched
in detail.

4. Conclusions

Yb:LaF3 and Tm,Ho:LaF3 lasers were successfully employed for CW operation, for the first time
to our knowledge. Yb:LaF3 and Tm,Ho:LaF3 crystals with high optical quality were grown by the
Bridgman method. They both had a suitable absorption spectrum, and their emission spectra were
broad. Using a commercial LD as the pump source, the Yb:LaF3 laser obtained a maximum average
output power of 1.19 W with a slope efficiency of 37.1%. For the Tm,Ho:LaF3 laser, the maximum
average output power and corresponding slope efficiency were 574 mW and 18.5%, respectively.
The laser wavelengths were 2043 nm and 2048 nm. In brief, our experiments proved that Yb:LaF3 and
Tm,Ho:LaF3 crystals are effective laser gain materials, increasing the laser gain material selectivity.
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