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Abstract: One of the challenges in fine-grained classification is that subcategories with significant
similarity are hard to be distinguished due to the equal treatment of all subcategories in existing
algorithms. In order to solve this problem, a fine-grained image classification method by combining a
bilinear convolutional neural network (B-CNN) and the measurement of subcategory similarities
is proposed. Firstly, an improved weakly supervised localization method is designed to obtain the
bounding box of the main object, which allows the model to eliminate the influence of background
noise and obtain more accurate features. Then, sample features in the training set are computed by
B-CNN so that the fuzzing similarity matrix for measuring interclass similarities can be obtained.
To further improve classification accuracy, the loss function is designed by weighting triplet loss
and softmax loss. Extensive experiments implemented on two benchmarks datasets, Stanford
Cars-196 and Caltech-UCSD Birds-200-2011 (CUB-200-2011), show that the newly proposed method
outperforms in accuracy several state-of-the-art weakly supervised classification models.
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1. Introduction

Fine-grained image classification is a challenging task in computer vision. Different from general
object classification that aims to distinguish basic-level categories, fine-grained image classification
focuses on recognizing images that belong to the same basic category, but not the same class or
subcategory, such as bird species, dog breeds, and car types. The classification process is more
challenging due to subtle interclass variances and large intraclass differences between different
subcategories [1,2]. With the development of deep learning [3–5], convolutional neural networks
(CNNs) have recently produced remarkable results in image representation learning in image
classification. Inspired by past developments in handcrafted features, many CNN-based fine-grained
classification approaches have been proposed that benefit a wide variety of application scenarios in
both industry and research, such as image retrieval, wildlife protection, and medical-image analysis [6].

The main challenge of fine-grained classification is that the differences between different
subcategories are usually subtle and local, so how to locate discriminative regions has become a hot
topic. According to whether additional annotations, such as bounding box and location information of
local regions, are used in the training stage, we can roughly divide the CNN-based methods into two
groups: strongly supervised methods [7–11] and weakly supervised methods [12–14]. The strongly
supervised methods mainly include two steps: firstly, the object or part(s) is located with the help
of additional annotations, and discriminative features are extracted for further classification. Since
the acquisition of additional annotations is significantly labor-consuming, and the preannotated
components may not be the most appropriate choice for the final classification task, weakly supervised
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classification methods using only category labels have been widely studied, and B-CNN is one of the
most classical methods. Motivated by the excellent feature-extraction ability of B-CNN, this paper
chose it as the basic model to extract features. To eliminate the influence of background noise of
the input image, we first carried out weakly supervised localization of the input image to obtain
more accurate features, which directly obtain the foreground of the original image under the weakly
supervised setting rather than detecting and locating local regions.

For fine-grained image classification, similarities between different subcategories are different. As
shown in Figure 1, the top row are three Audi subcategories with similar colors and perspectives in
Stanford Cars-196 [15], but with different combinations of make and model. On the other hand, the
second row shows three images of Audi R8. The visual variances within Audi R8 are much greater
than those between subcategories in the top row, which means that the similarity between Audi S4 and
TT is much higher than that between S4 and R8. Focused on the issue that existing algorithms treat
all subcategories by equal cost, which limits the classification ability of subcategories with significant
similarity, a bilinear CNN fine-grained image-classification method based on subcategory similarity is
proposed.

Figure 1. Sample examples on Stanford Cars-196.

The rest of this article is organized as follows: Section 2 reviews the related work. Section 3
introduces our approach in detail, and Section 4 presents the experiments as well as the result analysis.
Finally, conclusion and future work are given in Section 5.

2. Related Work

The key of image classification is to extract robust features of objects and form better feature
representations. Previous work on fine-grained classification usually focused on part detection to
establish correspondence between object instances and reduce the impact of object-pose variations
under a strongly supervised setting. In order to apply fine-grained classification methods to practical
applications, many researchers turn to studying how to accurately locate discriminative regions under
weakly supervised conditions, and then use CNN to extract features from these regions. Xiao et al.
designed the first two-level attention model [16] of a weakly supervised classification algorithm,
where object-level attention was adopted to select a relevant bounding box of a certain object, while
part-level attention was used to locate discriminative components of the object, which achieved 69.7%
accuracy on the CUB-200-2011 dataset [17]. Mei et al. proposed the recurrent attention convolutional
neural network (RA-CNN) [18], which recursively learns discriminative-region attention and feature
representation of this region on multiple scales in a mutually reinforcing way, but this method
adds computational overhead. These approaches take CNN as a part detector but ignore the global
information of the object. In order to avoid the direct detection of discriminative regions, Lin et al.
proposed the end-to-end B-CNN, using two feature extractors based on CNNs [19] to extract the global
features of object, which collects second-order statistics of local features over a whole image to form a
holistic descriptor for classification after pooling across locations. But the computational complexity of
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B-CNN is too large. Based on B-CNN, Kong et al. adopted low-rank approximation to the covariance
matrix to avoid direct calculation of the outer product, and further reduced the feature dimension [20].
However, the original B-CNN work of Lin et al. and the low-rank models of Kong et al. directly use
the original image as input, while the original image has a lot of background noises, especially when
the target is very small. Inspired by the work of SCDA [21], we propose to add weakly supervised
localization into a traditional B-CNN, which can eliminate the influence of background noise and
extract features more accurately.

Since it is a common phenomenon for there to be differences between different categories in image
classification, several similarity constraints have been proposed for feature representation learning.
Chopra et al. introduced the Siamese network [22], which defines similar and dissimilar image pairs
and requires that the distance between dissimilar pairs be larger than a certain margin, while the
distance between similar pairs should be smaller. Wah et al. proposed to improve the performance of
traditional CNNs by combining softmax and contrastive loss through joint optimization [23], because
contrastive constraints might augment information for training the network. Previous image-similarity
learning mainly focused on the similarity of two images, while this paper studies the similarity between
two subcategories. The main difference between newly proposed bilinear methods [24–26] and our
method is that we add subcategory-similarity measurement and obtain the fuzzing similarity matrix
to measure the fuzzy degrees among different subcategories in the training set. Driven by the fuzzing
similarity matrix, triplet loss-based deep metric learning adaptively sets the sample ratios to form the
triplets. Finally, triplet loss and weighted softmax loss are combined to restrict interclass distance and
increase intraclass distance. The overall architecture of the deep-learning model is shown in Figure 2.

Figure 2. Schematic view of overall structure.

3. Materials and Methods

3.1. Weakly Supervised Localization

Previous studies have shown that second-order representation is more effective than first-order
features (such as VLAD and HOG) in image processing. Tanenbaum and Freeman [27] proposed a
bilinear model to model the change of two-factor variations, such as the “style” and “content” of the
image. With the development of deep learning, Lin et al. introduced the bilinear CNN model for image
classification. A bilinear model can be regarded as a quaternion: B = ( fA, fB, P, C), fA and fB are
two feature functions corresponding to CNN stream A and B in bilinear CNN. P denotes the pooling
function and C represents the classification function. B-CNN does not require additional annotations
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except for image labels. It is thought that one of the networks is used for detecting part while the other
is for extracting local features. However, the problem is that the background of the original image
brings noise to feature extraction, so a localization method based on a B-CNN model is proposed to
locate the main object and remove the background under the weakly supervised setting. The entire
framework is shown in Figure 3.

Figure 3. Schematic diagram of weakly supervised localization.

In the forward-propagation phase of CNN, the features extracted by different convolutional
layers are different. Using “feature map” to indicate different convolution results of a channel;
“activations” is used to represent the feature maps of all channels in a single convolution layer;
and “descriptor” represents the d-dimensional component vector of activations [28]. Since the classical
VGG-16 convolution neural network can extract the initial feature of the input image after a large
amount of image training, the popular pretrained VGG-16 model was selected as the feature-extraction
model. The VGG-16 architecture is shown in Figure 4. The blue layer represents the pooling layer
while the white layer represents the convolution and activation layer, “pool5” refers to the activations
of the max-pooling layer after the last convolution layer. For input image I of size H ×W, each layer
outputs d two-dimensional feature maps of h× w marked as F = {Fn}(n = 1, . . . , d), {Fn} is the n-th
feature map with the size of h× w in the corresponding convolution channel. F can also be regarded
as having h × w positions, and each position (i, j) contains one d-dimensional component vector
x(i,j)εRd(iε{1, . . . , h}, jε{1, . . . , w}). Since the semantics of activated regions are very different even
on the same channel, it is unrealistic to only locate the object through a single-feature map. However,
if feature maps with multiple channels are activated in the same region, this region may be judged as
an object rather than the background. The pool5 activation is added through depth direction to obtain
the two-dimensional matrix F = ∑d

n=1{Fn}. Calculating the average value f̄ of all positions in F, and
taking f̄ as the threshold to determine which position localizes the object, position (i, j) is likely to be
the position of the object if the activation response of (i, j) is higher than the threshold. Define a mask
map M whose size is the same as F:

Mi,j =

{
1 if Fi,j > f̄

0 otherwise
(1)

The position in M whose corresponding value is 1 is likely to be the location of the main object.
Because the features extracted from different convolutional layers are different, the lower convolution
layer of convolution network is more inclined to learn low-level features, while the higher convolution
layer acquires high-level semantic features. By fusing different masks from different convolutional
layers, high-level semantic information and low-level local features can be simultaneously preserved.
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Specifically, we obtain another mask M′ calculated from the relu5−2 layer in the same way. relu5−2 is
three layers in front of pool5 in VGG-Net, but the relationship between activations of this layer and
high-level semantic meaning is smaller than that of pool5 due to the existence of some noisy parts.
However, the object may be located more precisely than pool5 at the same time. So, we decided to
combine M and M′ to obtain the final mask map of relu5−2. Firstly, upsampling M to the same size
as M′. The descriptors whose corresponding position in both M and M′ are 1 are kept, which are the
final selected relu5−2 descriptors. Final mask map Mrelu5−2 is adjusted to the same size as the input
image with the bicubic interpolation, and then overlay the resized mask map on the original images.
Although the main object can be roughly detected, there are still some small noisy regions left and
measures should be taken to remove these noisy parts. So we marked the connected components
on the binary image, selecting the maximal connected component, and performing the convex hull
process on the mask to ensure that the maximal connected component contains more object region.
Then, we obtain the minimum rectangular border of the object, which is the bounding box we need.

Figure 4. Architecture of VGG-16. The blue layer represents the pooling layer while the white layer
represents the convolution and activation layer.

3.2. Classification Based on Subcategory-Similarity Measurement

Our approach first generates a fuzzying similarity matrix to measure the similarity between
different subcategories, and then realizes more targeted fine-grained classification via deep metric
learning and weighted softmax.

3.2.1. Generate Fuzzying Similarity Matrix

We use B-CNN combined with weakly supervised localization to get the feature representation of
training images. For the specific image I in training set, we extracted bilinear feature f and classified
the image into k subcategories with softmax, where k is the number of subcategories in the dataset.
Linking k return values to a new feature vector fs, where fs(i) is the return value of the image classified
as category Li. For reducing the influence of intraclass differences, the expectation f̄s = E( fs) of the
return values of softmax for all samples belonging to the same subcategory were calculated. The
fuzzying similarity matrix denotes as SεRk×k:

Si,j = Ξ( f̄s) (2)

where Ξ(·) means in the joint of k k-dimensional vectors into k× k dimensional matrix, Si,j indicates
the probability that the image marked as Li is classified as Lj.

As illustrated in Figure 2, we propose fuzzying similarity matrix-driven deep metric learning to
learn the differences between highly similar subcategories. By optimizing the specifically designed
triplet-loss function, the network can effectively increase interclass differences and reduce intraclass
differences. However, if the triplets [29–31] are randomly selected, their loss function values are
mostly 0, which makes back propagation have little effect on loss convergence in the training stage.
Therefore, we adaptively sample the triplets that contribute more to triplet loss according to the
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fuzzying similarity matrix. We initialize the triplet sampling distribution matrix C = M, and sets
C = C + ε to ensure that the sampled triplets can cover all subcategory pairs, where ε = min(M)/2 in
our experiments. Aiming at the disadvantage that three images of triplets may come from the same
subcategory, the principal diagonal elements of the fuzzying similarity matrix are extracted to form a
diagonal matrix diag(S11, S22, . . . , Skk), and then obtain the triplet-sampling distribution matrix C:

C = S− diag(S11, S22, . . . , Skk) (3)

Normalizing all the elements of the triplet sampling distribution matrix C, given t as the total
number of triplets, the final amount of triplet tuples for subcategory Li and Lj is t× Cij, where Cij
represents the probability that the triplet tuples is consist of Li and Lj. Thus, two subcategories with
higher similarity are oversampled to improve the discriminative ability of the model, while other
subcategories are normally sampled to ensure that the model can also distinguish them.

3.2.2. Jointly Learned Loss Function

As shown in Figure 5, a triplet set T = {Io
i , Ip

i , In
i }

t
i consists of positive pairs and negative

pairs, where Io
i is the reference image from a specific subcategory, Ip

i and Io
i belong to the same

subcategory while In
i and Io

i belong to the different subcategories. Let f (x) denotes the network’s
feature representation of image x, for Io

i , we expect its distance from any In
i of different subcategory is

larger than Ip
i within the same subcategory by a certain margin λ1:

‖ f (Io
i )− f (Ip

i ) ‖
2
2 +λ1 ≤‖ f (Io

i )− f (In
i ) ‖2

2 ∀( f (Io
i ), f (Ip

i ), f (In
i ))εT (4)

where λ1 > 0 is a predefined hyperparameter representing the minimum margin between matched
and mismatched pairs, then the corresponding triplet loss is expressed as:

L =
1
N

N

∑
i=1

[‖ f (Io
i )− f (Ip

i ) ‖
2
2 − ‖ f (Io

i )− f (In
i ) ‖2

2 +λ1]+ (5)

N donates the number of training images for the triplets.

Figure 5. Schematic diagram of triplet-loss learning.

According to the CNN based fine-grained image-classification algorithms, traditional classification
constraints, such as softmax loss, are usually used to classify, so different subcategories can be
accurately distinguished. However, intraclass variance is not preserved, and such differences are
essential for finding instances that are visually and semantically similar. In order to reduce intraclass
difference, a new constraint condition is added to the triplet-loss function to constrain the distance
between positive pairs {Io

i , Ip
i } in the same subcategory less than λ2:

‖ f (Io
i )− f (Ip

i ) ‖
2
2≤ λ2 (6)
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Then the improved triplet-loss function is defined as:

Ltriplet = β[‖ f (Io
i )− f (Ip

i ) ‖
2
2 −λ2]+ +

1
N

N

∑
i=1

[‖ f (Io
i )− f (Ip

i ) ‖
2
2 − ‖ f (Io

i )− f (In
i ) ‖2

2 +λ1]+ (7)

where λ2 > 0 is a predefined hyperparameter representing the maximum distance within a subcategory.
The improved triplet-loss function can not only enlarge the distance between different subcategories,
but also restrict the distance between samples of the same subcategory. Compared with the traditional
triplet-loss function, the improved triplet-loss function is easier to overfit, and convergence speed
becomes slower due to input increase. In order to improve convergence speed, triplet loss and softmax
loss are jointly optimized. In view of the fact that traditional softmax loss treats all subcategories
equally, in order to further enhance the ability to distinguish similar subcategories, softmax loss is
improved to make the model more punishable for misclassification. We obtain the misclassification
probability Pi according to the fuzzying similarity matrix S:

Pi =
k

∑
j=1,i 6=j

Si,j (8)

Then, the weighted softmax loss is defined as:

Lso f tmax =
1
N

N

∑
i=1
−Pi × log( fs(i)) (9)

where fs(i) is the return value of the image being classified as a subcategory labeled Li. The features of
the triplets are transmitted to the triplet-loss layer to compute similarity loss, as well as forwarded
to the softmax-loss layer to compute the classification error. Finally, we combine these two kinds of
losses by a weighted combination:

L = αLso f tmax + (1− α)Ltriplet (10)

where α is the weight that controls the trade-off between two kinds of losses.

4. Results

In this section, we verify the effectiveness of our proposed fine-grained classification method.
The datasets and implementation details of our method are first introduced in Section 4.1. A
model-configuration study is performed to investigate the effectiveness of different components
in Section 4.2. Finally, experiments and analysis on Stanford Cars-196 and CUB-200-2011 are provided
in Section 4.3 and Section 4.4, respectively.

4.1. Datasets and Implementation Details

We evaluate the proposed method on two classical fine-grained datasets: CUB-200-2011 and
Stanford Cars-196. The detailed statistics with category numbers and data splits are summarized
in Table 1. Cars-196 contains 196 types of vehicles, each subcategory contains 48∼136 images, and
the dataset is classified according to the manufacture, model, and age of the car. Each class contains
24∼68 training images, and the remaining images are used as the testing set. CUB-200-2011 consists of
11,788 images of 200 bird species with preselected training and testing splits. We used the publicly
available VGG-16 as the basic model in all comparisons to be consistent with previous work using the
open-source library MatConvNet. The input images were resized to 448× 448 and only horizontal flip
was used to double the training data for comparing with other methods under the same standard; the
predicted results of the original image and its flipped copy were averaged during the test to obtain the
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final results. The configuration of the computer was: GTX1080ti, Core (TM) i7 processor, and Ubuntu
16.04 Caffe deep-learning framework.

Table 1. Statistics of used fine-grained datasets.

Method #Category #Training #Testing

CUB-200-2011 200 5994 5794
Cars-196 196 8144 8041

In our method, CNN has two different effects: localization and classification. They are both based
on the widely used VGG-16, and the architectures of VGG-16 are modified to accommodate different
functions: Before using B-CNN to extract features, a weakly supervised localization method is adopted
to eliminate the influence of complex background noise and extract more accurate features. During the
weakly supervised localization period, the convolution descriptors of the image are extracted by CNN
to locate the target. In order to obtain higher spatial resolution, input images are resized to 448× 448
and layers after pool5 are removed. The CNN framework is pretrained on the ILSVRC 2012 dataset [32]
and then fine-tuned on the fine-grained image-classification datasets to obtain the bounding box of the
main object. For example, by employing the pretrained VGG-16 model, we can get a 28× 28× 512
activation tensor in pool5, and obtain the final mask map of relu5−2 according to the descriptors of
relu5−2 and pool5.

Since our key contribution is in the subcategory similarity, we chose VGG-16 as the two streams in
B-CNN for classification, which removes the last three fully connected layers. Considering the trade-off
between its representation capacity and computational efficiency, we adopted a symmetric bilinear
form to ease training. We used the code provided by the author [19], which fuses two convolutional
neural networks to obtain the orderless descriptors of the input image and add the weakly supervised
localization as well as the subcategory-similarity measurement. The conv5 layer of VGG-Net is used to
initialize the network and fine-tune the network with a small learning rate. Firstly, the size of the input
images is adjusted to 448× 448, and features are extracted through two networks. By sum-pooling and
`2 normalization, the bilinear features of size 512× 512 are obtained. The softmax classifier is used for
image classification to generate the fuzzying similarity matrix. Then, the fuzzying similarity-driven
deep metric learning via triplet loss and weighted softmax loss is used to increase interclass differences
as well as reduce intraclass differences, thus enhance the distinguish ability of the model to these
significant similar subcategories. When training images on Cars-196, the weights of the two networks
in Equation (10), are initialized by sampling from two Gaussian distributions with mean value 0 and
standard deviation 0.01 and 0.001, respectively. The offset was set to 0, while the minibatch size of the
SGD was set to 20. Weight decay was set to 0.0002 with a momentum of 0.9 and an initial learning rate
of 0.001. The learning rate was reduced to 1/10 every 5000 iterations and training terminated at 40,000
iterations.

4.2. Model-Configuration Study

4.2.1. Weakly Supervised Localization

Accuracy is widely used in fine-grained image classification [9,19,31] to measure the effectiveness
of the method. Therefore, we adopt accuracy to measure the classification performance of our method
to make it consistent with previous work, and its definition is as follows:

Accuracy =
Ra
R

(11)

where R denotes the number of images in a testing set, and Ra denotes the number of images that are
correctly classified. Mean average precision (mAP) [33] is also used to measure the effectiveness of our
method in multiclass classification.
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Effective object localization can remove the influence of background noise on fine-grained
classification; we obtain bounding box of the object by selecting convolution descriptors. Intersection
over Union (IoU) is widely used to evaluate whether the object has been correctly localized [34]. Its
formula is expressed as:

IoU =
A ∩ B
A ∪ B

(12)

where A represents the predicted bounding box of the object, B denotes the ground truth that can
be obtained from additional annotations of the dataset, A ∪ B denotes the union of the predicted
and ground truth bounding boxes, while A ∩ B represents their intersection. If the IoU exceeds 0.5,
we consider that the weakly supervised localization is correct. Since many localization methods use
additional annotation, or do not give the localization accuracy of the whole object but only the parts.
Results are compared with four typical weakly supervised localization algorithms, that is, WSDL [35],
MEAN [36], Unsupervised Object Discovery [37], and SCDA [21]. The accuracy of localization is
shown in Table 2. From the table, we can see that the proposed method can achieve better or almost
the same localization results than other methods.

Table 2. Accuracy of weakly supervised localization.

Method CUB-200-2011 Cars-196

WSDL 46.05% 56.60%
MEAN 44.93% 55.79%

Unsupervised object discovery 69.37% 93.05%
SCDA 76.79% 90.96%
Ours 77.31% 91.02%

4.2.2. Softmax Effectiveness

In order to further verify the effectiveness of our deep-learning method, we obtain deep
features before feeding them to the last softmax layer after the weakly supervised localization, and
combine them with some traditional classifiers, including k-Nearest Neighbor (k-NN) [38], Centroid
Displacement-Based k-Nearest Neighbors (CDNN) [39], and Support Vector Machine (SVM) [40].
Depicted in Figure 4, the size of the pooled bilinear feature is 512× 512; then, we concatenate it to a
fixed dimensional feature vector. These fixed length feature vectors are utilized as the input to train
these classifiers. Popular library LIBLINEAR was used in our experiments for SVM. Since bilinear
features were `2 normalized, and the hyperparameter Csvm was independent of the dataset, so we set
Csvm to 1 to train SVM using the entire training data.

k-NN is a classical instance-based machine-learning algorithm that has been applied to
classification issues for a long time. Because of the class-determination criteria, the majority vote can
be a problem if distances between the test instance and its nearest neighbors widely vary, so we also
used the CDNN, which uses a new class-determination criterion compared with K-NN, to verify the
effectiveness of our deep-learning method. If a small k value is chosen in the above two methods,
the whole model becomes complex and overfitting. When we select a large k, it is equivalent to using
training data in a larger neighborhood to predict and training examples far from the input examples
also play a role in the prediction, leading to prediction errors. In addition, we used PCA to reduce the
dimension of bilinear features because of its high-dimension. Because there are too many pictures in
the whole dataset, we select a subset to carry out the following experiments and efficiently run our
code. We tried different k values f rom 3 to 10 in k-NN and CDNN with the validation set, and then
selected the values giving the best performance on the validation set. When k = 8, k-NN performs best
in this particular dataset during our experiments. Following the authors’ implementation of CDNN,
we obtained the best accuracy of 78.34% and 85.45% on CUB-200-2011 and Cars-196, respectively,
when k = 7. The results in Table 3 show that the best classification accuracy was achieved using the
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SVM classifier. However, we still selected the softmax method due to its convenience in computing
probability and measuring similarity between subclasses.

Table 3. Accuracy of different classifiers.

Classifier CUB-200-2011 Cars-196

softmax 84.63% 91.84%
SVM 84.70% 91.92%

k-NN (k = 3) 65.73% 71.49%
k-NN (k = 4) 67.88% 73.96%
k-NN (k = 5) 67.96% 74.08%
k-NN (k = 6) 68.08% 74.15%
k-NN (k = 7) 68.17% 74.24%
k-NN (k = 8) 68.34% 74.46%
k-NN (k = 9) 68.15% 74.25%
k-NN (k = 10) 68.02% 74.12%
CDNN (k = 3) 76.63% 83.98%
CDNN (k = 4) 77.96% 85.04%
CDNN (k = 5) 78.08% 85.13%
CDNN (k = 6) 78.15% 85.21%
CDNN (k = 7) 78.34% 85.45%
CDNN (k = 8) 78.16% 85.27%
CDNN (k = 9) 78.06% 85.15%
CDNN (k = 10) 77.93% 85.06%

4.2.3. Effectiveness of Different Components

Since weakly supervised localization and deep metric learning driven by fuzzying similarity
based on triplet loss are time-consuming, we analyzed the influence of different components of
our model in Table 4. When weakly supervised localization is used alone, our approach achieves
the accuracy of 84.63% and 91.84% on CUB-200-2011 and Cars-196, respectively. Considering that
neither object nor part annotations is used, it is a promising result. This suggests that our weakly
supervised localization is effective since we obtained better accuracy with only 0.4 M parameter
increment. The “B-CNN+loss function” improved classification accuracy and mAP by distinguishing
highly similar subcategories, which yielded 0.97% and 0.89% improvement compared with the result
of “B-CNN” on CUB-200-2011 and Stanford Cars-196, respectively; the number of parameters also
increased by 15.05 M as the triplets brought a lot of extra parameters. The computational complexity
of the network also increased significantly when we combined these two methods, which can be seen
intuitively from the last column of Table 4. Through analysis of classification results, we find that
our method has an advantage in distinguishing subcategories with significant similar appearance.
However, we still had a high classification error rate for some subcategories. This was caused by two
factors: some subcategories in CUB-200-2011 could only be distinguished by habitat and voice rather
than the appearance, and some images in the dataset were incorrectly labelled. The large amount of
computational overhead is another shortcoming of our model, which needs to be solved in the next
stage.

Table 4. Classification accuracy and mAP of different models on Cars-196 and CUB-2011, as well as the
additional computation of these methods.

CUB-200-2011 Cars-196

Method Accuracy mAP Accuracy mAP Parameter Increment

B-CNN 84.00% 81.70% 91.20% 88.90% 0
B-CNN + localization 84.63% 83.90% 91.84% 91.04% 0.4 M

B-CNN + loss function 84.97% 85.60% 92.09% 92.75% 15.05 M
Ours 85.31% 86.75% 92.43% 93.64% 16.6 M
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4.3. Experiment and Analysis on Stanford Cars-196

4.3.1. Experimental Analysis of Improved Loss Function

Figure 6 shows the comparison of our results with the method that solely trains with triplet
or softmax loss. We experimentally observed that by jointly optimizing both loss functions,
the convergence rate could be significantly improved. When using softmax loss alone, the convergence
rate is much faster than only using triplet loss. This is because intraclass variance, which is essential
for discovering visually and semantically similar instances, is not preserved in softmax loss, and more
information leads to a slower convergence rate of triplet loss. By jointly minimizing both of them,
the loss function can harvest augmented information from both sides, resulting in a fast convergence
rate. We also compared our method with EmLS + FGFR [31], which also effectively learns fine-grained
feature representations by jointly optimizing both classification and similarity constraints. However,
EmLS + FGFR effectively generates fine-grained feature representations by embedding label structures,
such as hierarchical labels or shared attributes. Overall, the convergence rates of the two methods are
similar, which proves the practicability of our method.
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Figure 6. Convergence-rate comparison.

In addition, the relation between training error and the iteration number of two methods, B-CNN
+ weighted softmax and improved triplet loss, and B-CNN + weighted softmax loss on Cars-196,
is shown in Figure 7. It can be seen that the convergence speed of B-CNN + weighted softmax
and improved triplet loss is fast, which reaches convergence after about 6000 iterations, while the
convergence speed of the B-CNN + weighted softmax loss training process is relatively slow.

4.3.2. Experimental Analysis of Parameter α Sensitivity

Our framework has four important parameters, λ1, λ2, α, β, and the hyperparameters used for
fine-tuning were quite consistent across the datasets, λ1, λ2 and β were set to 0.1, 0.01 and 0.002 on
Cars-196, respectively. Therefore, we manually changed parameter α to balance two types of losses
and find a balance between speed of convergence and the classification effect. As can be seen from
Figure 8, our method was always superior to the traditional B-CNN method; accuracy increased along
with the threshold, and began to decline when the threshold came to about 0.85. It can be deduced
that when α was 0.85, we could achieve the best result of about 92.43%.
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4.3.3. Comparison with Previous Works

Classification methods based on deep learning have been constantly refreshing Cars-196 accuracy
in recent years. Table 5 shows the results of several known state-of-the-art algorithms and our proposed
approach. Although our method has no explicit part detection, we surpassed FCAN [41], which uses
a human-defined bounding box, by 1.13% in relative accuracy gains. We also achieved almost the
same classification accuracy as strongly supervised classification method PA-CNN [42]. For the
methods using only image-level labels, the classification accuracy of our method was 0.43% and 0.73%
higher than improved B-CNN [24] and HIHCA [25], respectively. We also achieved classification
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accuracy similar to that of Kernel Pooling [43] and RA-CNN [18], while MA-CNN [44] achieved a
state-of-the-art result on Cars-196, which is a multiple-attention convolutional neural network that
generates discriminative regions from feature channels and learns better fine-grained features from
regions in a mutually reinforcing way; we could introduce the multilevel attention mechanism into the
next stage of research.

Table 5. Comparison with previous methods on Cars-196.

Method Annotation Accuracy

FCAN
√

91.30%
PA-CNN

√
92.60%

B-CNN − 91.20%
Improved B-CNN − 92.00%

LRBP − 90.92%
HIHCA − 91.70%

Kernel Pooling − 92.40%
RA-CNN − 92.50%
MA-CNN − 92.80%

Ours − 92.43%

4.4. Experiment and Analysis on CUB-200-2011

Combining the training set with the validation set as the new training data, the experimental
process is similar to that on Cars-196. The convergence rates of three loss functions were similar to
those on Cars-196. Table 6 shows the results of several known state-of-the-art algorithms and our
proposed approach. Classification accuracy was 85.31% on CUB-200-2011, and relative accuracy gains
is slightly higher than that on Cars-196. This is perhaps because birds are small relative to cars, weakly
supervised localization can effectively improve the classification accuracy.

We surpassed strongly supervised classification methods SPDA-CNN [45] and B-CNN by 0.76%
and 0.51%, respectively. We also achieved almost the same classification accuracy as PN-CNN [11],
HIHCA, and α pooling [46]. The accuracy of our method was higher than LRBP and TSC [47] by
1.10% and 0.62%, respectively. MA-CNN combines part localization and fine-grained feature learning
to extract more abundant features, and classification accuracy is much higher than our method, just
like on Cars-196, which inspires us to utilize part localization and fine-grained feature learning in a
mutually reinforcing way.

Table 6. Comparison with previous methods on CUB-200-2011.

Method Annotation Accuracy

SPDA-CNN
√

84.55%
PN-CNN

√
85.40%

B-CNN
√

84.80%
TSC − 84.69%

LRBP − 84.21%
HIHCA − 85.30%

α pooling − 85.30%
MA-CNN − 86.50%

B-CNN − 84.00%
Ours − 85.31%

5. Discussion

Aiming at the disadvantages of B-CNN, a fine-grained classification method based on image
localization and subcategory-similarity measurement, is proposed. The method incorporates the
advantages of weakly supervised localization, the excellent feature-extraction ability of B-CNN,
and the measurement of subcategory similarities. The improved triplet-loss function and weighted
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softmax-loss function were combined to restrict interclass distance and increase intraclass distance.
Experimental results show that our method can distinguish some subcategories with similar
appearance, and outperforms several state-of-the-art weakly supervised classification models.
Discriminative feature representation from this model by jointly optimizing these two types of losses
accelerates the convergence of the learning. This can be employed for various tasks, such as image
classification, verification, and retrieval. However, due to incorrect labels in the dataset itself and some
subcategories that cannot be distinguished only from appearance (for example, some subcategories
could only be distinguished by habitat and voice rather than appearance in CUB-200-2011), our method
had a higher classification error rate for these samples. For future work, we will include descriptors’
weights to precisely locate the whole object and train the asymmetric B-CNN to extract more abundant
features.
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