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Abstract: We provide a very general review of the resonant transmission line method for optical fiber
problems. The method has been found to work seamlessly for a variety of difficult problems including
elliptical and eccentric core fibers as well as “holey” photonic crystal fibers. This new version has been
shown to offer great versatility with respect to cases of unconventional, inhomogeneous index profiles.
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1. Introduction

The method of resonant transmission lines (RTL) has evolved from some original observations
around the generic theme of transverse resonance in direct association with the standard theory of the
solutions of the general telegrapher’s equation in transmission lines. The particular advantage of the
method is that it offers the possibility of reducing even full three-dimensional problems into one its
dimensional equivalent, at least wherever a full variable separation is possible due to the particular
symmetries of a given coordinate system. A full historical review of the use of transmission lines for
modeling electromagnetic problems would require too much space but we can provide some important
milestones in chronological order in brief.

The transmission line theme can be traced as far back as in the old treatise by Schelkunoff [1].
Further physical justification is offered by a seminal paper by Marcuvitz and Schwinger [2] where
we find a first version of the transverse resonance condition as a means to satisfy certain boundary
conditions via appropriate impedance matching. Extensive use of the telegrapher’s equation is also
found in Ramachandran [3], Gallawa [4], Clarricoats and Oliner [5,6], Yoneyama [7], Borneman and
Arndt [8], Tao [9], Shigesawa and Tsuji [10] as well as Dahl et al. [11]. More recently, Moshonas et al. [12]
also used transmission line methods for the study of photovoltaic cells. An important comparison
between transverse stationary modes and their similarity with quantum wells is mentioned by
Bialynicki-Birula [13] and has led to the application of the RTL method by some of the authors
in Schrödinger type and general Sturm–Liouville problems [14–16]. An early application of similar
ideas in optical fibers can be traced in a paper by Yeh and Lindgren [17]. Tamir also discussed guided
waves based on impedance matching in Reference [18], while later Carlin and Zmuda [19] applied
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transfer matrix methods for inhomogeneous fibers. More recently, Mencarelli and Rossi [20] used
transverse resonance for studying multilayered photonic crystals.

The modern RTL method was originally introduced by Papageorgiou and Boucouvalas [21–26] in
simple cases of standard step index and radial index profiles. Lately, it was also applied successfully in
the case of superlattices with periodic potentials [27] which are similar to a certain class of photonic
crystal fibers (PCFs) or Bragg fibers in general. Several other cases of unusual refractive index profiles
have been successfully treated with the same method [28–31]. In the present work, we expose more
recent developments in an effort to expand the validity of the RTL method in all unconventional
fiber models.

We shall heretofore refer to all the cylindrical optical fibers as the class of conventional optical
fibers (COFs) for as long as they can be separated in a set of n very thin successive cylindrical layers
of average radius r with uniform refractive index values given as ni. Indices of successive layers will
be allowed in general to be different for each step varying as ni = n(ri). The resulting, total index
profile n(r) variation from the center of the fiber up to the limit outer air medium, completely defines
the propagation properties inside the fiber.

We shall also separate another class of unconventional optical fibers (UOFs) as the ones in which
at least in some of its successive thin cylindrical layers present an additional variation of the total index
profile along its radial coordinate ϕ in the form η(r,ϕ). Such cases include elliptic core, non-symmetric
or eccentric core fibers, and in general, all cases of not strictly circular core fibers. In these cases,
any discretization into thin cylindrical layers that “cuts” through the core and cladding, results in a
variation of the refractive index along ϕ. In Figure 1, we show such a case of a thin, circular cylindrical
layer cutting an elliptic core fiber. As is evident in the schematic, the variation is analogous to the arc
length of the circular sector cut by the ellipse for each discretization step.
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Additionally, photonic fibers made of silica with a set of small air holes around their centers will
have many cylindrical layers of varying refractive indexes along θ. In Figure 2, we show an example of
a PCF with a hexagonal lattice of 6 rows of air holes.

Appl. Sci. 2019, 9, x 3 of 24 

Additionally, photonic fibers made of silica with a set of small air holes around their centers will 

have many cylindrical layers of varying refractive indexes along θ. In Figure 2, we show an example 

of a PCF with a hexagonal lattice of 6 rows of air holes. 

 

Figure 2. Schematic depiction of the alternating step index resulting from radial discretization in a 

standard photonic crystal fiber (PCF). 

Again, radial discretization with thin, circular cylindrical layers results in alternating cuts 

through air holes and silica of a PCF as depicted in the schematic. The main aim in the present work 

is to develop the original RTL method so as to be able to include all such UOF cases via an appropriate 

transformation to mathematically equivalent COF cases.  

In the following sections, we first introduce the exact mathematical formulation of the 

discretization process for Maxwell’s equations in the context of the RTL method in the following 

section. We also show how to perform an algebraic decoupling of the resulting transmission line 

equations and the transfer function method for computing the actual fields from the eigenvalues 

obtained. In Section 3, the same tools are applied in four more difficult cases of UOF with either, 

asymmetry or eccentricity of the central core. We also perform the same analysis for elliptic and 

rectangular cores as well as for the PCF case. 

2. Mathematical Equivalence of Homogeneous Circular Cylindrical Layers to Electric 

Transmission Lines 

The basis for the application of the previously introduced RTL method is the radial discretization 

of all cylindrical fibres via a separation into a succession of thin cylindrical layers, each one with its 

own constant refractive index n. These layers can be made to extend outside of the cladding in order 

to take into consideration the effect of the surrounding air (n = 1). Each thin cylindrical layer could 

have thickness δr proportional to each average radius r which means that given discrete steps as 

𝛿𝑟 =  𝑟2 − 𝑟1 with 𝑟 =  
𝑟1 + 𝑟2

2
 one has 

Figure 2. Schematic depiction of the alternating step index resulting from radial discretization in a
standard photonic crystal fiber (PCF).

Again, radial discretization with thin, circular cylindrical layers results in alternating cuts through
air holes and silica of a PCF as depicted in the schematic. The main aim in the present work is to
develop the original RTL method so as to be able to include all such UOF cases via an appropriate
transformation to mathematically equivalent COF cases.

In the following sections, we first introduce the exact mathematical formulation of the
discretization process for Maxwell’s equations in the context of the RTL method in the following
section. We also show how to perform an algebraic decoupling of the resulting transmission line
equations and the transfer function method for computing the actual fields from the eigenvalues
obtained. In Section 3, the same tools are applied in four more difficult cases of UOF with either,
asymmetry or eccentricity of the central core. We also perform the same analysis for elliptic and
rectangular cores as well as for the PCF case.

2. Mathematical Equivalence of Homogeneous Circular Cylindrical Layers to Electric
Transmission Lines

The basis for the application of the previously introduced RTL method is the radial discretization
of all cylindrical fibres via a separation into a succession of thin cylindrical layers, each one with its
own constant refractive index n. These layers can be made to extend outside of the cladding in order to
take into consideration the effect of the surrounding air (n = 1). Each thin cylindrical layer could have
thickness δr proportional to each average radius r which means that given discrete steps as δr = r2− r1

with r = r1+r2
2 one has

r2 − r1

r2 + r1
=

c
2
=>


1+ c

2
1− c

2
r1 = r2 (out)

1− c
2

1+ c
2

r2 = r1(in)
(1)
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For any such circular cylindrical layer Maxwell equations (for a constant wavelength, i.e., constant
frequency “ω”) can be written in their standard form as ∇X

→
E = −jωµ0

→
H

∇X
→
H = jωε0n2(r)

→
E

(2)

Taking into consideration the relations ωµ0 = k0z0 and ωε0 = k0
z0

where k0 = ω
c , z0 = 120π and

replacing z0
→
H with

→
H in order

→
E and

→
H to have the same units (V/m), Maxwell equations become then ∇X

→
E = −jk0

→
H

∇X
→
H = jk0n2(r)

→
E

(3)

In circular cylindrical geometry of coordinates (r, ϕ, z) the following set of three partial differential
equations can be derived by the first vector Maxwell equation as

1
r

∂Ez
∂ϕ −

∂Eϕ

∂z = −jk0Hr

∂Er
∂z −

∂Ez
∂r = −jk0Hϕ

1
r

∂(rEϕ)
∂r − 1

r
∂Er
∂ϕ = −jk0Hz

(4)

Applying a Fourier Transform along “z” and “ϕ” with wave numbers “β” and “l”, where l is
integer (because along “ϕ” we have Fourier series of period 2π), the set (4) becomes:

jl
r Ez − jβEϕ = −jk0Hr

jβEr − ∂Ez
∂r = −jk0Hϕ

1
r

∂(rEϕ)
∂r − jl

r Er = −jk0Hz

(5)

In (5) we use new variables Er, Eϕ, Ez, Hr, Hϕ, Hz to denote the Fourier Transforms of the
respective electromagnetic field components. Furthermore, replacing β and r by their reduced variables
according to the following relations: {

β
k0

=> β

rk0 => r

Then (5) takes the form 
jl
r Ez − jβEϕ = −jHr

jβEr − ∂Ez
∂r = −jHϕ

1
r

∂(rEϕ)
∂r − jl

r Er = −jHz

(6)

Following a similar approach, the second Maxwell vector Equation (3) can be written in the form
jl
r Hz − jβHϕ = jn2(r)Er

jβHr − ∂Hz
∂r = jn2(r)Eϕ

1
r

∂(rHϕ)
∂r − jl

r Hr = jn2(r) Ez

(7)

Furthermore, following a cumbersome analysis, it is possible to prove that the system of Equations
(6) and (7) can be transformed in a set of four differential Equation (8), relating the equivalent “voltage’
and “current” functions VM, IM, VE, IE defined as follows:
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VM =
lHϕ+βrHz

jF

IM = rHr
j =

βrϕ−lz
j

VE =
lϕ+βrEz

F

IE = n2rEr = lHz − βrHϕ

where we use the notation F = (βr)2+l2

r 

∂VM
∂r = − γ2

jF IM − jMIE

∂IM
∂r = −jFVM

∂VE
∂r = − γ2

jn2F IE − jMIM

∂IE
∂r = −jn2FVE

(8)

In (8) we introduced the total propagation factor γ2 = l2

r2 + β2 − n2 and the auxiliary function

M = 2lβ
[(βr)2+l2]F

.

At this point it is noticed that VM, IM, VE, IE are continuous functions at the boundaries because

the tangential components of electric and magnetic fields
→
Hϕ

→
Hz and

→
Eϕ

→
Ez on the cylindrical surface

are continuous functions passing the boundaries’ of the cylindrical layer. Using the previous relations,
the Fourier Transforms of the electromagnetic field components along (r, l, β) can be expressed as
functions of their equivalent “voltages” and “currents” functions with the auxiliary relations

Hr =
jIM

r , Er =
IE

n2r

Hϕ = jlVM /r− β
F IE

Eϕ = lVE/r + j β
F IM

Hz =
l

Fr IE + jβVM

z = −j l
Fr IM + βVE

It becomes evident by inspection that the final Equation (8) represents two coupled electric
transmission lines.

2.1. Decoupling the Transmission Line Equations

The prescribed set of Equation (8) constitutes a homogeneous set of ordinary differential equations
of r and considering that the all vectors [VM, IM, VE, IE] can be turned into exponential functions
of r given by VM = VMeξr, IM = IMeξr, VE = VEeξr, IE = IEeξr, where VM, IM, VE, IE are constants,
i.e., not functions of r. Thus, the system (8) can be transformed in an algebraic set of the following
four equations 

ξVM = − γ2

jF IM − jMIE

ξ IM = −jFVM

ξVE = − γ2

jn2F IE − jMIM

ξ IE = −jn2FVE

(9)

Replacing IM = − jF
ξ VM, IE = − jn2F

ξ VE, we obtain a set of two homogeneous equations ξVM = γ2

ξ VM −M n2F
ξ VE

ξVE = γ2

n2ξ
VE −M F

ξ VM
or

{
ξ2VM = γ2VM − n2MFVE

ξ2VE = γ2VE −MF
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This then leads to the eigenvalue equations{ (
ξ2 − γ2)VM + n2MFVE = 0
MFVM +

(
ξ2 − γ2)V = 0

From the standard form of the eigenvalue problem we obtain through the determinant differential
equations as follows (

ξ2 − γ2
)2
− n2M2F2 = 0, or ξ2 = γ2 ± nMF (10)

Hence the system has two eigenvalues and two mutually excluded or “normal” eigenvectors.
The eigenvectors will be found by replacing ξ2 by its value. Thus, for ξ2 = γ2 − nMF, n2MFVE −
nMFVM = 0 => VM = nVE and the eigenvector is VS = VM + nVE While for ξ2 = γ2 + nMF,
VM = −nVE and the eigenvector becomes Vd = VM − nVE. Their respective “current” eigenvectors
are related as IM

IE
= VM

n2VE
= 1

n , thus IM = IE
n and Is = IM + IE

n , Id = IM − IE
n . Since the auxiliary M

function has the sign of l, the set (Vs, Is), for l = −l becomes equal to the set (Vd, Id). Thus, we can
consider as a unique solution for the set (Vs, Is) and the integer ‘l ’varies −∞ to + ∞, and of course
ξ2 = γ2 − nMF: 

∂Vs
∂r = − ξ2

jF Is

∂Is
∂r = −jFIs

(11)

Furthermore, Vs, Is should be continuous functions at their boundaries although n(r) varies from
layer to layer. This is achieved via the adjustment Vs = VM + nVE = 2VM and Is = IM + IE

n = 2IM,
which are continuous functions of r by definition.{

∂VM
∂r = − ξ2

jF IM
∂IM
∂r = −jFIM

(12)

Another option for achieving continuity is to consider the functions Vss = VM
n + VE and

Iss = nIM + IE. In this case, Vss = 2VE and Iss = 2IE are also continuous. Thus
∂VE
∂r = − ξ2

jn2F IE

∂IE
∂r = −jFn2 IE

(13)

Thus, the set of two coupled transmission lines (9) is equivalent to two independent transmission
lines (12) and (13).

The two waves represented by the equations of transmission lines (12) and (13), are geometrically
normal because the first is related to the magnetic field and the second to the electric field that are
geometrically normal for transmitted EM waves. This property is an inherent property of EM modes
in optical fibers related to birefringence phenomena. However, the β respective values, for any mode,
are always found to be very close and can be considered as practically equal.

2.2. Equivalent Circuits for Cylindrical Layers, Boundary Conditions, and Birefringence

Taking into consideration the transmission line theory, it can be proved that each layer of
infinitesimal thickness δr is equivalent to a T-circuit as the one shown in Figure 3 ZB = ξ

jF tanh
[
(ξδr)

2

]
Zp = ξ

jFsinh(ξδr)
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For ξδr � 1 the impedances can be approximated by the equivalent relations ZB =
ξ2( δr

2 )
jF

Zp = 1
jFδr

(14)

If ξ2 > 0, both ZB, Zp are “capacitive” reactances, for ξ2 < 0 however ZB becomes “inductive”
reactance. For (VE, IE) the approximate respective impedances of the T-circuit are given as Z′B =

ξ2( δr
2 )

jn2F

Z′p = 1
jn2Fδr

(15)

As previously stated, the functions (VM, IM) of each layer are continuous at the cylindrical
boundaries of the layer, thus if we divide the fiber (including a sufficient number of air layers) in
successive thin layers and replace them by their equivalent T-circuits, an overall lossless transmission
line is formed with only reactive elements. For given “l”, the “β” values that lead to the resonance of
the overall transmission line are the eigenvalues of the whole optical fiber.

When a transmission line is in resonance, at any arbitrary point r0 of the line, the sum of reactive
impedances arising from the successive T-circuits on the left and right sides of r0 should be equal to
zero, thus the equation giving the eigenvalues of the transmission line is the following:{ .

ZL.r0 +
.
ZR.r0 = 0 (16)

Equation (16) provides the eigenvalues “β” for a given “l”, where
.
ZL.r0 ,

.
ZR.r0 are the overall

reactive impedances of successive T-circuits on the left and right of r0, using Equations (14) or (15).
The value of r0 is usually given by the core radius. For the same “l” the Equations (14) and (15)
give usually slightly different values of ‘β’. This phenomenon is called “Birefringence”. For circular
step index fibers, the birefringence is negligible; however, for elliptic fibers and fibers of any other
non-circular cores, the birefringence phenomenon could be not negligible.

In order to calculate the overall reactive impedances on the left and right of r0 we should find the
impedances for r → 0 and for r → ∞ . As we proceed to 0 or to ∞, the remaining piece of transmission
line becomes “homogeneous”, i.e., its overall reactive impedance is equal to its characteristic impedance
given by Z = ξ

jF

(
or ξ

jn2F

)
. Then we must have

r → ∞ : F → β2r, MF → 0, ξ →
√

β2 − n2 → Zr→∞ = 0

r → 0 : F → l2

r , ξ → l
r → Zr→0 = 1

j|l|

(
or 1

jn2|l|

)
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For l = 0 Zr→0 = ∞ (open circuit at the center of the equivalent transmission line) It is useful
to notice that there is an equivalence between our formulation and the classic formulation modes of
optical fibers. In particular, for l = 0, the modes (VM,IM) are the TM modes, while the modes (VE,IE)
are the TE modes. For l > 0, the modes (VM,IM) are the HE modes, while the modes (VE,IE) are their
HE birefringence modes. For l <0 the modes (VM,IM) are the EH modes, while the modes (VE,IE)
are their EH birefringence modes. For any given l, using the resonance technique the β values of
the two birefringence modes can be calculated. The Equation (16) is given as a MATLAB function in
Appendix A.

Let us consider for example a step-index fiber of n1 = 1.54, n2 = 1.47 the VM, VE, fundamental
modes for V = 3.3, can be calculated and their β/k0 values are respectively 1.518934962534846 and
1.518340184686295, hence their birefringence is equal to 0.0004947 or 0.0391%. The β/k0 value for the
equivalent mode Veq was also calculated and was equal to 1.518638548412019 (that is approximately
equal to the mean value of the previous β/k0 values), while the β/k0 value calculated classically by
Bessel functions is equal to 1.518642063686336. These β values are very close differing only 0.0002315%.

In the following Figure 4, the normalized birefringence of the step-index fibers for n1 = 1.54,
n2 = 1.47, and of n1 = 1.475, n2 = 1.47 as functions of V are shown.Appl. Sci. 2019, 9, x 9 of 24 
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Figure 4. Normalized birefringence of two step-index fibers with different refractive indexes as
functions of their parameters V.

We notice that for any V, the normalized birefringence is almost proportional to ∆n2 = (n1 − n2)2,
thus the birefringence of step-index fibers of very small ∆n is negligible. For instance, for a value of V = 2.4,
and ∆n = 1.54− 1.47 = 0.07, the birefringence is found to be 0.168× 0.0049 = 0.0008232 or ~0.055% on the
average β, while for ∆n = 1.475 − 1.47 = 0.005, the birefringence becomes 0.168 × 0.000025 = 0.000042
or ~0.0028% on the average β. What is remarkable is that our method is sensitive and calculates it.

2.3. Calculating “Voltages” VM, VE and “Currents” IM, IE and Resulting Fields

For any given l, using the resonance technique the β values of the two birefringence modes can
be calculated. These β values are practically the same, thus we can consider them as equal or we can
consider as the proper value of β the mean value of the two modes. Taking VM = 1 at the center point
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of the fiber (r = 0), the respective value of IM at the same point can be calculated by the respective
terminal impedance. Using the matrix relations between input–output for the equivalent successive
T-circuits, the values of VM and IM at the rest thin cylindrical layers can be calculated. In fact, from the
general theory of the telegrapher’s equation we know that the inputs and outputs are associated via a
transfer matrix as follows

[Vout Iout] =

(
cosh(ξ(r) · δr) Z(r) · sinh(ξ(r) · δr)

sinh(ξ(r) · δr)/Z(r) cosh(ξ(r) · δr)

)[
Vin
Iin

]

≈
(

1 Z(r) · (ξ(r) · δr)
(ξ(r) · δr)/Z(r) 1

)[
Vin
Iin

]

=

(
1 ξ2(r) · δr/jF(r)

jF(r) · δr 1

)[
Vin
Iin

] (17)

In Equation (17), the characteristic impedance should be taken as Z(r) = ξ(r)/jF(r) to fit with
the previous analysis. Using the relations nVE = VM and nIM = IE the respective values of their
birefringence partners can also be calculated for every thin cylindrical layer ri. Finally, we obtain the
actual fields via the relations

Hr =
jIM

r , Er =
IE

n2r

Hϕ = jlVM /r− β
F IE

Eϕ = lVE/r + j β
F IM

Hz =
l

Fr IE + jβVM

z = −j l
Fr IM + βVE

A very useful field component for optical fibers is the value of the overall electric field at any thin
cylindrical layer of average radius r that can be calculated by the formula:

|
→
E (r)|

2
= |Er|2 + |Eφ|2 + |Ez|2

After some algebra, this leads to the formula

|
→
E(r)|2 =

[
(βr)2 + l2

(nr)2

]
|VM|2 +

[
1

(βr)2 + l2
+

1

(nr)2

]
|IM|2

In the next section, we extend our analysis in certain UOF cases.

3. Unconventional Fibers

The refractive index n(r,ϕ) of the fiber with a UOF profile in general can be described as a function
of both r and ϕ. Each cylindrical layer of an average radius r is considered to have a local value η (ϕ)
for r = r1+r2

2 . Again, we make use of the generic form of Maxwell equations as in Equation (2) of the
previous section. Fourier Transforming the first vector equation gives the same set of equations as in
(6), since there is no difference with the UOF case, however the second Maxwell vector equation due
to the presence of the general n function should now be written as

jl
r Hz − jβHϕ = jn(l)2 ⊗ Er

jβHr − ∂Hz
∂r = jn(l)2 ⊗ Eϕ

1
r

∂(rHϕ)
∂r − jl

r Hr = jn(l)2 ⊗ Ez

(18)
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The symbol ⊗ means convolution arising by the product of two functions of the variable ϕ.
In the following paragraphs it will be shown how to escape this mathematical difficulty for the usual
unconventional optical fibers.

3.1. UOF with Non-Circular, Non-Symmetric, or Eccentric Cores

For unconventional fibers of non-circular cores there are a set of circular layers where the refractive
index varies between the inner and outer core and cladding values, respectively. In any such case,
the function n(ϕ)2 is a sum of a steady component n2 and a periodic function of ϕ of period 2π thus
can be written as a Fourier series n(ϕ)2 = n2 + ∑+∞

−∞ Nk exp(jkϕ). Taking into consideration that the
convolution of the product of an exponential function exp(jkϕ) with any function A(ϕ) of a Fourier
Transform A(l) is equal to A(l + k), i.e., the convolution generates “harmonics”. The function n(ϕ)2 is
in a set of cylindrical thin layers, a sum of step functions alternating between the values n2

1 and n2
2 ,

where n1 and n2 are refractive indexes of core and cladding. Considering that in optical fibers the
refractive indices of core and cladding are very close, one effectively has that (n1 − n2)/n1 � 1.
As a result, any harmonic factors Nk of the function n(ϕ)2 are negligible in comparison to its steady
component n2 and can be omitted.

As an example, the harmonics become maximal for equal alternation steps. In this case, the first

harmonic, that has the maximum value of all harmonics, is equal to A1 =
2(n2

1− n2
2)

π , while the steady
component n2 equals (n2

1 + n2
2)/2 and we may make an approximation as A1/n2 ' (4/π)(n1 −

n2)/n1 � 1.
Thus, for optical fibers we can always assume that n(l)2'n2. Then the system (18) will become

equivalent to the following 
jl
r Hz − jβHϕ = jn2Er

jβHr − ∂Hz
∂r = jn2Eϕ

1
r

∂(rHϕ)
∂r − jl

r Hr = jn2 Ez

(19)

We can then follow the analysis that we did with the conventional fibers, where n2 is the average
value of the η2(ϕ) of each layer along ϕ in the [0, 2π] interval.

3.2. Application to Elliptic Core Fibers

The method was applied in the calculation of fundamental modes of a fiber of elliptic core of a
and b major and minor semi-axis, respectively, with refractive index n1 = 1.54, and a cladding value of

n2 = 1.47 (Figure 5) for various wavelengths (defined by various V factor values V = 2πb
√

n2
1 − n2

2) and
four ellipticity ratios a/b = 1.1, 1.3, 1.5, and 2.0. Results are presented in tabulated format (Tables 1–4)
compared with previous results calculated with Mathieu functions together with differences and
relative differences showing a deviation which goes as only 0.01/0.123% on the average. Note the
results in Tables 1–4 are not normalised the same way as in Figure 4, they are simply the odd modes,
b11 = βo/ko. We can see that for small ellipticities especially, the results compare very well for all V
values quite well with the Mathieu Functions results. As the ellipticity becomes very large as in Table 4,
the results begin to differ. However, the accuracy of the Mathieu Functions used in this case is not
known precisely, so the trend is correct and the actual difference could be debated.



Appl. Sci. 2019, 9, 270 11 of 21

Appl. Sci. 2019, 9, x 12 of 24 

The steady component of the refractive index for the calculations for each radius r is defined as 

n1 for r < b, n2 for r > a, and as (𝑛1𝜑1 + 𝑛2𝜑2 )/𝜋 when b < r < b, where φ1, φ2 are the arcs of the circle 

of radius r, inside and outside the ellipse in the upper semi ellipse.  

 

Figure 5. Elliptic fiber with three indicative elliptic thin layers. Inside the ellipse r < b (n = n1), outside 

the ellipse r > a (n = n2) and partly outside b < r < a (n1 > n > n2). 

Table 1. Comparison of ellipse for the fundamental modes. 

a/b = 1.1 Mathieu RTL 
Differences Relative Diff. (0/00) 

V b11, Nο b11, Νο 

1.5 1.487454917000000 1.48753837672558 −0.00008345972558 0.056109079 

1.7 1.493245000000000 1.49345098615188 −0.00020598615188 0.137945315 

1.9 1.498457700000000 1.49872279558264 −0.00026509558264 0.17691229 

2.1 1.503029750000000 1.50331246585078 −0.00028271585078 0.188097309 

2.3 1.506994250000000 1.50727053366314 −0.00027628366314 0.183334252 

2.5 1.510418500000000 1.51067588097959 −0.00025738097959 0.170403752 

2.7 1.513376830000000 1.51360949624267 −0.00023266624267 0.153739794 

2.9 1.515936970000000 1.51614477492828 −0.00020780492828 0.13708019 

3.1 1.518160870000000 1.51834484072766 −0.00018397072766 0.121179996 

3.3 1.520101500000000 1.52026268667918 −0.000161186679180 0.106036787 

  

Figure 5. Elliptic fiber with three indicative elliptic thin layers. Inside the ellipse r < b (n = n1), outside
the ellipse r > a (n = n2) and partly outside b < r < a (n1 > n > n2).

Table 1. Comparison of ellipse for the fundamental modes.

a/b = 1.1 Mathieu RTL
Differences Relative Diff. (0/00)

V b11, No b11, No

1.5 1.487454917000000 1.48753837672558 −0.00008345972558 0.056109079
1.7 1.493245000000000 1.49345098615188 −0.00020598615188 0.137945315
1.9 1.498457700000000 1.49872279558264 −0.00026509558264 0.17691229
2.1 1.503029750000000 1.50331246585078 −0.00028271585078 0.188097309
2.3 1.506994250000000 1.50727053366314 −0.00027628366314 0.183334252
2.5 1.510418500000000 1.51067588097959 −0.00025738097959 0.170403752
2.7 1.513376830000000 1.51360949624267 −0.00023266624267 0.153739794
2.9 1.515936970000000 1.51614477492828 −0.00020780492828 0.13708019
3.1 1.518160870000000 1.51834484072766 −0.00018397072766 0.121179996
3.3 1.520101500000000 1.52026268667918 −0.000161186679180 0.106036787

Table 2. Comparison of ellipse for the fundamental modes.

a/b = 1.3 Mathieu RTL

V b11, No b11, No
Differences Relative Diff. (0/00)

1.5 1.491188512000000 1.491027765079550 0.000160746920450 0.107797853
1.7 1.497028990000000 1.496897637511800 0.000131352488200 0.087742114
1.9 1.502119714000000 1.501986592174880 0.000133121825120 0.088622647
2.1 1.506471523000000 1.506335918376860 0.000135604623140 0.090014727
2.3 1.510205927000000 1.510039049600890 0.000166877399110 0.110499764
2.5 1.513423500000000 1.513196002523000 0.000227497477000 0.150319773
2.7 1.516170122000000 1.515897403413190 0.000272718586810 0.179873342
2.9 1.518513480000000 1.518220317018870 0.000293162981130 0.193059189
3.1 1.520539300000000 1.520228501721160 0.000310798278840 0.204400030
3.3 1.522298190000000 1.521974104375010 0.000324085624990 0.212892341
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Table 3. Comparison of ellipse for the fundamental modes.

a/b = 1.5 Mathieu RTL
Differences Relative Diff. (0/00)

V b11, No b11, No

1.5 1.494250610000000 1.493636836360350 0.000613773639650 0.410756827
1.7 1.499922346000000 1.499340905733040 0.000581440266960 0.387646913
1.9 1.504818670000000 1.504203108321470 0.000615561678530 0.409060368
2.1 1.509039170000000 1.508315227121150 0.000723942878850 0.479737633
2.3 1.512533150000000 1.511793195339390 0.000739954660610 0.489215500
2.5 1.515493100000000 1.514745797603970 0.000747302396030 0.493108412
2.7 1.518011570000000 1.517265908951310 0.000745661048690 0.491209068
2.9 1.520166130000000 1.519429880525980 0.000736249474020 0.48432172
3.1 1.522019120000000 1.521299532774000 0.000719587226000 0.472784617
3.3 1.523620800000000 1.522924688766490 0.000696111233510 0.456879582

Table 4. Comparison of ellipse for the fundamental modes.

a/b = 2 Mathieu RTL
Differences Relative Diff. (0/00)

V b11, No b11, No

1.5 1.499390500000000 1.497675992184210 0.001714507815790 1.143469840
1.7 1.504727250000000 1.502885066432660 0.001842183567340 1.224264110
1.9 1.509110880000000 1.507251064452310 0.001859815547690 1.232391584
2.1 1.512712190000000 1.510915134944720 0.001797055055280 1.187968913
2.3 1.515667864000000 1.514006539095880 0.001661324904120 1.096100896
2.5 1.518085750000000 1.516632675098700 0.001453074901300 0.957175773
2.7 1.520047200000000 1.518879733445780 0.001167466554220 0.768046252
2.9 1.521631209000000 1.520816115931370 0.000815093068630 0.535670578
3.1 1.522869900000000 1.522496060692140 0.000373839307860 0.245483418
3.3 1.523799100000000 1.523962746538420 −0.000163646538420 0.107393775

The steady component of the refractive index for the calculations for each radius r is defined as n1

for r < b, n2 for r > a, and as (n1 ϕ1 + n2 ϕ2 )/π when b < r < b, where ϕ1, ϕ2 are the arcs of the circle of
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core refractive index 1.54 and cladding index 1.47.
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3.3. Application to a Rectangular Core Fiber

The method was applied also in the calculation of fundamental modes of a fiber with an
rectangular core, Figure 7, with aa and bb semi-sides, with refractive index n1 = 1.54, and a
cladding of refractive index n2 = 1.47, for various wavelengths, defined by various V factor values

V = bb·k0·
√

n2
1 − n2

2 and four ratios a/b = 1.1, 1.3, 1.5, and 2.0.
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Birefringence results between the elliptical and rectangular waveguides are compared in tabular
form in Tables 5–8 with equal semi axis. The constant component of the refractive index for calculating
with each radius r is defined as

n =


n1, r < b

1
π (n1 ϕ1 + n2 ϕ2)

n2, r > b

where ϕ1, ϕ2 being the arcs of the circle of radius r, inside and outside the rectangle in the upper
half plane.

Table 5. Comparison of birefringence for elliptical and orthogonal core fibers.

Rectangular Core Elliptic Core

a/b = 1.1 Fundamental Mode Values Birefringence (TR) Birefringence (TR)

V

1.5 1.492539945916010 0.000346704531850 0.000303585935370
1.7 1.498357447022790 0.000513384576600 0.000575417316090
1.9 1.503350570368440 0.000576764589930 0.000712035787010
2.1 1.507590076049970 0.000580793732230 0.000757892695190
2.3 1.511183551577450 0.000554099561380 0.000750121835720
2.5 1.514237341469060 0.000513428535340 0.000713597265680
2.7 1.516844499544290 0.000468033918970 0.000663528284040
2.9 1.519082616576080 0.000422786387590 0.000608733773240
3.1 1.521015087494710 0.000380083447450 0.000554096605350
3.3 1.522693317372840 0.000340959781570 0.000502161305990
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Table 6. Comparison of birefringence for elliptical and orthogonal core fibers.

Rectangular Core Elliptic Core

a/b = 1.3 Fundamental Mode Values Birefringence (TR) Birefringence (TR)

V

1.5 1.495847758922450 0.000344065006270 0.000325722889410
1.7 1.501459058153440 0.000451639480470 0.000520210503450
1.9 1.506179273220210 0.000480411129310 0.000601842058430
2.1 1.510134432440230 0.000468166987430 0.000615857816190
2.3 1.513456882268610 0.000436878544030 0.000593498171210
2.5 1.516262818410440 0.000398422704380 0.000553682765940
2.7 1.518648025192190 0.000358904227450 0.000507155757960
2.9 1.520689537973830 0.000321272665480 0.000459732120240
3.1 1.522448794667530 0.000286796641510 0.000414381305640
3.3 1.523974761485380 0.000255871394240 0.000372472456950

Table 7. Comparison of birefringence for elliptical and orthogonal core fibers.

Rectangular Core Elliptic Core

a/b = 1.5 Fundamental Mode Values Birefringence Birefringence (TR)

V

1.5 1.498120450723510 0.000278361237480 0.000295449461120
1.7 1.503463400911670 0.000357573590440 0.000442306154260
1.9 1.507908503417930 0.000376605061620 0.000497613358440
2.1 1.511610102671980 0.000365648210230 0.000501375052490
2.3 1.514709614765410 0.000341283334480 0.000478771792790
2.5 1.517324041962060 0.000312143747180 0.000444266137270
2.7 1.519546684126380 0.000282536889750 0.000405759261530
2.9 1.521451022056960 0.000254483058070 0.000367378187930
3.1 1.523094834995030 0.000228815613970 0.000331142666700
3.3 1.524523718254910 0.000205765806060 0.000297919827130

Table 8. Comparison of birefringence for elliptical and orthogonal core fibers.

Rectangular Core Elliptic Core

a/b = 2 Fundamental Mode Values Birefringence (TR) Birefringence (TR)

V

1.5 1.501154370588750 0.000115100455570 0.00017851280204
1.7 1.505905455821760 0.000185956233950 0.00028097261437
1.9 1.509839664490200 0.000217496051150 0.00032331073887
2.1 1.513123501262850 0.000227441962700 0.00033221109868
2.3 1.515890438928040 0.000225620967080 0.00033221109868
2.5 1.518243818452060 0.000217498908240 0.00030589412246
2.7 1.520263082984900 0.000206163759050 0.00028459934024
2.9 1.522009559228890 0.000193389032200 0.00026227629912
3.1 1.523531014266760 0.000180203858540 0.00024038749997
3.3 1.524865056067340 0.000167204354840 0.00021967555642

For the results in the Tables 5–8 we have defined birefringence as simply the difference in the
orthogonal fundamental modes normalized to k0, for the rectangular and elliptical waveguides. We can
see the elliptical waveguide has greater birefringence in all cases of ellipticity and for all wavelengths
(represented by the V value).

To make a direct comparison, the average refractive indexes as functions of r, for an elliptic
core fiber and for a rectangular core fiber of the same aa and bb and aa/bb = 2, are shown in
Figure 8. In Appendix B, the MATLAB codes for the average refractive indexes of an elliptic and
a rectangular core fiber are given. In Figure 8 we observe that the average refractive index of the
elliptical waveguide is dropping off faster than the rectangular and this facilitates the explanation of
the stronger birefringence for this case.
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3.4. The PCF Case

In the case of a holey fiber, we separate the whole fiber circular cross-section into a set of
thin cylindrical layers, variable η along ϕ extending beyond the cladding to take into account the
surrounding air with η = 1. Each layer’s thickness is δr = r1 − r2. We can then approximate n(r,ϕ) as
n(ϕ) for the average r <r> = r + δr/2. The refractive index can be written as a Fourier series, i.e., as
n(ϕ)2 = 〈n〉2 + ∑+∞

−∞ Nk exp(jlϕ). Taking into account the properties of the Fourier Transform we see
that FT(exp(jlφ) · f (ϕ)) = f (l + l′) so that the expressions in the second terms of Equation (18) spread
around a spectrum of harmonics. This is also to be understood as a result of successive scatterings
from the bored air holes. We can now use the natural geometry of the usual hexagonal lattice to see
that for each set of holes we can have either 6k harmonics. For the fundamental harmonic of l′ = 1,
the derived harmonics passing through a layer of 6k holes should be 6k + 1. Thus, for the fundamental
wave crossing the successive layers it “sees” a different set of periodic rectangle functions that will be
shown rigorously to contribute a different number of harmonics (7, 13, 19, . . . ).

For a common harmonic to pass through, one must then take an integer product which leads
to higher and higher harmonics, thus cutting out the entire spectrum apart from the last highest
frequency. We conclude that for holey optical fibers, the approximation for any of its cylindrical thin
layers, η(r, l)2 ≈ η2(r) = η2 suffices for further analysis of the resulting equations. Thus, the original
system (18) becomes 

jl
r Hz − jβHϕ = jn2Er

jβHr − ∂Hz
∂r = jn2Eϕ

1
r

∂(rHϕ)
∂r − jl

r Hr = jn2 Ez

(20)

For the usual hexagonal pattern of holes, we may utilize elementary analytical geometry to derive
the two separate regions where the refractive index alternates between the air refractive index n = 1
value and the higher value of the crystal material. We assume that along each separate layer a large
circle corresponding to each cylindrical shell of radius r from the center of the fiber to the center of a
smaller hole of radius r << r0 is cut while moving clockwise along the large circle.

Prescribing a set of circles of successive radii r for each of which we can find the air holes (in 1/6
angle of the PCF) which are cut by the particular radius each time. Each arc is computed inside its
respective air hole and the total sum of them divided by π/3 expresses the average squared refractive
index. As a matter of fact, the square of the refractive index in this sum is equal to one, while the refractive
index in the rest arc is the square of the silica refractive index. Hence the average refractive index can be
easily calculated along r. In Figures 9 and 10, we show the average refractive index and the electric field
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of a hexagonal PCF, of n = 1.46 with a twelve layers lattice, as functions of the reduced distance from the
center of the fiber for the fundamental mode. Figure 8 was generated by a MATLAB code for air-hole
diameter equal to 0.8 of the air-hole distance and the air hole diameter was 3.14 times the transmitted

wave length (V = 1.607847). We also notice the parametrization used as = (Λ− d/2)× 2×π
√

n2
1 − n2

2),
n1 for the silica refractive index, n2 ' minimum refractive index = 1.123, Λ for the reduced air hole
distance, d for the reduced air hole diameter, and Λ− d/2 = reduced inner core of PCF.
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For completeness we also show Figure 11, which is the β/V diagram of the even fundamental for
a PCF. This shows how easily we can produce some very useful results for a series of unconventional
fibers using the transmission line method we have developed.
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In Appendix B, the MATLAB code for the average refractive index of a hexagonal photonic crystal
fiber is also given.

In Appendix B, the MATLAB code for the average refractive index of a hexagonal photonic crystal
fiber is also given.

4. Conclusions

The presented resonance technique can be used for the study of unconventional fibers, i.e., fibers
with cores of any shape, as long as the difference between core and cladding refractive indices is
sufficiently small which holds true for almost all the monomode and holey fibers. The unconventional
case is proven reducible to the same technique of conventional fibers, where for each mode order l
we can approximate by a set of two, independent and non-homogeneous, resonant transmission lines
(RTLs), each one representing one mode of the birefringence.

The simulation of unconventional fibers with RTLs gives a new, simple, and effective method for
computing the eigenvalues of the RTLs representing the various modes of the holey fibers. Furthermore,
for each eigenvalue, the average values of E.M. fields for every thin cylindrical layer of radius r of the
unconventional fiber is directly computable from the relevant eigenfunctions of the RTLs.
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Appendix A

function f = stepindexfun(b)
% function f = Zleft(b) + Zright(b)for step index fiber
% n1 n2 the refractive indexes of core and cladding
% tm = 0 for even modes (TM), tm = 2 for odd modes (TE), tm = 1 for average equivalent modes
% l wave number
% V factor of the fiber
% r0 = core radius × wave number
global n1 n2 tm l V
r0 = V/sqrt(n1ˆ2 − n2ˆ2);
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N = 200;
qq = 20; % ratio of outer radius to core radius
qq0 = 200; %ratio of core radius to minimum core radius
wq = qqˆ(1/N);
wq0 = qq0ˆ(1/N);
w(1) = 2*(wq0 − 1)/(wq0 + 1);
w(2) = 2*(wq − 1)/(wq + 1);
rn0 = n1;
zs(1) = −j/(rn0ˆtm*(abs(l) + 10ˆ−10));
zs(2) = 0;
for n = 1:N
jj = N + 1 − n;
r1(n,1) = r0*(1/wq0ˆjj + 1/wq0ˆ(jj − 1))/2;
r1(n,2) = r0*(wqˆjj + wqˆ(jj − 1))/2;
end
j1 = 1;
for n = 1:N
r = r1(n,j1);
rn = n1;
dr = w(j1)*r;
aa1 = bˆ2 + (l/r)ˆ2;
F = aa1*r;
cs = aa1 − rnˆ2 − 2*rn*b*l/(aa1*rˆ2);
zp = 1/dr/j/F/rnˆtm;
zb = cs*dr/2/j/F/rnˆtm;
zs(j1) = (zs(j1) + zb)*zp/(zs(j1) + zb + zp) + zb;
end
j1 = 2;
for n = 1:N
r = r1(n,j1);
rn = n2;
dr = w(j1)*r;
aa1 = bˆ2 + (l/r)ˆ2;
F = aa1*r;
cs = aa1 − rnˆ2 − 2*rn*b*l/(aa1*rˆ2);
zp = 1/dr/j/F/rnˆtm;
zb = cs*dr/2/j/F/rnˆtm;
zs(j1) = (zs(j1) + zb)*zp/(zs(j1) + zb + zp) + zb;
end
f = imag(zs(1) + zs(2));

Appendix B

Average refractive index of an elliptic core optical fiber
function fn = elliptic(r)
% n1 n2 refractive indexes for core and gladding
% bb minor semi axis, aa = major semi axis
global n1 n2 bb aa
if r < = bb;
fn = n1;
elseif r > bb && r < aa;
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c1 = (1/rˆ2 − 1/aaˆ2)/(1/bbˆ2 − 1/rˆ2);
cc = 2*atan(sqrt(c1));
fn = sqrt((n2ˆ2*(pi − cc) + cc*n1ˆ2)/pi);
else fn = n2;
end
Average refractive index of a rectangular core optical fiber
function fn = rectangular(r)
% n1 n2 refractive indexes for core and cladding
% bb minor semi axis, aa = major semi axis
global n1 n2 bb aa
cc = sqrt(aaˆ2 + bbˆ2);
if r < = bb;
fn = n1;
elseif r > bb && r < aa;
c = 2*asin(bb/r);
fn = sqrt((n2ˆ2*(pi − c) + c*n1ˆ2)/pi);
else fn = n2;
end
if r > = aa & r < cc; c = 2*(asin(bb/r) − acos(aa/r));
fn = sqrt((n2ˆ2*(pi − c) + c*n1ˆ2)/pi);
end
Average refractive index of a photonic crystal holey core optical fiber
function ref = holey(r)
%PCF hexagonal
% n1 = silica refractive index
% m = number of lattice rows of air holes
% d = reduced value of the distance of air hole centers
% ro = reduced radius of air holes r0 < 0.5*d
% R = external radius of the fiber gladding R > m*d
% If not given R = d*(m + 2), after R it is taken as the air value
global n1 m d r0 R
if r < = d − r0;
ref = n1;
elseif r > d − r0 && r < m*d + r0;
for nn = 1:m;
for n = 1:nn; rr(nn,n) = nn*d*exp(j*2*pi/3) + (n − 1)*d;
rt(nn,n) = abs(rr(nn,n));
end
end
f = 0;
for nn = 1:m;
for n = 1:nn; rrr = rt(nn,n); drt = abs(rrr − r);
if drt < r0; ff = 2*acos((rˆ2 + rrrˆ2 − r0ˆ2)/2/r/rrr); f = ff + f; end
end
end
ref = sqrt((f + (pi/3 − f)*n1ˆ2)/(pi/3));
else ref = n1;
end
if r > = R; ref = 1;
end
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