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Abstract: To prevent biofouling from occurring in the cooling systems of coastal power plants,
chlorine is often added to the cooling water. In this study, we have evaluated the fate of the total
residual oxidants and the formation of inorganic chlorination byproducts including ClO3

− and ClO4
−

during in situ electrochlorination with seawater. Then, the results were compared with those during
direct OCl−-injection to seawater. The in situ electrochlorination method based on Ti/RuO2 electrodes
produced much less ClO3

−, while a similar level of total residual oxidants could be achieved with a
reaction time of 5 min. Moreover, no ClO4

− was observed, while the direct OCl−-injection system
could still result in the production of ClO4

−. The less or no production of ClO3
− or ClO4

− by the
electrochlorination of seawater was mainly attributed to two reasons. First, during the electrolysis,
the less amount of OCl− is available for ClO3

− formation. Secondly, the formation of ClO3
− or ClO4

−

is affected by the electrode material. In other words, if the electrode material is carefully chosen, the
production of harmful reaction byproducts can be prevented or minimized. In short, based on the
results from our study, electrochlorination technology proves to be a marine environmentally friendly
method for controlling biofouling in the pipes of the cooling system in a coastal power plant.

Keywords: seawater chlorination; electrolysis; chlorate; perchlorate; inorganic
chlorination byproducts

1. Introduction

Inland thermoelectric power plants withdraw natural surface water, underground water, and
reclaimed water for their cooling systems [1]. About 10% of global freshwater withdrawal is used
by power plants [2]. Therefore, many power plants are built near coastal areas since they can use
seawater as a coolant [3]. However, these plants frequently encounter the problem of biofouling or
biofilm formation in their inlet pipes and cooling systems. Biofouling is defined as the attachment of
micro-/macroorganisms to the inner surface of pipes and the subsequent growth of the organisms. It is
caused by a variety of organisms ranging from microorganisms (bacteria, algae) to macroorganisms
(mussels, barnacles, etc.), depending on the conditions such as flow regimes of seawater in pipe, the
presence of substrate(s), and so on. Biofouling is a huge concern as it blocks seawater flow, which
results in the reduced efficiency of heat exchangers, increased loads on pumps, and eventually the
failure of power generation [4]. Among all the methods used to control biofouling, chlorination
remains the most popular and preferred, because of its proven effectiveness and relatively low cost [5].
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Chlorine not only exerts toxic effects on adult organisms but also inhibits the growth of larvae and their
attachment to the substratum [6,7]. There are various methods to make chlorine in water, such as (i)
dissolution of chlorine gas; (ii) addition of hypochlorite; and (iii) electrolysis of electrolytes containing
salt or seawater (i.e., electrochlorination) [8].

Recently, electrochlorination has been applied for biofouling control. Electrochlorination enables
the production of sodium hypochlorite, which is produced through the application of electric potential
differences between electrodes with NaCl as an electrolyte [9]. Particularly, under direct current (DC)
voltage, negatively charged ions such as chloride, hydroxyl, and oxygen ions donate electrons at
the anode to form chlorine gas, oxygen gas, hypochlorite ion, hypochlorous acid, and hydrochloric
acid. On the other hand, positively charged ions such as hydrogen, sodium, magnesium, calcium,
and potassium ions gain electrons at the cathode to form hydrogen gas and hydroxide (reaction
1–7) [10–13].

Anode
2 Cl− ↔ Cl2 + 2 e− (Eo = 1.36 V) (1)

Bulk solution
Cl2 + H2O→ H+ + Cl− + HOCl (2)

HOCl↔ OCl− + H+ (pKa = 7.5 at 25 ◦C) (3)

HOCl + H+ + e− ↔ 1/2 Cl2 + H2O (Eo = 1.63 V) (4)

NaCl + H2O→ NaOCl + H2 (5)

Cathode
O2 + 2 e− + 2 H+ → H2O2 (Eo = 0.68 V) (6)

2 H2O + 2 e− → 2 OH− + H2 (7)

Currently, the ex situ electrolytic production of hypochlorite, which is subsequently injected
into pipes, is commonly carried out in practice. Compared with ex situ electrochlorination, in situ
electrochlorination in seawater has a few advantages. This does not require supply of NaCl since it
uses Na+ and Cl− in seawater as electrolytes. In addition, it does not require any space for hypochlorite
generation and storage. Therefore, in situ electrochlorination should be more economical than ex situ.

Generally, the residual chlorine concentration of water flowing through the pipe of a cooling
system is maintained at 0.2 mg/L or higher to control biofouling [14–16]. In practice, chlorine is added
in the inlet of the cooling system and the chlorine concentration at the inlet is varied depending on
its level at the outlet [17]. In fact, a large amount of seawater is withdrawn for the cooling system in
a power generation system (e.g., 95–230 m3/MWh for the once-through cooling system of a nuclear
power plant [15,18]). So, an enormous amount of chlorine should be applied in the inlet.

Chlorine exerts a biocidal action on microorganisms in water by oxidizing enzymes responsible for
microbial growth. However, chlorine also reacts with other constituents in water to generate unwanted
organic and inorganic chlorination byproducts (CBPs); in seawater, for example, trihalomethane,
haloacetic acids, chloramines, bromate, chlorite, chlorate, and perchlorate are produced [17]. Due to
their persistency in the environment and potential negative impacts on aquatic lives, ClO3

− and
ClO4

− have been of special public interest. In humans, ClO3
− causes hematological imbalance by

decreasing erythrocyte count and hemoglobin. ClO4
− also interferes with iodine uptake to cause

thyroid malfunctions [19]. According to a report from WHO, ClO3
− may also cause renal tumors [20].

In this study, we have evaluated the fate of the total residual oxidant (TRO) and formation
of inorganic CBPs including ClO3

− and ClO4
− during in situ electrochlorination with seawater

using Ti/RuO2 electrodes. Then, the results were compared with those during direct OCl−-injection
to seawater.

The specific goals of this study were to: (1) monitor TRO fate when electrochlorination or direct
OCl−-injection was applied for seawater; (2) compare the amounts of ClO3

− and ClO4
− formed during
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electrochlorination or direct OCl−-injection. We believe that the findings presented in the manuscript
will contribute to our understanding of the potential environmental risk associated with ClO3

− and
ClO4

− formed during in situ electrochlorination of seawater, which is used for the cooling system of a
power plant.

2. Materials and Methods

2.1. Materials

Seawater samples were collected from the west coast (Yeonggwang, Korea, 35◦23′27” N,
126◦24′25” E) of the Korean peninsula and the east coast (Uljin, Korea, 37◦01′53” N, 129◦24′54” E)
(Figure S1). Once the water samples were collected, they were filtered using GF/C (Whatman, Chalfont,
UK) and stored at 4 ◦C. The water quality of the collected seawater samples is summarized in Table 1.

Table 1. Sampled seawater quality on west and east coast.

Parameter West Seawater (WS) East Seawater (ES)

pH 8.3 8.0
Conductivity(ms/cm) 44.37 44.67
Salinity (PSU) 28.66 28.88
TOC (mg/L) 2.2 1.9
TN (mg/L) 1.3 0.5
TP (mg/L) 0.1 0.1

NaOCl (Duksan Chemical, Daejeon, Korea) stock solution of 120,000 mg/L was used for the
direct chlorine injection study. For electrochlorination, an anode and a cathode made of Ti and RuO2,
respectively, (0.1 m × 0.18 m, Samsung DSA, Seoul, Korea) were used.

2.2. Experimental Procedure

Chlorination experiments were performed in a 500-mL Pyrex batch reactor, and the temperature
of the reactor was set to 20.0 ± 0.5 ◦C using a temperature-controlled bath (C-331, Sibata, Tokyo, Japan)
(Figure 1a,b). The OCl− solution of desirable concentration was prepared by diluting the NaOCl stock
solution (12%) with deionized (DI) water. Then, the OCl− solution was directly injected to the reactor
in the beginning of each experiment.

Electrolysis experiments were performed in a 2-L lab-scale semi-batch reactor. The two electrodes
(i.e., Ti and RuO2) were placed vertically, with a distance of 2.5 cm between each other, in the reactor.
A DC power supply (SM Techno, Daejeon, Korea) was used to provide electricity for the electrodes;
four different current densities were applied (i.e., 2.2, 9.4, 16.6, and 27.7 mA/cm2 (Figure 1c). Prior to
executing electrolysis, electrodes were washed with DI water to desorb any materials remaining on
their surface. During the experiment, the solution in the reactor was rapidly mixed by a magnetic stirrer,
and aliquots were withdrawn from the reactor at predetermined times to measure TRO, and inorganic
byproducts (i.e., ClO3

− and ClO4
−). To measure byproducts, excessive sodium thiosulfate (Na2S2O3)

was added as a quenching agent to prevent further oxidation of the byproducts by the oxidant.
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Figure 1. Schematic diagram for (a) measurement of inorganic CBPs and (b) of residual TRO measure,
and (c) electrolysis experimental setup.

2.3. Analysis Methods

For quantitative analysis of TRO, EPA method 330.5 (Spectrophotometric, DPD) was used using
spectrophotometer (Qvis 5000, C-mac, Daejeon, Korea) [21]. The quantification range of chlorine was
0.02–4.00 mg/L. TRO was measured at a predetermined time interval after an oxidation was initiated.

Concentration of ClO3
− and ClO4

− were measured using ion chromatography (883 Basic IC
plus, Metrohm, Herisau, Switzerland). The eluent for ClO3

− consisted of 3.6 mM sodium carbonate
(Na2CO3) and was delivered at a flow rate of 0.8 mL/min. The eluent for ClO4

− consisted of a mixture
of 10.0 mM Na2CO3 and 45% acetonitrile was delivered at a flow rate of 0.6 mL/min. The separation
column was IC 82524A, 4.0 mm × 250 mm (Shodex, Tokyo, Japan). The pH was measured using a pH
meter (Mettler-Toledo, Greifensee, Switzerland). Conductivity was measured using a multifunction
meter (CX-401 waterproof, Elmetron, Zabrze, Poland). TOC wes measured using a TOC analyzer
(TOC−VCPH/CPN, Shimazu Co., Kyoto, Japan).
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3. Results and Discussion

3.1. Total Residual Oxidant in Direct OCl−-Injection and Electrolysis

3.1.1. Direct OCl−-Injection

Effects of the initial OCl− concentration on TRO in the direct injection of OCl− to seawater were
investigated. The direct OCl−-injection experiments were carried with WS and ES by varying OCl−

concentrations (0.5, 0.7, 1, 10, 50, and 150 mg/L as Cl2) and their results are presented in Figure 2.
Irrespective of the initial OCl− concentrations, the TRO concentration dropped rapidly in the beginning
and was stabilized within 1 min for both ES and WS (Figure 2a,b). Chlorine demand of both WS
and ES increased with the increase of the OCl− dose. While the chlorine demand of WS increased
by 26-fold, that of ES increased by only 12-fold, as the OCl− dose increased from 0.5 to 150 mg/L.
When the OCl− dose of ≥10 mg/L was applied, WS showed a significantly higher chlorine demand
compared to that of ES (Figure 2c). These phenomena might be explained by the characteristics of the
seawater used in this study, such as organics or nitrogen contents [22]. In other words, once chlorine is
added to seawater, reactions between chlorine and chlorine-demanding substances such as Br−, NH4

+,
NO2

−, Fe2+, and residual organics occur rapidly [14,23,24]. Nonetheless, the chlorine demand became
obvious when the dose was high. In the case where 150 mg/L OCl− was injected to WS, the chlorine
demand reached 13.0 mg/L (Figure 2c). On the other hand, the chlorine demand reached 0.2 mg/L
when 0.5 mg/L OCl− was injected. Similar results have been reported by others, e.g., Zeng et al. [25],
Venkatnarayanan et al. [26], and Saidan et al. [27].
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Figure 2. Effect of initial OCl− concentration on formation of TRO in (a) WS and (b) ES, and (c)
comparison of chlorine demands between WS and ES (volume: 0.4 L; temperature: 20 ± 1 ◦C; salinity:
28.9 PSU for WS and 28.7 PSU for ES; pH: 8.3 for WS and 8.0 for ES).

3.1.2. Effects of Current Density during Electrolysis

Effects of the current density (2.2, 9.4, 16.6, and 27.7 mA/cm2) on TRO during the in situ
electro-chlorination of seawater were investigated. For both WS and ES, the TRO concentration
increased as the applied current density and time increased (Figure 3). No significant difference in
the TRO concentration was observed between WS and ES, probably because the salinities of WS
and ES were almost the same. More than 230 mg/L of TRO could be produced via the in situ
electrochlorination of seawater within 5 min under the current density of 27.7 mA/cm2: 240 mg/L for
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WS and 235 mg/L for ES. In other words, at the current density, TRO of 16.8-18 mg Cl2/cm2/min can
be produced. If an electrode with a width of 0.5 m is installed along the inner surface of a pipe with a
radius of 1 m, the surface area of the electrode will be 3.1 m2 and produce TRO at 520–557 g Cl2/min.
Considering the flow pattern developing along the inner surface of the pipe for a cooling system,
the amount of TRO generated by seawater electrolysis will be enough to provide a desirable TRO
concentration (e.g., >0.5 mg Cl2/L) for the cooling water flowing the pipe (confirmed by a simulation;
data not shown).

Appl. Sci. 2019, 9, x 6 of 11 

electrode with a width of 0.5 m is installed along the inner surface of a pipe with a radius of 1 m, the 
surface area of the electrode will be 3.1 m2 and produce TRO at 520–557 g Cl2/min. Considering the 
flow pattern developing along the inner surface of the pipe for a cooling system, the amount of TRO 
generated by seawater electrolysis will be enough to provide a desirable TRO concentration (e.g., >0.5 
mg Cl2/L) for the cooling water flowing the pipe (confirmed by a simulation; data not shown). 

 
Figure 3. Effect of current density on formation of TRO (a) WS, (b) ES (volume: 2 L; temperature: 20 
± 1 °C; salinity: 28.9 PSU for WS and 28.7 PSU for ES; pH: 8.3 for WS and 8.0 for ES; electrode area: 
0.018 m2). 

3.2. Formation of ClO3− and ClO4− in Electrolysis and Direct OCl−-Injection 

The kinds and concentrations of CBPs depend on several factors, such as oxidant contact time, 
organic and inorganic contents, reaction temperature, and solution pH [17,28–32]. If chlorine is added 
to seawater via direct OCl−-injection or the electrochemical process, chlorite, chlorate, or perchlorate 
can be generated through the following reactions (Equations (8)–(20) in Table 2) (Figure 4) [11,13,33–36]. 

Table 2. Formation of ClO3− and ClO4− during chlorination. 

Equation Equivalent 
Equations 

No. 
6 OCl– + 3 H2O → 2 ClO3

− + 4 Cl− + 6 H+ + 3/2 O2 + 6 e– 0.46 V (8) 
6 HOCl + 3 H2O → 2 ClO3− + 4 Cl− + 12 H+ + 3/2 O2 + 6 e–  0.46 V (9) 
Cl− + 3 H2O → ClO3− + 6 H+ + 6 e–  −1.45 V (10) 
Cl− + 2 OH− → OCl− + H2O + 2 e–  −0.94 V (11) 
Cl− + 4 OH− → ClO2− + H2O + 4 e–  −0.76 V (12) 
OCl− + 2 OH− → ClO2− + H2O + 2 e–  −0.59 V (13) 
ClO2− + 2 OH− → ClO3− + H2O + 2 e–  −0.35 V (14) 
ClO2− + OCl– → Cl– + ClO3−   (15) 
ClO2− + HOCl → ClO3− + H+ + Cl–  (16) 
HClO2 + H2O → ClO3− + 3 H+ +2 e–    (17) 
ClO3− + H2O → ClO4− + 2 H+ + 2e–  0.95 V (18) 
2 ClO3− + 2 Cl– + 4 H+ → Cl2 + 2 ClO2 + 2 H2O  (19) 
ClO3− + Cl– + 2 H+ → HClO2 + HOCl   (20) 
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20 ± 1 ◦C; salinity: 28.9 PSU for WS and 28.7 PSU for ES; pH: 8.3 for WS and 8.0 for ES; electrode area:
0.018 m2).

3.2. Formation of ClO3
− and ClO4

− in Electrolysis and Direct OCl−-Injection

The kinds and concentrations of CBPs depend on several factors, such as oxidant contact time,
organic and inorganic contents, reaction temperature, and solution pH [17,28–32]. If chlorine is added
to seawater via direct OCl−-injection or the electrochemical process, chlorite, chlorate, or perchlorate
can be generated through the following reactions (Equations (8)–(20) in Table 2) (Figure 4) [11,13,33–36].

Table 2. Formation of ClO3
− and ClO4

− during chlorination.

Equation Equivalent Equations No.

6 OCl− + 3 H2O→ 2 ClO3
− + 4 Cl− + 6 H+ + 3/2 O2 + 6 e− 0.46 V (8)

6 HOCl + 3 H2O→ 2 ClO3
− + 4 Cl− + 12 H+ + 3/2 O2 + 6 e− 0.46 V (9)

Cl− + 3 H2O→ ClO3
− + 6 H+ + 6 e− −1.45 V (10)

Cl− + 2 OH− → OCl− + H2O + 2 e− −0.94 V (11)
Cl− + 4 OH− → ClO2

− + H2O + 4 e− −0.76 V (12)
OCl− + 2 OH− → ClO2

− + H2O + 2 e− −0.59 V (13)
ClO2

− + 2 OH− → ClO3
− + H2O + 2 e− −0.35 V (14)

ClO2
− + OCl− → Cl− + ClO3

− (15)
ClO2

− + HOCl→ ClO3
− + H+ + Cl− (16)

HClO2 + H2O→ ClO3
− + 3 H+ +2 e− (17)

ClO3
− + H2O→ ClO4

− + 2 H+ + 2e− 0.95 V (18)
2 ClO3

− + 2 Cl− + 4 H+ → Cl2 + 2 ClO2 + 2 H2O (19)
ClO3

− + Cl− + 2 H+ → HClO2 + HOCl (20)
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3.2.1. Direct OCl−-Injection

The formation of ClO3
− and ClO4

− when OCl− was directly added to seawater was evaluated
by varying OCl− concentration (0.5, 0.7, 10, 50, and 150 mg/L). Figure 5 shows the pattern of ClO3

−

formation during the chlorination of WS and ES as a function of contact time. ClO3
− was not detected

when the OCl− amount added to the seawater samples was low (i.e., 0.5 mg/L). On the other hand,
816 µg/L and 808 µg/L of ClO3

− could be observed for WS and ES, respectively when the amount of
OCl− added to the seawater was 150 mg/L. This result could be explained by Equations (8)–(17). ClO3

−

can be formed via either direct or indirect reactions: via either (1) the reaction between OCl−/HOCl
and H2O to form ClO3

− or (2) the reaction of added OCl−/HOCl with Cl− in seawater to form OCl−,
ClO2

−, and then to form ClO3
−. Regardless of the amount of OCl− added to the water samples, the

ClO3
− formation occurred within the reaction time of 1 min. Then, the ClO3

− concentration slightly
decreased by 8–17% due to Equations (18)–(20).
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