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Abstract: With the miniaturization of electronic packaging and devices, the size of solder joints in
electronics is also decreasing from bulk solder joints to micro-bumps. Both the microstructure and
mechanical properties of the solder joints are also evolving with the decreasing size, which brings
great concern for the reliability of different sizes of solder interconnections. In this paper, the effect of
solder size on the microstructure (i.e., interfacial intermetallic compound (IMC) growth, precipitation
in the solder matrix, dendrite arms, and undercooling) and mechanical properties (i.e., tensile
property, shear and compression strength, fracture toughness, and creep deformation) are reviewed
from the mechanical point of view. In addition, some areas for further researches about size effects on
solder joints are discussed.
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1. Introduction

With the rapid updating of electronic packaging and devices, micro-bumps are becoming widely
used in 3D packaging [1–3]. The mechanical properties of lead-free solder alloys are dependent on
the microstructural morphologies, such as the β-Sn phase, intermetallic precipitations, and doped
nanoparticles in the solder matrix [4–6]. The decreasing size of solder joints has significant effects on
the interfacial reaction, the forming of interfacial intermetallic compounds (IMCs), and the evolution of
crystallization in the solder matrix, which further affect the mechanical properties [6–8]. Volume and
size effects on microscale solder joints were reviewed by Yin et al. [9] in 2011. Recently, more concerns
were focused on the size and volume effects on solder joints due to the industrial application demands.
Indeed, the size effects on solder joints of electronic devices is a complicated topic which covers
the microstructure evolution (such as the formation of multiple kinds of intermetallic compounds)
and the mechanical behavior (such as shear, creep, and fracture behaviors), each of which was
separately discussed in the existing literature. To achieve a comprehensive up-to-date view for the
electronic packaging industry, a review on recent researches is needed to build the association between
microstructure and mechanical properties, by emphasizing the size effects of solder joints.

Different types of specimens have been used to investigate the size effects of solder joints,
including solder balls, unilateral solder joints, bi-lateral solder joints, line-type solder joints, lap-shear
solder joints, and micro-specimens, as summarized in Figure 1. Solder balls without substrate are
usually used to investigate the thermal properties such as undercooling, solidification, and phase
transformation. Unilateral solder joints are suitable to study the interfacial reaction and measure the
IMC growth rate, as well as shear strength. The bi-lateral solder joint type is more approximate to
the solder interconnects in packaging structures, and can be used to study the interfacial reaction
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with different substrates. The diameters of the solder balls and unilateral and bi-lateral solder joints
usually range from 0.2 to 1.0 mm. Line-type and lap-shear solder joints are usually used to test the
tensile and shear properties, respectively. Furthermore, there are two classes of line-type solder joints:
One has a constant solder diameter but reducing solder height, and the other has a constant solder
diameter-to-height ratio. The diameters of the Cu pillars of the line-type solder joints range from
300 µm to 2 mm, and the heights of solder layers range from 5 µm to 2 mm. Micro-sized specimens
are fabricated by focused ion beam (FIB) milling, and can be utilized to explore the mechanical
properties on the microscale and have received much more attention recently. For example, the fracture
toughness of the IMC Cu6Sn5 can be obtained with the nanoindentation test on the microcantilever
cylinder with a prefabricated notch. The microcantilever can be milled into a length of several microns,
which is smaller than a single Cu6Sn5 grain. The depth of the notch can be milled to hundreds of
nanometers. The compression test of Cu6Sn5 on the micron scale can also be conducted with FIB milling
and nanoindentation. Wedge indenters are used in the microcantilever fracture test, while flat-end
indenters are used in the compression test.
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2. Size Effects on Microstructure in Solder Joints

2.1. IMC Formation and Growth

IMCs form during the reflow or thermal aging process in solder materials. Cu and Ni substrates
are the most commonly used substrates in lead-free solder joints. For Cu-substrate solder joints,
Cu6Sn5 and Cu3Sn are the major types of IMCs. As for Ni-substrate solder joints, Ni6Sn5 and Ni3Sn
IMCs commonly occur at the Ni/Solder interface. Other types of substrate, such as Au/Ni–P/Cu
(ENIG), Ag, Pa/Ti/Si, Co, Au, Fe, Cu–Mn, and Cu–Zn were summarized in Kotadia et al.’s study [10],
while the IMCs formed during interfacial reactions in Sn–Ag–Cu solder joints of different substrates are
listed in Table 1. IMCs act as the mechanical and electrical connections between the solder matrix and
substrate. Therefore, the growth and evolution of IMC layers have a significant effect on the reliability
of the solder joints [11,12]. The IMC growth corresponds to the Cu dissolution from substrate into
the solder matrix, which is found to be greatly affected by the substrate area/solder volume ratio
(V/A ratio) [9,13]. By taking the unilateral solder joints as an example, the size effects on the internal
microstructure are shown in Figure 2. In general, the decreasing solder volume leads to the apparent
coarsening of interfacial IMCs (i.e., Cu6Sn5 and Ag3Sn) and a finer dendritic β-Sn phase. The shapes
and amount of precipitation (i.e., Cu6Sn5 and Ag3Sn) in the solder matrix formed in solidification are
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also dependent on the joint size. In eutectic structures, Ag3Sn dispersion in the solder alloy can increase
the ductility. However, excessive thermal aging or multiple reflows can lead to plate-like Ag3Sn on
the Cu6Sn5 IMCs. This plate-like Ag3Sn will increase the strain singularity near the interfacial layers
of the solder joints. The solder joint size has significant effect on the eutectic structures in Sn–Ag–Cu
solder joints. Dendritic Ag3Sn precipitation (see in the dashed lines) in the pseudo-eutectic structures
also weaken the mechanical strength of the solder joints.
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Figure 2. Schematic diagram of microstructure in the as-reflowed Sn3.0Ag0.5Cu/Cu solder joints,
with solder diameter ranging from 200 to 760 µ7. (a) Eutectic structure in a 200 µm diameter solder
joint; (b) pseudo-eutectic structure in a 500 µm diameter solder joint; (c) pseudo-eutectic structure in a
760 µm diameter solder joint.

Table 1. Interfacial intermetallic compound (IMC) layers between SAC/Substrate after reflow [10].
(Reused with permission).

Substrate IMCs Reference

Cu Cu6Sn5, Cu3Sn [14]
Ni (Cu,Ni)3Sn4 or (Cu,Ni)6Sn5 [15,16]

Au/Ni-P/Cu (ENIG) (Cu,Ni)3Sn4 or (Cu,Ni)6Sn5
Ni3P, Ni-Sn-P [17,18]

Ag Ag3Sn [19]
Pt/Ti/Si PtSn4 [20]

Co CoSn3 [21,22]
Au AuSn2 or AuSn4 or both [23]
Fe FeSn2 [24]

Cu-Mn Cu6Sn5 and Cu-Mn [25]

Cu-Zn (Cu,Sn)6Sn5
(Cu,Zn)3Sn [26]
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The IMC layer in a thinner or smaller solder joint is usually thicker than that in a solder joint
with a larger volume. Lee et al. [27] studied the effect of gap size in solder joints on the microstructure
at the interfaces of Ni/Sn/Cu and Cu/Sn/Cu using single-lap specimens, and showed that the gap
size has a more significant effect on IMC thickness at the Ni/Sn interface than at the Cu/Sn interface.
Park et al. [28] investigated the bump size and reflow time effects on the IMC thickness and growth
rate. They found that the IMC layers in smaller Sn1.0Ag0.5Cu/Cu solder joints were thicker than those
in larger solder joints after the initial reflow, but the IMC growth rate in smaller joints was slower than
in larger solder joints during the second and third reflows. In contrast to the findings by Park et al. [28],
Tian et al. [29] conducted thermal shock tests on Cu/Sn3.0Ag0.5/Ni solder joints with 100 and 200 µm
pitches, and found that the IMC growth rates in the 100 µm pitch solder joints were obviously higher
than those in joints with a 200 µm pitch. Studies of Cu/Sn/Cu under 160 ◦C solid-state thermal aging
by Zhu et al. [30] indicated that the thickness effect of solder joints on the IMC growth rate was not
that “the thinner the solder layer was, the faster the IMC grew” as usually believed. Instead, there was
a threshold value of δ = 30 µm for solder thickness, and the initial growth rate of IMC in thinner solder
joints (δ < 30 µm) was greater than that of thicker solder joints (δ > 30 µm), but the former decreased
and the latter increased with an increasing aging time [30]. The size-dependent IMC growth rate was
also reported by Wang et al. [31]. Based on both solid-state and liquid-state diffusions, they found
that the commonly reported size-dependent IMC growth rate may be only valid under a liquid-state
diffusion, but invalid under a solid-state diffusion.
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To obtain a more general relationship between solder joint size and IMC growth, the IMC
thicknesses corresponding to solder joints with different ratios of solder volume to substrate area
(V/A) are presented in Figure 3. It is observed that a linear relationship, as shown in Equation (1),
seems to exist between the logarithmic IMC thickness and the V/A ratio, even though the slope of the
linear fitting line can be positive or negative.

t = (c · r)k + t0 (1)
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where r is the V/A ratio, t is the thickness of the IMC, t0 is related to the IMC thickness of the initial
state, c is a function related to the IMC growth rate, and the slope k depends on the specimen shape.
Based on the data reviewed in Figure 3, a negative slope k usually occurs in line-type or bi-lateral
solder joints, while unilateral solder joints always have a positive k value. Therefore, a constraint
effect in line-type or bi-lateral solder joints, which slows down the IMC growth, is speculated to be
the dominant mechanism for such a negative k value. The constraint effect on the IMC growth can
be seen in Figure 4, where the solder joints with small gap sizes (50 and 150 µm) only form thin
lamellar-type IMCs instead of scallop-type IMCs, which have been observed in the other three types of
solder joint [31].
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Figure 4. Cu6Sn5 IMCs at the interfacial layers of line-type Cu/Sn3.0Ag0.5Cu/Cu solder joints after
reflow and 210 ◦C aging for 6 h [31]. (Reused with permission).

From the interaction point of view, the IMC growth rate is dominated by the Cu diffusion.
Therefore, the underlying mechanism for the size effects of solder joints is highly likely to be related
to the Cu flux. Abdelhadi et al. [32] established an analytical model to investigate the growth rate
of Cu3Sn, which was found to be joint-size dependent and obey the parabolic relation with time.
Huang et al. [33] measured the IMC evolution of Sn3.0Ag0.5Cu solder joints on Cu or Ni–P pads,
and the Cu flux variation was inferred to be the cause of solder volume size effects. Li et al. [34]
performed experiments and simulations regarding the Cu concentration effect on different sizes of
Sn3.0Ag0.5C0.1TiO2/Cu solder joints, and concluded that the IMC formation may not simply obey
diffusion-controlled or interfacial reaction-controlled growth, but was instead a combination of both.
Compared with bulk diffusion, surface diffusion and intergranular diffusion are fast diffusion channels.
Thus, one can infer that solder joints with a larger specific surface area tend to have a higher IMC
growth rate under the same reflow or thermal conditions. Sun et al. [35] investigated the geometrical
size effects on the interfacial IMC growth rate using wedge-shaped samples. Due to the higher IMC
growth rate at the angle of the wedge than other districts, a salient triangle formed at the angle. Due to
the significant solder volume to substrate surface area ratio in micro-bump solder joints, the IMC
growth behavior could be controlled by the surface diffusion mechanism [36].
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2.2. Solidification and Recrystallization in the Solder Matrix

Apart from the interfacial microstructure, the solder size also has a crucial effect on the
microstructure, including the β-Sn phase, eutectic phase, and bulk primary solidification phase
in the solder matrix. The mechanical strength of solder balls is commonly regarded to be dependent
on the microstructure size, while both the dendrite arm size and the eutectic phase size depend
on the solder ball dimension. Furthermore, the microstructures in solder balls and solder joints
are directly dependent on the solidification behavior in the annealing or reflow procedures [37–39].
Kinyanjui et al. [40] studied the undercooling behavior of Sn3.9Ag0.6Cu solder joints with diameters
ranging between 200 to 2000 µm by differential scanning calorimetry (DSC) reflow tests, and reported
a linear relationship between the undercooling temperature and inverse nominal diameter of the
solder balls. Additionally, the dendrite arm sizes, which were approximately 0.008 times of the solder
ball diameter, were found to be strongly size-dependent. Zhou et al. [41] investigated the increasing
undercooling behavior of Sn3.0Ag0.5Cu solder balls and solder joints with diameters decreasing from
760 to 300 µm with DSC analysis. They found that the large primary solidification Ag3Sn phase had
a large undercooling in the small solder balls, while the primary Cu6Sn5 phase formed in the solder
joints. In addition, the grain size of the β-Sn phase was reported to be smaller, and the contained
eutectic structure was observed to be less in the sample with small undercooling. Huang et al. [42]
measured the size and substrate effects on the undercooling of solder alloys including Sn, Sn0.7Cu,
Sn3.5Ag, Sn3.8Ag0.7Cu, and Sn0.1Ni, and found that the primary solidification phases of those solder
alloys were β-Sn, Cu6Sn5, Ag3Sn, and Ni3Sn4, respectively. The primary solidification phase was
illustrated to be the principle factor for the degrees of undercooling, followed by the substrate factor
and solder ball size factor [42]. Solder volume and substrate effects on the undercooling of different
types of solder alloy are summarized in Figures 5 and 6, respectively.
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Figure 5. Solder ball size effect on undercooling of several types of solder alloy. (Extracted data from
Huang et al. [42]).

The undercooling of solder joints depends on the solidification behavior. The effect of solder
joint size on the solidification is intuitively depicted in Figure 2. For Sn3.0Ag0.5Cu solder joints
with a 200 µm diameter, the β-Sn phase in Figure 2a is relatively small compared with that in



Appl. Sci. 2019, 9, 227 7 of 15

Figure 2b,c. As the solder joints’ diameters increase to 500 and 760 µm, the eutectic structures
transform to pseudo-eutectic structures, which means that Ag3Sn and Cu6Sn5 phases precipitate
during the solidification.

Based on the classic solidification theory, the relationship between solder size and undercooling
can be described as follows [41]:

d3 =
6r

πKs∆T
exp

[
16πγ3

slT
2
m f (θ)

3kL2
vTs∆T2

]
(2)

where d is the diameter of the solder ball, ∆T is the degree of undercooling, and Ts and Tm are the
theoretical solidification and melting temperature, respectively. Additionally, r is the cooling rate,
Ks depends on the atoms’ vibration frequency, γsl is the crystal–liquid interfacial energy, Lν is the
melting enthalpy per volume, and f (θ) is dependent on the catalytic potency. For small solder bumps,
the driving force for solidification is usually larger than big bumps, which leads to the stronger
undercooling. Furthermore, smaller solder bumps are apt to bear more severe temperature gradients,
which also promotes the rapid cooling and enhances the undercooling phenomenon. As the main
intermetallic compounds in the solder matrix, Ag3Sn particles in Sn–Ag alloy solder joints are part of
the significant hardening phase, but the related studies are relatively exiguous. Ma et al. [43] studied
the size effects on Ag3Sn intermetallic growth in Sn3.5Ag solder joints during reflows, and the size of
Ag3Sn particles was observed to increase with the increase of the solder ball diameter.
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3. Size Effects on Mechanical Properties of Solder Joints

Mechanical properties of the solder joints can be affected by not only the macro-geometry
size-induced constraints but also the microstructural size-induced enhancement. What makes the size
effects more intricate is that the microstructural size, such as for the β-Sn phase, is also affected by
the macro-geometry of the solder joints. For example, for the bump size effect on solder hardening,
the creep resistance and hardness of Sn3.0Ag0.5Cu and Sn3.5Ag solder joints are illustrated to be
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increasing with the decrease of bump height. Meanwhile, the secondary β-Sn dendrite arm length
was found to be linear with respect to the logarithm of the bump height [44], as shown in Figure 7.
Apart from the size effects on intrinsic mechanical properties of the solder matrix, local mechanical
behavior of IMCs was also reported to be size-dependent. Higher hardness and elastic modulus
were observed in smaller Sn3.5Ag/Cu solder joints by the nanoindentation method [45]. Therefore,
simple conclusions related to size effects on mechanical behavior are difficult to arrive at, but the
transition or tendency of mechanical properties under certain circumstances are meaningful for the
exploration of underlying mechanisms of size effects on the mechanical properties of solder joints.
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3.1. Tensile Behavior of Solder Joint

With the decreasing bump height, the transition of the failure mode from ductile fractures in solder
to brittle fractures along IMCs was reported in tensile tests [46]. It is noted that Cu pillar micro-bump
solder joints are an important type of interconnection in 3D electronic packaging. Researches usually
employ the line-type specimen to investigate the properties of Cu pillar micro-bump solder joints,
with different solder heights which range from 5 to 60 µm, such as in Wang et al.’s study [46].
When the solder height of the micro-bump solder joint drops to 10 µm or less, the whole solder
alloy has the potential to transform into IMCs. Then, Cu/IMC/Cu or Ni/IMC/Cu solder joints
will occur. Apart from the brittle IMCs, micro-cracks due to Kirkendall voids will bring reliability
challenges. More elaborate properties on Cu pillar micro-bump solder joints were summarized
by Tu et al. [1]. Li et al. [47] investigated the joint gap size effects on the tensile properties of
Cu/Sn0.7Cu0.05Ni/Cu solder joints by experiments and simulations. Wang et al. [31] conducted
tensile tests on Cu/Sn3.0Ag0.5Cu/Cu solder joints with gap sizes ranging from 50 to 2000 µm, and they
found that the tensile strength increased as the joint gap decreased, and the stress triaxiality was used
to explain the higher strength of joints with smaller gaps. Qin et al. [48] performed microscale tensile
tests of Ni/Sn3.0Ag0.5Cu/Ni and Cu/Sn3.0Ag0.5Cu/Cu solder joints with thickness-to-diameter
ratios (R) from 1/3 to 1/12 by a dynamic mechanical analyzer (DMA). Both tensile strength and
fracture mode were dependent on R, and the damage-equivalent stress, which is deemed as a suitable
criterion in evaluating the strength and damage of the joints by the finite element method, showed a
decreasing trend with the decrease of the R value. In addition to the typical gap size effects on solder
joint behavior, void formation in the solder joints during flux outgassing was found to enhance the
ductility of the Cu/Sn3.5Ag0.75Cu/Cu solder joints in tensile tests. This effect was significantly more
obvious in joints with larger solder gaps [49]. For an ideal rigid plastic body, the geometry effect on
fracture strength σF of the solder joint was suggested as:

σF = σyield(1 + d/6h) (3)
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where σyield is the yield strength of the solder material, and h and d are the solder thickness and substrate
diameter, respectively. However, the ideal rigid plasticity is a strong assumption, especially when h
approaches d. Tensile strengths of different types of solder joints are summarized in Figure 8. A linear
relationship between the logarithmic tensile strength and the logarithmic V/A is found. As noticed
for the data from Hutter et al. and Kim et al.’s studies [24,26] which are not well-appropriated by
linear fitting, this may be due to the significantly slower loading rate, which leads to creep failure [26],
and also the excessive IMC growth in solder joints with small V/A ratios, which leads to failure
mechanism transition [24].Appl. Sci. 2019, 9, x FOR PEER REVIEW  9 of 15 
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Zimprich et al. [50] evaluated the mechanical size effects of Cu/Sn3.5Ag/Cu solder joints with
gap sizes ranging from 25 to 850 µm by the Orowan model. Based on a constraint mechanism that
enhanced the shear strength and was different from that in tensile specimen, they also pointed out that
the constraint effect which enhanced the ultimate tensile and yield strengths was only dominant for gap
sizes below 200 µm. The IMC effect on the mechanical strength, as found in Zimprich’s research [50],
does not seem obvious. However, when the IMCs occupy a significant portion of the whole solder joint,
the IMC effect cannot be neglected. Mo et al. [51] performed finite element simulations to investigate
the size dependency of solder joints formed only by IMC, and found that the stress concentration was
more significant due to the absence of the ‘relief’ effect of bulk solder joints (the ‘relief’ effect refers
to the ductility of the solder alloy, which can blunt the crack front and relieve the stress singularity).
Wang et al. [52] investigated the solder volume, aging, and reflow effects on the shear strength of
Sn3.0Ag0.5Cu/Cu solder joints, and they found that reflow times had a tiny influence on the shear
strength because reflow mainly increased the interfacial IMCs but did not alter the microstructure in
solder layers. Chen et al. [53] used the lap-shear specimen to measure the shear strength of Cu/Sn/Cu
and FeNi/Sn/FeNi solder joints. In their experiment, Sn grain size was observed to enlarge with the
decreasing of solder thickness, thus explaining the unusual relationship between shear strength and
solder thickness.
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Shear strengths of different kinds of solder joints are summarized in Table 2. Compared with the
tensile strengths in Figure 8, most of the reviewed data in Table 2 show milder decreasing tendencies
with the increase of the V/A ratio, except the data from Zimprich et al.’s study [50] which indicated
a different mechanism of mechanical constraint between shear and tensile specimens. Of course,
the deformation mechanisms between shear and tensile specimens are different, and thus different
stresses and displacement singularities at the joint corners are found. With the theoretical analysis on
the singularities of solder joint corners, the constraint differences between tensile and shear specimens
can be expected to be revealed.

Table 2. Shear strengths of lead-free solder joints with different V/A ratios.

Solder and Substrate Type V/A Ratio (µm) Shear Strength (MPa) Reference

Cu/Sn/Cu

49 23.7

[27]
102 22.7
300 21.3
550 18.6

Cu/Sn/Ni

47 21.9

[27]
100 22.2
300 17.7
550 17.1

Cu/Sn-3.5Ag/Cu

156 110.6

[50]
186 80.3
243 62.1
326 37.5

Cu/Sn3.0Ag0.5Cu

192 56.8

[52]
288 52.9
384 48.7
480 48.1
576 46.8

Fe-Ni/Sn/Fe-Ni
18 13.9

[53]48 14.8
300 10.9

Size effects on the strength of solder joints are not always “smaller-being-stronger”. Instead,
under certain circumstances, the “smaller-being-weaker” phenomenon can occur as well. Gan et al. [54]
reported an unusual size effect on the strength of Sn/Pb solder joints with fine lamellar phases, in which
both micropillars compression tests and dislocation modeling were employed to analyze the decreasing
strength with the specimen size. It was reported that there were fewer interphase boundaries in smaller
sized specimens, which blocked the dislocation and thus led to the lower mechanical strength.

3.2. Fracture and Creep Deformation of Solder Joints

Li et al. [55] investigated size and constraint effects on the fracture behavior of Sn3.0Ag0.5Cu
and Sn37Pb solder joints by simulations with elastic–plastic and dynamic fracture methods.
The damage-equivalent stress area and energy release distribution, which strongly depend on the
diameter-to-thickness ratio (d/t) of the solder joints, were used to characterize the fracture mechanism
and position. They found that the solder joints with a small d/t were apt to fracture at the middle
of the solder layer, while the joints with a large d/t tended to fracture at the solder/IMC interface.
Wang et al. [56] developed a theoretical model based on the local stress singularity at the bi-material
corner to analyze the relationship between the microstructure size and macro-fracture toughness of
lead-free solder joints. The IMC grain size effect on the fracture toughness of solder joints was stated
as follows [34]:

KQ = K0Q

(
1 +

d
d0

)λIMC−λs

(4)
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where KQ is the predicted interfacial fracture toughness and d is the representative length of the
interfacial IMC grain. The parameters K0Q and d0, which are dependent on the specimen material and
geometry, can be obtained by numerical fitting. The parameters λIMC and λs, which can be theoretically
and numerically determined, are the order of displacement singularity at the corner of the IMC grain
and the solder joint, respectively. This size effect was suggested to be valid in solder joints with
scallop-type IMCs [56–59], as shown in Figure 9.
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Size effects on the creep deformation of line-type Cu/Sn3.0Ag0.5Cu/Cu solder joints were studied
by Li et al. [60] using DMA. They found that the creep exponents ranged from 4.2 to 3.1 and the creep
activation energy varied from 90 to 66 kJ/mol as the joint thickness increased from 50 to 200 µm.
Lattice diffusion was deemed to be the dominant creep mechanism, since the creep exponents were
closed to the theoretical exponents of lattice diffusion. The findings by Li et al. [60] are in accordance
with the bump height effect on solder hardening [44].

Size effects on solder joints are usually complicated in terms of various compositions and
microstructures. Therefore, a multi-scale microstructure-based modeling method, which can capture
the hardening and aging effects of mixed intermetallic phases on the constitutive behavior, is becoming
an important approach for exploring the relationship between the microstructure and mechanical
behavior of solder joints [61]. However, so far the multi-scale modeling method is only appropriate
in simulating the mechanical behavior of solder layers which incorporate fine intermetallic particles.
When a relatively weak interface strength is referred to, this method may not be applicable.

4. Conclusions

The characteristics of both microstructures (interfacial IMC layers, precipitation, eutectic
structures, and β-phases in the solder matrix) and mechanical properties (tensile strength, shear and
compression, fracture, and creep deformation) of different-sized solder joints were summarized in this
review. Though there were many researches on the size effects of solder joints, some issues are still
expected to be further explored and elucidated:
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• Fatigue properties of different scales of solder joints are relatively scarce. Due to different
microstructures and stress singularities, crack initiation and propagation behaviors of micro-bump
solder joints can be quite different from the bulk solder joints.

• A multi-scale microstructure-based modeling method is urgently required to predict the
mechanical behaviors of solder joints with different sizes. Modeling based on the microstructure
distribution and evolution can capture the local characteristics with reasonable accuracy, and thus
is more convincing than the homogenization model.

• Defects evolve in different sizes of solder joints. Defects such as Kirkendall voids form in the Cu3Sn
layer and can have important effects on the mechanical reliability of solder joints. Research on
the dislocation motivations under different loadings and the dislocation density transition in
different-sized solder joints are also important for understanding the size effects.

• The differences of the constraint mechanism between shear and tensile specimens are still not
clear and need further investigations.
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