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Featured Application: Data sensors for Smart Cities are an important component in the extraction
of patterns—thus, they must be placed in strategic locations where they are able to provide
information as accurate as possible.

Abstract: A significant and very extended approach for Smart Cities is the use of sensors and the
analysis of the data generated for the interpretation of phenomena. The proper sensor location
represents a key factor for suitable data collection, especially for big data. There are different
methodologies to select the places to install sensors. Such methodologies range from a simple grid of
the area to the use of complex statistical models to provide their optimal number and distribution,
or even the use of a random function within a set of defined positions. We propose the use of the same
data generated by the sensor to locate or relocate them in real-time, through what we denominate as
a ‘hot-zone’, a perimeter with significant data related to the observed phenomenon. In this paper,
we present a process with four phases to calculate the best georeferenced locations for sensors and
their visualization on a map. The process was applied to the Guadalajara Metropolitan Zone in
Mexico where, during the last twenty years, air quality has been monitored through sensors in ten
different locations. As a result, two algorithms were developed. The first one classifies data inputs in
order to generate a matrix with frequencies that works along with a matrix of territorial adjacencies.
The second algorithm uses training data with machine learning techniques, both running in parallel
modes, in order to diagnose the installation of new sensors within the detected hot-zones.

Keywords: smart cities; machine learning; big data; data analysis; sensors; Internet of Things

1. Introduction

An increasing number of people live in urban zones [1]. The United Nations organization
estimates that, by the year 2030, more than 60% of the world’s population will live in a city, and with
the lack of regulation addressing spatial, social, and environmental aspects, this might create severe
problems [2]—among them, air pollution as a source of health problems such as strokes, lung cancer,
chronic and acute pneumopathies, or asthma [3,4].

In order to face the problems of diverse metropolises, such as reducing energy consumption
or the negative impact of the city on the environment, the concept of Smart Cities has gained
notoriety. This concept is based on the use of information and communication technologies (ICT).
Here, data treatment represents the means to support decision making in order to provide citizens with
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a better quality of life. There are several different approaches to smart reducing that attempt to reduce
the problems inherent to urban life. A widespread practice to understand environmental factors is the
use of mobile sensors to monitor the environment, a practice that generates a considerable amount of
data. In order to analyze that volume of data, the implementation of big data technology is required.

Big data deals with the management of high volumes of data, as well as their storage. Big data is
characterized by 10 ‘bigs’. These ‘bigs’ are classified by three levels of characteristics: fundamental,
technological, and socioeconomic. The fundamental level is integrated by four bigs: big volume,
big velocity, big variety, and big veracity. The technological level is formed by three bigs: big intelligence,
big analytics, and big infrastructure. And the level of socioeconomic characteristics has three bigs:
big service, big value, and big market [5]. Data recollected by sensors in the analysis of smart
cites require technological achievements, supporting the primary goal of bringing smart cities to the
requirements of socioeconomic characteristics. Figure 1 represents the association of the 10 bigs in a
smart city.

Figure 1. Sensors monitoring events on a Smart City from a perspective of Big Data as 10 bigs.

Sensors allow collecting data from a context, detecting and responding to signals, which can be
measured and then converted into understandable data through designed and developed models.
Sensors can be installed both indoors and outdoors. Regarding interiors, sensors are those set in the
human body, which allow collecting information about peoples’ daily activities. They are usually
acceleration sensors, widely used for their low cost and small size. The first works carried out for these
devices focused primarily on the recognition of various modes of locomotion. Later, they were used
in more complex activities such as sports, industry, gesture recognition, sign language recognition,
and the human–computer interfaces (HCI) [6].

For exterior sensors, location is very relevant—they must be placed strategically in order to
provide as accurate information as possible, in such a way that big data analysis can provide the
identification of behavior patterns and the reduction of response times required for the smart cities.

However, it must be taken into account that, in the official information sites of quality measurement,
data is not usually displayed in real-time—the update of the evaluation of events is not immediate.
Sensor data is usually set to be taken over time intervals, which might lead to undetected changes.
On the other hand, there is a lack of systems that face the continuous increase in the volume of catches
and sensors, which support the monitoring of events of various kinds, and the readjustment of the
infrastructure in sensor networks.
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There is great interest in the installation of sensors in various areas of the city, human body,
buildings, or houses, thus covering multiple scales. The tendency is to converge upon the Internet
of Things (IoT), which is the construction of a dynamic network infrastructure capable of changing
its configuration for better control of the flow of variables that circulate through a large number of
interconnected sensors [7]. Thus, being able to extract patterns and relate phenomena to their causes
within an environment such as a city constitutes a complex system [8].

The proliferation of sensors is increasing, and with this, the applications that perform a scientific
analysis on their generated data, along with the use of different variables which, in one way or
another, contribute to improving human wellbeing. Such is the case of the mobile systems, in which
data comes from sensors installed inside them [9], or the systems that use sensors for environmental
monitoring [10].

Also, a paradigm proposed in smart cities is the mobile crowd sensing (MCS), which focuses on
using mobile integrated sensors to monitor multiple environmental phenomena, such as noise, air,
or electromagnetic fields in the environment [11]. In this same topic, a system of pollution warning
services was developed for smart cities [12], to notify the user of the concentration of pollution in the
place where they are located, through mobile devices that measure the quality of the air. For example,
a system based on crowdsourcing for mobile phones was developed to help car users to find the most
appropriate places to park, in order to avoid problems of traffic congestion, air pollution, and social
anxiety problems [8].

Another system of pollution warning services in smart cities was proposed to notify the user
regarding the concentration of pollution, and about vehicles. In this case, mobile devices measure air
quality [10]. In [11], an implementation of smart sensors was presented to monitor air quality where
the tracking variables included dust particles (PM10), carbon monoxide (CO), carbon dioxide (CO2),
noise level (dB), and ozone (O3), with the aim to keep people informed in real-time through the IoT.

In this context, machine learning and deep learning are two successful techniques both used for
the classification of data as well as the identification of patterns. Another technology used in the same
context is bio-inspired algorithms for the interpretation of information from the sensors. However,
since big data faces the challenge of large volumes of information, several techniques are combined
with it to provide proper solutions.

As mentioned, the constant use of sensors in smart cities led to the field of big data, which deals
with processing and data analysis techniques. Within a broad set of techniques and methods for
processing big data are the decision trees (DT) based on classifiers applied to large datasets [13]—DTs
are also proposed to analyze large data sets for both numerical and mixed-type attributes. By processing
all the objects of the training set without prior memory storage, this requires that the user define the
parameters. It works by evaluating the training instances one by one incrementally, updating the
DT with each revised case. With a small number of instances, the node is expanded faster than the
expansion process of other algorithms. Furthermore, the instances used in the expansion of the node
will be eliminated once the expansion is made avoiding in this way the storage of the training set in
the memory.

In this context, in [14] was proposed the use of swarm search with accelerated particle swarm
optimization. This is an algorithm capable of selecting the variables for data mining—its search
achieves precision in a reasonable processing time. Further, in [15] was presented a system based on
the ideas of pattern recognition that converges in the Bayes classifier. This system is scalable in data
and can be implemented using structured query language (SQL) over arbitrary database tables—it
uses disk storage with classification purposes. In [16], the algorithm C4.5 implemented a DT with the
map-reduce model, to allow parallel computing of big data. This algorithm implements map-reduce
with the ‘divide and conquer’ approach in order to discover the most relevant attributes of the data set
for decision-making.

Importantly, neither of the two techniques using and not using discs for the training of big data
ensure that there are defined patterns.
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Related Work

In this paper, we propose a classification scheme based on machine learning, using big data
generated to construct patterns in real-time for the fixed location of sensors. These patterns will
provide the surrounding areas with a low quality of life in order to establish a better-fixed location
for new sensors, or the relocation of the old sensors with the information generated by them through
established hot-zones. Therefore, some related works regarding sensor locations are next discussed.

In [6] are presented different methodologies for selecting the places where the sensors should be
installed to obtain information on the phenomena to be observed, ranging from the preparation of a
grid of the study area to the use of complex statistical models that provide the number and optimal
distribution of the sensors, but this is based strictly on the amount of information with which the
model is generated.

In [17] is implemented a genetic algorithm (GA) to determine sensor locations and to establish the
number of these sensors for proper coverage. As a first step, the GA randomly creates the population
on the input map. This algorithm has the main feature of finding the number of optimum sensors
based on the input map.

In [18] is presented an algorithm that simultaneously defines a sensor placement and a sensor
scheduling. An approximation algorithm with a finite set of possible locations establishes where
sensors can be placed; this algorithm selects a small subset of locations. These works focus on locating
the sensors through random functions or by a set of defined positions.

There are several works related to the location of sensors for smart cities. Furthermore, some of
them have a dynamic identification for sensors positions. However, few of them focus on the
identification of fixed positions and, to our knowledge, none of them exploit the information acquired
by the same sensors with big data techniques in order to identify their optimal location or relocation.
In contrast, our proposal establishes the location of sensors in real-time using the concept of hot-zones
in order to identify the sensors with significant activity regarding the phenomena observed with
high precision.

We defined the concept of a ‘hot-zone’ as a perimeter area source of essential data for analysis.
In a hot-zone can be found constant activity with substantial data to evaluate the quality of an observed
phenomenon. These hot-zones are then used to locate or relocate new sensors. For that, a process
with four phases is proposed. The first three phases are based on the data mining process, and the
fourth phase constitutes the establishment of algorithms using selected techniques. The final aim of
the process is to settle the hot-zones.

As an example, this process was implemented in the Guadalajara Metropolitan Zone (GMZ),
Mexico, for air pollution. In this case, a first algorithm was designed for data training to generate
the classification model with dynamic updating. A second algorithm was designed for data labeling,
which is triggered after each data input. The two algorithms are independent. The classification is
carried out in parallel with the training process—while some data are classified, others are used for
training to observe possible changes in the patterns, or to decrease process time by a possible reduction
in the number of variables of the model. In this phase, a frequency matrix is generated that works
in conjunction with a neighboring sensor matrix in order to identify the hot-zones and present their
visualization in a geo-referenced map [19,20].

2. Process to Locate and Relocate Sensors

Our proposed process comprises four phases:

1. The preparation of sample data;
2. The inquiry or exploration of data analysis methods for big data treatment;
3. Exploring prediction techniques; and
4. Algorithms design and updating of the map to locate and relocate sensors.
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The process is based on the data mining process for knowledge discovery in data bases (KDD) ] [21]
and which, according to [22], should be guided by the seven phases: data integration, data selection,
data cleaning, data transformation, data mining, pattern evaluation/presentation, and knowledge
discovery. Data mining is the step of selection through the application of machine learning techniques,
in this case, aiming to find classification patterns for hot-zone identification.

Similarly, in our process, the first phase corresponds to data integration, data selection,
data cleaning, and data transformation. In our case, it consists of reviewing the quality of life
in smart city models in order to select variables according to the standards, and then extracting data
from open data public domains to conform the data set. Afterward, the sample is prepared by applying
a filter, cleaning, and when required labeling, which constitutes data cleaning and data transformation.

Figure 2 depicts the four phases. The first phase is the preparation of the data sample, which begins
with the revision of the smart city models and the compilation of standards related to the object of
study selected. These activities will indicate the variables that the sensors must capture but, at the same
time, will guide the search of data in public domains to form a sample data set. Here, preprocessing
for filtering and cleaning is also applied. The result to be obtained is a sample of data validated by the
metrics of the smart city models, and by models established by international organizations.

Figure 2. Phases of the proposed process that determine a scheme to design algorithms to place sensors
in specific positions.

Once the data is transformed, it goes to Phase 2 for big data analysis focused on data mining,
optimizing the performance of the search of the classification patterns.

In the second phase, the exploration of data analysis is performed using supervised learning
techniques for classification in order to arrive at a prediction model, using as input the sample of the
data set of the previous phase. It is suggested to explore techniques with parallelization capacity
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in order to optimize the processing time of patterns from large volumes of data. Also, independent
variables must be clearly distinguished from their dependent counterparts. The output of phase two is
a candidate list of techniques to be tested in the Phase 3.

In the third phase, the selected techniques are tested with the prepared data sample. Here, a plan
has to be made to test and apply the candidate techniques. Then, those whose convergence obtained is
equal to or greater than the desired limit are chosen. Another factor that should influence this selection
is the technique’s capacity to reduce variables. The convergence results are sent to the Phase 4, as the
basis for the algorithm’s design.

In the fourth phase are designed and implemented the algorithms. Two types of algorithm are
required for the identification of the hot-zones.

The first type of algorithm is those that apply the chosen techniques in Phase 3, that is, those
with better convergence results. These algorithms serve for the extraction of data patterns from the
model. The second algorithm type includes those that classify and update the frequency matrix with
the neighboring sensor matrix shapes of the hot-zones.

The application of the algorithms implies the existence of a set of sensors in the network, where
every installed sensor has a pair of values related to its geographical localization: latitude and longitude.
Further, it also emits the value of variables. Although the sensor placement points are initially selected
for a better control of the areas, it does not necessarily mean that they are located in the focus of the
phenomenon, especially if there are not enough sensors, or if they are dispersed.

By recursively identifying the hot-zones, that is to say, applying or reapplying Phase 4 of the
process, midpoints between two sensors can be inferred—this represents the proposed fixed locations
to place a new sensor. With newly located sensors, we can get new and different matrices with a
reduced scope of hot-zones.

In Figure 3, an example of dispersed sensors in a geo-referenced region is observed. Two of the
four sensors were identified as hot-zones: Sensor 2 (in red) and Sensor 3 (in magenta) in contrast with
green sensors. In Figure 3, the scope of the hot-zone is reduced, approaching sensor 3, but it could go
to the other way around, approaching sensor 2. The scope of the hot-zone will be reduced based on the
sensors’ data and using the analogy of a binary search, that is, taking one of two paths. This process
will generate another dynamic map of the sensor.

Figure 3. A recursive search of midpoints within hot-zones.

In the next section, the process is applied for a specific situation.
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3. Process Implementation

A critical problem in the big cities is air quality. Therefore, air pollution indicators of the
Guadalajara Metropolitan Zone (GMZ) in the Jalisco State of Mexico were treated. The GMZ is the
second most populous area in Mexico with more than 5 million habitants.

In order to choose our data sample, we consulted the official Mexican standards for population
health [23,24], which recommended the following variables: PM10, PM2.5, O3, NO2, SO2, and carbon
monoxide (CO) [23], and the World Health Organization (WHO) whose guidelines for improving air
quality include the reduction of particulate matter (PM), ozone (O3), nitrogen dioxide (NO2), and sulfur
dioxide (SO2).

For Phase 1 of the process (see Figure 2), we downloaded files from the information page of
the Secretariat of the Environment and Territorial Development of Jalisco State [25], in Microsoft
Office Excel software format. Data from 21 years of air variables, from 1996 to 2017, were recovered.
Sensor data monitoring started with eight stations and, in 2012, two additional stations were added.
The records contained data from every hour for each station. After analyzing the data, January to
December, 2015 was selected as a sample. In this year, the 10 stations were implemented, and it
presented fewer missing values when compared with other years.

For Phase 2 of the process, the dataset was cleaned—that is, null data were eliminated. Also,
the variable PM2.5 was not considered because, initially, there were no sensors for it. Moreover,
when sensors that could monitor it were installed, they contained a massive amount of null values.

Observations were labeled according to a certain level of air quality, as indicated by the Mexican
reference Metropolitan Index of Air Quality (IMECA by its Spanish initials), as shown in Table 1.

Table 1. Concentration intervals for color assignment or air quality levels [24].

IMECA O3 [ppm] NO2 [ppm] SO2 [ppm] CO [ppm] PM10 [mg/m3]

0–50 0.000–0.055 0.000–0.105 0.000–0.065 0.00–5.50 0–60
51–100 0.056–0.110 0.106–0.210 0.066–0.130 5.51–11.00 61–120

101–150 0.111–0.165 0.211–0.315 0.131–0.195 11.01–16.50 121–220
151–200 0.166–0.220 0.316–0.420 0.196–0.260 16.51–22.00 221–320

>200 >0.220 >0.420 >0.260 >22.00 >320

The variables have a different range. The variable with the highest value according to its range is
the one that indicates the air quality level by color. Pollution levels are classified as: good = level 1 in
green color; fair = level 1 in yellow color; bad = level 5 in orange color; very bad = level 4 in red color,
and extremely bad = level 5 in magenta color. Table 2 shows an extract of registered entries in a file
after being classified with the quality label in the sixth column.

Table 2. Fragment of the sample of observations captured by sensors classified with a quality label.

CO NO2 O3 PM10 SO2 Quality

0.588 0.0181 0.0176 7.31 0.00207 1
1.139 0.02767 0.01062 14.6 0.00197 1
2.235 0.03053 0.00178 65.8 0.00232 2
1.204 0.03698 0.01597 123.4 0.002 3
1.361 0.03257 0.0149 154.18 0.002 3
0.64 0.01578 0.00308 58.8 0.001 1
22.83 0.01503 0.00217 49.1 0.001 5

Then, data analysis algorithms were selected. As mentioned with the objective of discarding,
if possible, some variables with less influence for the quality classification. Also, algorithms to train
with machine learning that require fixed-size datasets and disk storage were selected, because it added
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a function of partial elimination of records in the cloud. For Phases 3 and 4, the R language, kernlab,
e1071, rpart, and doParallel libraries were applied to support the process.

Three prediction methods were tested: multiple linear regression (MLR), support vector machine
(SVM), and decision trees implementing a classification and regression tree (CART). The first one
(MLR) was chosen to explore the linear model. The second and third methods were used for testing
because of the advantages they present, such as parallelization and reliability.

For the MLR test, six variables were involved—the quality label as a dependent variable,
and CO, NO2, O3, PM10, and SO2 as independent variables. Once the files were cleaned and
filtered, 66,880 observations formed the data sample. The data-training group contained 70% of these
observations, with a total of 46,816 observations. The MLR test presented an R-squared of 58.13%,
not reaching the expected 80%, indicating that the data did not fit a linear function.

For the SVM, two groups were formed: the training and testing groups. The first group contained
46,816 records, and the testing group 20,064 records, the values for the kernel parameter were
rbfdot, radial, and hyperparameter sigma = 0.5. For both, the training error of 20% was obtained.
The equivalent algorithm for both cases is represented by a mathematical equation in which the outputs
are the Quality level; this virtually eliminates comparisons and decreases execution time.

CART showed a root node error of 16974/66881 = 0.25379, reducing the comparison variables
PM10 and O3. However, the model does not classify for level 5 because there are few entries with that
label, so that specific output is not explained, as shown in Figure 4.

Figure 4. Training results using machine learning applying the CART classification technique.

3.1. Algorithms for Classification and Training

The goal of these algorithms is to classify data and each data acquisition, from the sensor a set of
variables is identified as a record=(_n 1){ variable _i }, where n is the given number of variables of
instrumentation, for example, light intensity, humidity, or movement. To get the registration form as
register = |1|2||3||n| where each number is associated with a risk level of quality, as indicated by the
standards. In our case of study, the record is formed by the variables register = CO, NO2, O3, PM10,
SO3 to be classified according to the level of quality from the IMECA index.

According to the results of Phase 3 of the process (see Figure 2), in Phase 4, the algorithms were
executed—the algorithm to classify the sensor inputs, and the algorithm for training and setting the
prediction model. Here, we proposed an architecture that allows each sensor to dispatch data captured
to different processing threads, using cloud computing for a distributed performance, and with access
to the shared memory. Figure 5 depicts the parallel processing of the data inputs captured by the
sensors, their destinations in the cloud, and a matrix with frequencies, the shared memory variable to
identify the hot-zones.
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Figure 5. A general scheme of big data analysis with classification threads, an updated matrix with
frequencies of pollution levels, and cloud training.

Classifying the sensor’s inputs can be made by a table in memory, in which the intervals for the
variables are specified. In this case, a systematic review is carried out, starting with the values that
exceed the limits in the IMECA classification. The best case is when just one comparison is needed,
and the worst case is when the variable does not exceed any previous interval and must continue with
the comparisons to the green level 1—see Figure 6.

This classification can be optimized through CART reducing conditions, as can be observed in
Figure 7. In this case, the number of variables is two (PM10 and O3)—the input lacks some variable
values (i.e. CO, SO2, or NO2 variables) that are not necessary in this case for the classification.

It is essential to highlight that, if a mathematical model presents a proper classification solution,
for example, through the MLR model, that must be the less resource-consuming path to follow.
Otherwise, as in this case, a classification method has to be selected. In any case, a matrix with the
frequencies of sensors’ events has to be updated. This update requires observing a time range. It is also
necessary to label a representative sample of the big data burst, which will be used as a training group,
maintaining the observation stored. The remaining registers are eliminated, avoiding the demand for
storage space.

Cloud storage occurs to form a temporary dataset for training, to take advantage of resources,
and to distribute tasks for the tests with machine learning techniques. In the cloud, a process is
activated when a sample size or a specific period is reached. The process consists of using the training
data with the selected methods in Phase 3 of the process. In this example, SVM and CART run in
parallel and are distributed concurrently. The algorithm finally updates the classification model to be
read by the threads that will perform the classification.
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Figure 6. Flowchart for level classification.

Figure 7. CART Algorithm from data training.

3.2. Matrices for the Dynamic Map

The objective of the frequency matrix is to provide an environment variable in shared memory.
This variable content is the sum of incidents specifying time intervals with high risk. Frequent readings
to this matrix will be performed to draw on a georeferenced map with the current sensors.

The frequency matrix accumulates the number of quality levels labeled (see Figure 5) during a
specific time. In this way, the sensors with the highest levels of pollution are easily identified—Table 3
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depicts one of these periods for five sensors. In Table 3, it can be observed that sensors 3, 4, and 5 have
the highest frequency in Level 5, meaning that they are classified as extremely bad.

Table 3. The frequency matrix of Quality levels with five sensors.

Sensor
Level

Quality 1
(Good)

Level
Quality 2

(Fair)

Level
Quality 3

(Bad)

Level
Quality 4

(Very Bad)

Level
Quality 5

(Extremely Bad)

1 452,567 6,298,653 7,302,451 3,245,121 1,012,563
2 452,567 543,765 983,432 393,592 754,832
3 1,902,345 4,210,213 4,329,034 3,290,546 7,554,901
4 761,432 845,789 904,786 653,903 4,942,104
5 3,902,432 4,897,902 2,304,602 1,906,341 9,435,890

In order to locate or relocate sensors, a matrix indicating sensors in neighboring areas is required.
See, for example, Table 3, where the name to identify the sensor implies its coordinates. In Table 4 can
be observed, for instance, that Sensor 1 (Oblatos) in the first row is in the surrounding area with Sensors
2, 4, and 5 (Centro, Tlaquepaque, and Loma Dorada) indicated by a number ‘1’ in those columns.

Table 4. Neighboring sensors matrix.

Sensor Sensor 1
Oblatos

Sensor 2
Centro

Sensor 3
Miravalle

Sensor 4
Tlaquepaque

Sensor 5
Loma Dorada

1 1 1 1
2 1 1 1
3 1 1
4 1 1
5 1 1 1

Matching frequency matrix to the neighbor sensors with high pollution levels can be deduced.
Locating new sensors in the highest levels of pollution will help getting a better understanding
regarding the contamination source or the type variants that are affecting the area. The dynamic model
might change the location requirements by distinguishing a new sensor’s location or the relocation of
those that are already in the system.

In our example, new sensors could be located where the two arrows point in Figure 8. These are
between sensors 3 and 4, and sensors 4 and 5 (corresponding to Miravalle, Tlaquepaque and Loma
Dorada). According to the frequency matrix in Table 3, these three sensors have a high number of
records at level 5, or Extremely bad, and they also correspond to neighboring areas according to the
neighboring matrix in Table 4, where it can be observed that sensor 3 is adjacent to sensor 4, and sensor
4 is adjacent to sensor 5.



Appl. Sci. 2019, 9, 4196 12 of 14

Figure 8. Georeferenced map the neighbor’s sensor border on a first run of a recursive process.

4. Conclusions

The development of smart cities has led to the increase of sensors in cities—with them, it is
possible to identify phenomena to meet one of its main objectives, the development of quality of life
and sustainability. Therefore, it is essential to have methods that help to establish a better location for
new sensors in existing critical points or hot-zones.

We propose that the analysis of the data generated by the same sensors, provides information
helpful to identify the hot-zones, and to locate or relocate sensors.

Based on the data mining paradigm, we observed that this is not sufficient for a dynamic system.
Thus, our process includes the last phase for the recognition and visualization of hot-zones, a perimeter
with significant data related to the observed phenomenon. The information captured by the sensors
determines the location of new sensors, or the relocation of those already receiving data.

The proposed process offers a scheme for data labeling, creating a dynamic classification model.
The classification and training algorithms in the cloud manage an independent control. Then, prediction
techniques required to be tested to get those that better fit the data.

In our case study, data regarding air pollution in the Guadalajara Metropolitan Zone in Mexico
was analyzed and, for that, the SVM was selected. With the SVM, different parameters were tested,
and it was adjusted to different kernels, allowing for more accurate predictions.

Finally, two algorithms were designed as a result of the application of the process. These algorithms
are independent processes on threads using cloud computing. The first one classifies each one of the
entries captured in order to generate a matrix of territorial adjacencies. The second one is trained with
a classification and regression tree (CART) and SVM. Although the development of the algorithms
was performed in the context of environmental variables, this proposal is autonomous with respect
to the sensors’ features. It can also be scaled to various types, including the quantity and volume of
information, because it does not require data storage. It is worth mentioning that it is necessary to
continuously verify the local and international standards for the algorithms since new sensors might
be incorporated varying in variables and ranges.

In future work, the combinations of variables obtained from sensors, along with other retrieving
variables, such as those coming from questionnaires, social media, or government data, will be included.
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