
applied
sciences

Article

Intelligent Neural Network Schemes for
Multi-Class Classification

Ying-Jie You 1, Chen-Yu Wu 1, Shie-Jue Lee 2,* and Ching-Kuan Liu 3,4

1 Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
M063010020@student.nsysu.edu.tw (Y.-J.Y.); M053010106@student.nsysu.edu.tw (C.-Y.W.)

2 Department of Electrical Engineering, Intelligent Electronic Commerce Research Center, National Sun
Yat-Sen University, Kaohsiung 804, Taiwan

3 Department of Neurology, Graduate Institute of Medicine, Kaohsiung Medical University,
Kaohsiung 807, Taiwan; ckliu@kmu.edu.tw

4 Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
* Correspondence: leesj@mail.ee.nsysu.edu.tw; Tel.: +886-7-5254141

Received: 31 August 2019; Accepted: 20 September 2019; Published: 26 September 2019
����������
�������

Featured Application: This work can be used in engineering and information applications.

Abstract: Multi-class classification is a very important technique in engineering applications, e.g.,
mechanical systems, mechanics and design innovations, applied materials in nanotechnologies, etc.
A large amount of research is done for single-label classification where objects are associated with
a single category. However, in many application domains, an object can belong to two or more
categories, and multi-label classification is needed. Traditionally, statistical methods were used;
recently, machine learning techniques, in particular neural networks, have been proposed to solve
the multi-class classification problem. In this paper, we develop radial basis function (RBF)-based
neural network schemes for single-label and multi-label classification, respectively. The number of
hidden nodes and the parameters involved with the basis functions are determined automatically by
applying an iterative self-constructing clustering algorithm to the given training dataset, and biases
and weights are derived optimally by least squares. Dimensionality reduction techniques are adopted
and integrated to help reduce the overfitting problem associated with the RBF networks. Experimental
results from benchmark datasets are presented to show the effectiveness of the proposed schemes.

Keywords: multi-class classification; single-label; multi-label; multi-label; activation function;
clustering algorithm

1. Introduction

Classification is one of the most important techniques for solving problems [1,2]. Infinitely many
problems can be viewed as classification problems. In daily life, telling a female person from a male one
is a classification problem, which is probably one of the earliest problems people face to solve. Giving
grades to a class of students could be an uneasy classification task for a teacher to work with. Deciding
the disease a patient may have based on the symptoms is a difficult classification task for a doctor.
Classification is also useful in engineering applications [3–6], e.g., mechanical systems, mechanics
and design innovations, applied materials in nanotechnologies, etc. For example, classification of
structures, systems, and components is very important to safety for fusion applications [7]. The product
quality has been found to be influenced by the engineering design, type of materials selected, and the
processing technology employed. Therefore, classification of engineering materials and processing
techniques is an important aspect of engineering design and analysis [8].

Appl. Sci. 2019, 9, 4036; doi:10.3390/app9194036 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app9194036
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/19/4036?type=check_update&version=2

Appl. Sci. 2019, 9, 4036 2 of 20

In general, classification consists of two phases, training and testing, as shown in Figure 1. In
the training phase, a collection of labeled objects is given. After attribute extraction, a set of training
instances is obtained, and they are used to train a model. In the testing phase, the trained model is used
to evaluate any input objects to determine which categories the input objects belong to. Normally, there
are m categories, m ≥ 2, such as Medicine, Finance, History, Management, and Education, involved
in the multi-class classification problem [9]. The data to be dealt with can be either single-label or
multi-label. If the given object belongs to one category, it is called single-label classification. On
the other hand, it is called multi-label classification if the given object can belong to two or more
categories [10,11].

Appl. Sci. 2019, 9, x FOR PEER REVIEW 2 of 20

engineering materials and processing techniques is an important aspect of engineering design and
analysis [8].

In general, classification consists of two phases, training and testing, as shown in Figure 1. In the
training phase, a collection of labeled objects is given. After attribute extraction, a set of training
instances is obtained, and they are used to train a model. In the testing phase, the trained model is
used to evaluate any input objects to determine which categories the input objects belong to.
Normally, there are m categories, 𝑚 ≥ 2, such as Medicine, Finance, History, Management, and
Education, involved in the multi-class classification problem [9]. The data to be dealt with can be
either single-label or multi-label. If the given object belongs to one category, it is called single-label
classification. On the other hand, it is called multi-label classification if the given object can belong to
two or more categories [10,11].

Figure 1. Functionality of classification.

In this paper, multi-class classification is concerned with a given set of N training instances, {𝐱ଵ, 𝒚ଵ}, {𝐱ଶ, 𝐲ଶ}, … , {𝐱ே, 𝐲ே}, where

• 𝐱𝒊 = ൫𝑥ଵ,௜, 𝑥ଶ,௜, … , 𝑥௡,௜൯, 1 ≤ 𝑖 ≤ 𝑁, is the input vector of instance i. There are n attributes, with real
attribute values 𝑥௝,௜, 1 ≤ 𝑗 ≤ 𝑛 in 𝐱௜.

• 𝐲𝒊 = ൫𝑦ଵ,௜, 𝑦ଶ,௜, … , 𝑦௠,௜ ൯, 1 ≤ 𝑖 ≤ 𝑁, is the input vector of instance i. There are m, 𝑚 ≥ 2, categories,
category 1, category 2,…, category m. For instance, i, 𝑦௝,௜ = +1 if the instance belongs to category
j and 𝑦௝,௜ = −1 if the instance does not belong to category j, 1 ≤ 𝑗 ≤ 𝑚.

Note that ሺ𝑎ଵ, 𝑎ଶ, … , 𝑎௞ሻ indicates the k-vector ሾ𝑎ଵ 𝑎ଶ … 𝑎௞ሿ். The aim of this paper is, given the
set of N training instances, to decide which categories a given input vector, 𝐩 = ሺ𝑝ଵ, … , 𝑝௡ሻ, belongs
to. For single-label classification, one and only one +1 appears in every target vector, while for multi-
label classification, two or more entries in any target vector can be allowed to be +1.

Traditionally, statistical methods were used for multi-class classification [12,13]. Recently,
machine learning techniques have been proposed for solving the multi-class classification problem.
The decision tree (DT) algorithm [14,15] uses a tree structure with if-then rules, running the input
values through a series of decisions until it reaches a termination condition. It is highly intuitive, but
it can easily overfit the data. Random forest (RandForest) [16] creates an ensemble of decision trees
and can reduce the problem of overfitting. The naive Bayesian classifier [2] is a probability-based
classifier. It calculates the likelihood that each data point exists in each of the target categories. It is
easily implemented but may be sensitive to the characteristics of the attributes involved. The k-
Nearest neighbor (KNN) algorithm [17–19] classifies each data point by analyzing its nearest
neighbors among the training examples. It is intuitive and easily implemented. However, it is
computationally intensive.

Neural networks are another machine learning technique, carrying out the classification work
by passing the input values through multiple layers of neurons that can perform nonlinear
transformations on the data. A neural network derives its computing power mainly through its
massively parallel, distributed structure and its ability of learning and generalization, which make it
possible for neural networks to find good approximate solutions to complex problems that are
intractable. There are many types of neural networks. Perhaps the most common one is multiple-

Figure 1. Functionality of classification.

In this paper, multi-class classification is concerned with a given set of N training instances,{
x1, y1

}
,
{
x2, y2

}
, . . . ,

{
xN, yN

}
, where

• xi = (x1,i, x2,i, . . . , xn,i), 1 ≤ i ≤ N, is the input vector of instance i. There are n attributes, with real
attribute values x j,i, 1 ≤ j ≤ n in xi.

• yi = (y1,i, y2,i, . . . , ym,i), 1 ≤ i ≤ N, is the input vector of instance i. There are m, m ≥ 2, categories,
category 1, category 2, . . . , category m. For instance, i, y j,i = +1 if the instance belongs to category
j and y j,i = −1 if the instance does not belong to category j, 1 ≤ j ≤ m.

Note that (a1, a2, . . . , ak) indicates the k-vector [a1 a2 . . . ak]
T. The aim of this paper is, given

the set of N training instances, to decide which categories a given input vector, p = (p1, . . . , pn),
belongs to. For single-label classification, one and only one +1 appears in every target vector, while for
multi-label classification, two or more entries in any target vector can be allowed to be +1.

Traditionally, statistical methods were used for multi-class classification [12,13]. Recently, machine
learning techniques have been proposed for solving the multi-class classification problem. The decision
tree (DT) algorithm [14,15] uses a tree structure with if-then rules, running the input values through a
series of decisions until it reaches a termination condition. It is highly intuitive, but it can easily overfit
the data. Random forest (RandForest) [16] creates an ensemble of decision trees and can reduce the
problem of overfitting. The naive Bayesian classifier [2] is a probability-based classifier. It calculates
the likelihood that each data point exists in each of the target categories. It is easily implemented
but may be sensitive to the characteristics of the attributes involved. The k-Nearest neighbor (KNN)
algorithm [17–19] classifies each data point by analyzing its nearest neighbors among the training
examples. It is intuitive and easily implemented. However, it is computationally intensive.

Neural networks are another machine learning technique, carrying out the classification work by
passing the input values through multiple layers of neurons that can perform nonlinear transformations
on the data. A neural network derives its computing power mainly through its massively parallel,
distributed structure and its ability of learning and generalization, which make it possible for neural
networks to find good approximate solutions to complex problems that are intractable. There are
many types of neural networks. Perhaps the most common one is multiple-layer perceptrons (MLPs).

Appl. Sci. 2019, 9, 4036 3 of 20

An MLP is a class of fully connected, feedforward neural network, consisting of an input layer, an
output layer, and a certain number of hidden layers [20,21]. Each node is a neuron associated with a
nonlinear activation function, and the gradient descent backpropagation algorithm is adopted to train
the weights and biases involved in the network. In general, trial-and-error is needed to determine
the number of hidden layers and the number of neurons in each hidden layer, and long learning time
is required by the backpropagation algorithm. Support vector machines (SVMs) are models with
associated learning algorithms that analyze data used for classification [22–24]. Training instances of
the separate categories are divided by a gap as wide as possible. One disadvantage is that several key
parameters need to be set correctly for SVMs to achieve good classification results. Other limitations
include the speed in training and the optimal design for multi-class SVM classifiers [25]. Recently, deep
learning neural networks have successfully been applied to analyzing visual imagery [26–28]. They
impose less burden on the user compared to other classification algorithms. The independence from
prior knowledge and human effort in feature design is a major advantage. However, deep learning
networks are computationally expensive. A large dataset for training is required. Hyperparameter
tuning is non-trivial.

The radial basis function (RBF) network is another type of neural network for multi-class
classification problems. Broomhead and Lowe [29] were the first to develop the RBF network model.
An RBF network is a two-layer network. In the first layer, the distances between the input vector and
the centers of the basis functions are calculated. The second layer is a standard linearly weighted layer.
While MLP uses global activation functions, RBF uses local basis functions, which means that the
outputs are close to zero for a point that is far away from the center points. There are pros and cons
with RBF networks. The configuration of hyper-parameters, e.g., the fixed number of layers and the
choice of basis functions, is much simpler than that of MLP, SVM, or CNN. Unlike the MLP network,
RBF can have fewer problems with local minima and the local basis functions adopted by RBF can
lead to faster training [30]. Also, the local basis functions can be very useful for adaptive training, in
which the network continues to be incrementally trained while it is being used. For new training data
coming from a certain region of the input space, the weights of those neurons will not be adjusted if
the neurons fall outside that region. However, because of locality, basis centers of the RBF network
must be spread throughout the range of the input space. This leads to the problem of the curse of
dimensionality and there is a greater likelihood that the network will overfit the training data [31].

In this paper, we develop RBF-based neural network schemes for single-label and multi-label
classification, respectively. The number of hidden nodes, as well as the centers and deviations
associated with them, in the first layer of RBF networks are determined automatically by applying an
iterative self-constructing clustering algorithm to the given training dataset. The weights and biases in
the second layer are derived optimally by least squares. Also, dimensionality reduction techniques,
e.g., information gain, mutual information, and linear discriminant analysis (LDA), are developed and
integrated to reduce the curse of dimensionality to avoid the overfitting problem associated with the
RBF networks. The rest of this paper is organized as follows. The RBF-based network schemes for
multi-class classification are proposed and described in Section 2. Techniques for reducing the curse of
dimensionality are given in Section 3. Experimental results from benchmark datasets to demonstrate
the effectiveness of the proposed schemes are presented in Section 4. Finally, conclusions and future
work are commented in Section 5.

2. Proposed Network Schemes

In this section, we first describe the proposed RBF-based network schemes. Then, we describe
how to construct the RBF networks involved in the schemes, followed by the learning of the parameters
associated with the RBF networks.

Appl. Sci. 2019, 9, 4036 4 of 20

2.1. RBF-Based Network Schemes

Two schemes, named SL-Scheme and ML-Scheme, are developed. SL-Scheme, as shown in
Figure 2, is for single-label multi-class classification. Note that M-RBF is a multi-class RBF network.
The competitive activation function [31], compet, is used in Figure 2 at all the output nodes, defined as

compet(x) =

{
+1, for output k i f k = argmaxi{xi}

−1, for all other output nodes
. (1)

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 20

The competitive activation function [31], compet, is used in Figure 2 at all the output nodes, defined
as competሺ𝐱ሻ = ൜ +1, for output 𝑘 if 𝑘 = argmax௜{𝑥௜}−1, for all other output nodes . (1)

Note that compet could also be defined as a continuous function like the competitive layer in a
Hamming network. Namely, the neurons compete with each other to determine a winner and only
the winner will have a nonzero output. The winning neuron indicates which category of input was
presented to the network. Both definitions can achieve the same goal.

The architecture of M-RBF is shown in Figure 3. There are n nodes in the input layer, J nodes in
the hidden layer, and m nodes in the second layer of M-RBF. Each node j in the hidden layer of M-
RBF is associated with a basis function 𝑔௝ሺ𝐱ሻ. For a given input vector p, node j in the hidden layer
of M-RBF has its output as 𝑜௝ଵሺ𝐩ሻ = 𝑔௝ሺ𝐩ሻ (2)

for 1 ≤ 𝑗 ≤ 𝐽. Node i in the second layer of M-RBF has its output as 𝑜௜ଶሺ𝐩ሻ = 𝑤௜,଴ + 𝑜ଵଵሺ𝐩ሻ𝑤௜,ଵ + … + 𝑜௃ଵሺ𝐩ሻ𝑤ଵ,௃ (3)

where 𝑤௜,଴ is the bias of the output node and 𝑤௜,ଵ, … , 𝑤ଵ,௃ are the weights between node i of the
second layer and node j of the hidden layer. Then, compet൫𝐨ଶሺ𝐩ሻ൯ is computed. If the kth output of compet൫𝐨ଶሺ𝐩ሻ൯ is +1, i.e., 𝑜௞ሺ𝐩ሻ = +1, p is classified to category k.

Figure 2. Diagram of single-label (SL)-Scheme for single-label classification.

Figure 3. Multi-class radial basis function (RBF) network M-RBF.

ML-Scheme, as shown in Figure 4, is used for multi-label multi-class classification. Note that the
symmetrical hard limit activation function [31], hardlims, is used at every output node, defined as hardlimsሺ𝑥ሻ = ൜+1, if 𝑥 ≥ 0−1, if 𝑥 < 0 . (4)

To predict the classifications of any input vector p, we calculate the network output 𝑜௞ሺ𝐩ሻ, 1 ≤𝑘 ≤ 𝑚, as

Figure 2. Diagram of single-label (SL)-Scheme for single-label classification.

Note that compet could also be defined as a continuous function like the competitive layer in a
Hamming network. Namely, the neurons compete with each other to determine a winner and only
the winner will have a nonzero output. The winning neuron indicates which category of input was
presented to the network. Both definitions can achieve the same goal.

The architecture of M-RBF is shown in Figure 3. There are n nodes in the input layer, J nodes
in the hidden layer, and m nodes in the second layer of M-RBF. Each node j in the hidden layer of
M-RBF is associated with a basis function g j(x). For a given input vector p, node j in the hidden layer
of M-RBF has its output as

o1
j (p) = g j(p) (2)

for 1 ≤ j ≤ J. Node i in the second layer of M-RBF has its output as

o2
i (p) = wi,0 + o1

1(p)wi,1 + . . . + o1
J (p)w1,J (3)

where wi,0 is the bias of the output node and wi,1, . . . , w1,J are the weights between node i of the
second layer and node j of the hidden layer. Then, compet

(
o2(p)

)
is computed. If the kth output of

compet
(
o2(p)

)
is +1, i.e., ok(p) = +1, p is classified to category k.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 20

The competitive activation function [31], compet, is used in Figure 2 at all the output nodes, defined
as competሺ𝐱ሻ = ൜ +1, for output 𝑘 if 𝑘 = argmax௜{𝑥௜}−1, for all other output nodes . (1)

Note that compet could also be defined as a continuous function like the competitive layer in a
Hamming network. Namely, the neurons compete with each other to determine a winner and only
the winner will have a nonzero output. The winning neuron indicates which category of input was
presented to the network. Both definitions can achieve the same goal.

The architecture of M-RBF is shown in Figure 3. There are n nodes in the input layer, J nodes in
the hidden layer, and m nodes in the second layer of M-RBF. Each node j in the hidden layer of M-
RBF is associated with a basis function 𝑔௝ሺ𝐱ሻ. For a given input vector p, node j in the hidden layer
of M-RBF has its output as 𝑜௝ଵሺ𝐩ሻ = 𝑔௝ሺ𝐩ሻ (2)

for 1 ≤ 𝑗 ≤ 𝐽. Node i in the second layer of M-RBF has its output as 𝑜௜ଶሺ𝐩ሻ = 𝑤௜,଴ + 𝑜ଵଵሺ𝐩ሻ𝑤௜,ଵ + … + 𝑜௃ଵሺ𝐩ሻ𝑤ଵ,௃ (3)

where 𝑤௜,଴ is the bias of the output node and 𝑤௜,ଵ, … , 𝑤ଵ,௃ are the weights between node i of the
second layer and node j of the hidden layer. Then, compet൫𝐨ଶሺ𝐩ሻ൯ is computed. If the kth output of compet൫𝐨ଶሺ𝐩ሻ൯ is +1, i.e., 𝑜௞ሺ𝐩ሻ = +1, p is classified to category k.

Figure 2. Diagram of single-label (SL)-Scheme for single-label classification.

Figure 3. Multi-class radial basis function (RBF) network M-RBF.

ML-Scheme, as shown in Figure 4, is used for multi-label multi-class classification. Note that the
symmetrical hard limit activation function [31], hardlims, is used at every output node, defined as hardlimsሺ𝑥ሻ = ൜+1, if 𝑥 ≥ 0−1, if 𝑥 < 0 . (4)

To predict the classifications of any input vector p, we calculate the network output 𝑜௞ሺ𝐩ሻ, 1 ≤𝑘 ≤ 𝑚, as

Figure 3. Multi-class radial basis function (RBF) network M-RBF.

Appl. Sci. 2019, 9, 4036 5 of 20

ML-Scheme, as shown in Figure 4, is used for multi-label multi-class classification. Note that the
symmetrical hard limit activation function [31], hardlims, is used at every output node, defined as

hardlims(x) =

{
+1, if x ≥ 0
−1, if x < 0

. (4)

Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 20

𝑜௞ሺ𝐩ሻ = hardlims൫𝑜௞ଶሺ𝐩ሻ൯. (5)

If 𝑜௜ሺ𝐩ሻ = +1 for any i, p is classified to category i. Therefore, p can be classified to several
categories.

Figure 4. Diagram of multi-label (ML)-Scheme for multi-label classification.

2.2. Construction and Learning of RBF Networks

Next, we describe how the M-RBF network is constructed. In a neural network application, one
has to try many possible values of hyper-parameters and select the best configuration of hyper-
parameters. Typically, hyper-parameters include the number of hidden layers, the number of nodes
in each hidden layer, the activation functions involved, the learning algorithms used, etc. Several
methods can be used to tune hyper-parameters, such as manual hyper-parameter tuning, grid search,
random search, and Bayesian optimization. For MLPs and CNNs, many different activation functions
can be used, e.g., symmetrical hard limit, linear, saturating linear, log-sigmoid, hyperbolic tangent
sigmoid, positive linear, competitive, etc. The networks can be trained by many different learning
algorithms. Also, the number of hidden layers and the number of hidden nodes can vary in a wide
range. This may lead to a huge search space, and thus finding the best configuration of hyper-
parameters from it is a very inefficient and tedious tuning process.

Determining the hyper-parameters is comparatively easier for RBF networks. An RBF is a two-
layer network, i.e., containing only one hidden layer. Clustering techniques, e.g., a self-constructing
clustering algorithm, can be applied to determine the number of hidden neurons. There are several
types of activation function that can be used, but the Gaussian function is the one most commonly
used. RBF networks can be trained by the same learning techniques used in MLPs. However, they
are commonly trained by a more efficient two-stage learning algorithm. In the first stage, the centers
and deviations in the first layer are found by clustering. In the second stage, the weights and biases
associated with the second layer are calculated by least squares. In summary, regarding the
configuration of hyper-parameters, (1) the number of layers, i.e., two layers, the Gaussian basis
function, the least squares method, and the activation functions associated with the output layer are
the decisions taken, and (2) the number of neurons in the hidden layer is the customized parameter
and is determined by clustering.

Here, we describe how the multi-class RBF network, M-RBF, is constructed and trained. Firstly,
the training instances are divided, by the iterative self-constructing clustering algorithm (SCC) [32]
briefly summarized in the Appendix A, into J clusters each having center 𝐜௝ = ൫𝑐ଵ,௝, 𝑐ଶ,௝, … , 𝑐௡,௝൯ and
deviation 𝐯௝ = ൫𝑣ଵ,௝, 𝑣ଶ,௝, … , 𝑣௡,௝൯, 1 ≤ 𝑗 ≤ 𝐽. Then, the hidden layer in M-RBF 𝒊 has J hidden nodes.
The basis function 𝑔௝ሺ𝐱ሻ of node j in the hidden layer of M-RBF is the Gaussian function

𝑔௝ሺ𝐱ሻ = ෑ exp௡
௞ୀଵ ൥− ቆ𝑥௞ − 𝑐௞,௝𝑣௞,௝ ቇଶ൩ (6)

for 1 ≤ 𝑗 ≤ 𝐽. Note that several different types of basis function can be used [29], but Gaussian is the
one most commonly used in the neural network community.

The settings for 𝑤௞,଴, 𝑤௞,ଵ, . . . , 𝑤௞,௃, 1 ≤ 𝑘 ≤ 𝑚, are optimally derived as follows. For training
instance {𝐱௜, 𝐲௜}, 1 ≤ 𝑖 ≤ 𝑁, let

Figure 4. Diagram of multi-label (ML)-Scheme for multi-label classification.

To predict the classifications of any input vector p, we calculate the network output ok(p), 1 ≤ k ≤
m, as

ok(p) = hardlims
(
o2

k(p)
)
. (5)

If oi(p) = +1 for any i, p is classified to category i. Therefore, p can be classified to
several categories.

2.2. Construction and Learning of RBF Networks

Next, we describe how the M-RBF network is constructed. In a neural network application, one has
to try many possible values of hyper-parameters and select the best configuration of hyper-parameters.
Typically, hyper-parameters include the number of hidden layers, the number of nodes in each hidden
layer, the activation functions involved, the learning algorithms used, etc. Several methods can be
used to tune hyper-parameters, such as manual hyper-parameter tuning, grid search, random search,
and Bayesian optimization. For MLPs and CNNs, many different activation functions can be used, e.g.,
symmetrical hard limit, linear, saturating linear, log-sigmoid, hyperbolic tangent sigmoid, positive
linear, competitive, etc. The networks can be trained by many different learning algorithms. Also, the
number of hidden layers and the number of hidden nodes can vary in a wide range. This may lead
to a huge search space, and thus finding the best configuration of hyper-parameters from it is a very
inefficient and tedious tuning process.

Determining the hyper-parameters is comparatively easier for RBF networks. An RBF is a two-layer
network, i.e., containing only one hidden layer. Clustering techniques, e.g., a self-constructing clustering
algorithm, can be applied to determine the number of hidden neurons. There are several types of
activation function that can be used, but the Gaussian function is the one most commonly used. RBF
networks can be trained by the same learning techniques used in MLPs. However, they are commonly
trained by a more efficient two-stage learning algorithm. In the first stage, the centers and deviations
in the first layer are found by clustering. In the second stage, the weights and biases associated
with the second layer are calculated by least squares. In summary, regarding the configuration of
hyper-parameters, (1) the number of layers, i.e., two layers, the Gaussian basis function, the least
squares method, and the activation functions associated with the output layer are the decisions taken,
and (2) the number of neurons in the hidden layer is the customized parameter and is determined
by clustering.

Here, we describe how the multi-class RBF network, M-RBF, is constructed and trained. Firstly,
the training instances are divided, by the iterative self-constructing clustering algorithm (SCC) [32]
briefly summarized in the Appendix A, into J clusters each having center c j =

(
c1, j, c2, j, . . . , cn, j

)
and

Appl. Sci. 2019, 9, 4036 6 of 20

deviation v j =
(
v1, j, v2, j, . . . , vn, j

)
, 1 ≤ j ≤ J. Then, the hidden layer in M-RBFi has J hidden nodes. The

basis function g j(x) of node j in the hidden layer of M-RBF is the Gaussian function

g j(x) =
n∏

k=1

exp

−(xk − ck, j

vk, j

)2 (6)

for 1 ≤ j ≤ J. Note that several different types of basis function can be used [29], but Gaussian is the
one most commonly used in the neural network community.

The settings for wk,0, wk,1, . . . , wk,J, 1 ≤ k ≤ m, are optimally derived as follows. For training
instance

{
xi, yi

}
, 1 ≤ i ≤ N, let

y1,i = w1,0 + o1
1(xi)w1,1 + . . .+ o1

J (xi)w1,J, (7)

y2,i = w2,0 + o1
1(xi)w2,1 + . . .+ o1

J (xi)w2,J, (8)

...
...
..., (9)

ym,i = wm,0 + o1
1(xi)wm,1 + . . .+ o1

J (xi)wm,J. (10)

In this way, for each i, 1 ≤ i ≤ m, we have N equations, which are expressed as

Owi = di (11)

with

O =


1
1

o1
1(x1)

o1
1(x2)

· · ·
o1

J (x1)

o1
J (x2)

...
. . .

...
1 o1

1(xN) · · · o1
J (xN)

, wi =


wi,0
wi,1

...
wi,J

, di =


yi,1
yi,2

...
yi,N

. (12)

Then, we have the following cost function:

F(wi) = (di −Owi)
T(di −Owi) (13)

By minimizing the cost function with the linear least squares method [33], we obtain the optimal
bias and weights for M-RBF as

w∗i =
[
OTO

]−1
OTdi (14)

for 1 ≤ i ≤ m.

2.3. An Illustration

An example is given here for illustration. Suppose we have a single-label application with 3
categories, having 12 training instances:

x1 = (0.30, 0.60), y1 = (+1,−1,−1);

x2 = (0.70, 0.35), y2 = (−1,+1,−1);

x3 = (0.50, 0.52), y3 = (+1,−1,−1);

x4 = (0.35, 0.38), y4 = (+1,−1,−1);

x5 = (0.19, 0.89), y5 = (−1,−1,+1);

x6 = (0.78, 0.20), y6 = (−1,+1,−1);

Appl. Sci. 2019, 9, 4036 7 of 20

x8 = (0.24, 0.81), y8 = (−1,−1,+1);

x10 = (0.40, 0.65), y10 = (+1,−1,−1);

x12 = (0.24, 0.89), y12 = (−1,−1,+1);

Note that n = 2 and m = 3. We apply SCC to these training instances. Let v0 be 0.001. Three
clusters are obtained:

c1 = (0.366, 0.526), v1 = (0.0892, 0.1063);

c2 = (0.70, 0.2667), v2 = (0.081, 0.0774);

c3 = (0.24, 0.87), v3 = (0.0418, 0.041).

Then, we build the M-RBF network with 2 input nodes (n = 2), 3 hidden nodes (J = 3), and 3
output nodes (m = 3). From Equation (14), the settings for wk,0, wk,1 , wk,2, wk,3, 1 ≤ k ≤ 3, are optimally
derived by

w1 =
(
OTO

)−1
OTd1 = (1.0, 0.9337, −0.8453, −0.8740)

w2 =
(
OTO

)−1
OTd2 = (1.0, −0.8208, 0.8395, −0.6254)

w3 =
(
OTO

)−1
OTd3 = (1.0, −0.8981, −0.8065, 0.8659).

The detailed SL-Scheme for this example is shown in Figure 5.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 20

Note that n = 2 and m = 3. We apply SCC to these training instances. Let 𝑣଴ be 0.001. Three
clusters are obtained:

Then, we build the M-RBF network with 2 input nodes (n = 2), 3 hidden nodes (J = 3), and 3
output nodes (m = 3). From Equation (14), the settings for 𝑤௞,଴, 𝑤௞,ଵ , 𝑤௞,ଶ, 𝑤௞,ଷ, 1 ≤ 𝑘 ≤ 3,
are optimally derived by 𝐰ଵ = ሺ𝐎்𝐎ሻିଵ𝐎்𝐝ଵ = ሺ1.0, 0.9337, −0.8453, −0.8740ሻ 𝐰ଶ = ሺ𝐎்𝐎ሻିଵ𝐎்𝐝ଶ = ሺ1.0, −0.8208, 0.8395, −0.6254ሻ 𝐰ଷ = ሺ𝐎்𝐎ሻିଵ𝐎்𝐝ଷ = ሺ1.0, −0.8981, −0.8065, 0.8659ሻ.

The detailed SL-Scheme for this example is shown in Figure 5.

Figure 5. SL-Scheme for the example.

For the input vector p = (0.4, 0.5), we have 𝑜ଵଵሺ𝐩ሻ = 1.8067 , 𝑜ଶଵሺ𝐩ሻ = 1.1440 × 10ିସ , and 𝑜ଷଵሺ𝐩ሻ = 4.3337 × 10ି଻. Consequently, we have 𝑜ଵଶሺ𝐩ሻ = 𝑤ଵ,଴ + 𝑜ଵଵሺ𝐩ሻ𝑤ଵ,ଵ+ , 𝑜ଶଵሺ𝐩ሻ𝑤ଵ,ଶ + 𝑜ଷଵሺ𝐩ሻ𝑤ଵ,ଷ = 2.6868, 𝑜ଶଶሺ𝐩ሻ = 𝑤ଶ,଴ + 𝑜ଵଵሺ𝐩ሻ𝑤ଶ,ଵ+ , 𝑜ଶଵሺ𝐩ሻ𝑤ଶ,ଶ + 𝑜ଷଵሺ𝐩ሻ𝑤ଶ,ଷ = −0.4829, 𝑜ଷଶሺ𝐩ሻ = 𝑤ଷ,଴ + 𝑜ଵଵሺ𝐩ሻ𝑤ଷ,ଵ+ , 𝑜ଶଵሺ𝐩ሻ𝑤ଷ,ଶ + 𝑜ଷଵሺ𝐩ሻ𝑤ଷ,ଷ = −0.6227.
Since oଵଶሺ𝐩ሻ is the largest, through the competitive transfer function we have 𝑜ଵሺ𝐩ሻ = +1 , 𝑜ଶሺ𝐩ሻ = −1, and 𝑜ଷሺ𝐩ሻ = −1. Therefore, o(p) = (+1, −1, −1) and p is classified to category 1.

3. Dimensionality Reduction

As mentioned, RBF networks may suffer from the curse of dimensionality. To avoid the
overfitting problem, we develop and integrate several dimensionality reduction techniques to work
with RBF networks.

3.1. Feature Selection

Irrelevant or weakly relevant attributes may cause overfitting. Several techniques are adopted
to select the attributes that are most relevant to the underlying classification problem.

𝐜ଵ = ሺ0.366,0.526ሻ, 𝐯ଵ = ሺ0.0892,0.1063ሻ; 𝐜ଶ = ሺ0.70,0.2667ሻ, 𝐯ଶ = ሺ0.081,0.0774ሻ; 𝐜ଷ = ሺ0.24,0.87ሻ, 𝐯ଷ = ሺ0.0418,0.041ሻ.

Figure 5. SL-Scheme for the example.

For the input vector p = (0.4, 0.5), we have o1
1(p) = 1.8067, o1

2(p) = 1.1440 × 10−4, and
o1

3(p) = 4.3337× 10−7. Consequently, we have

o2
1(p) = w1,0 + o1

1(p)w1,1+ , o1
2(p)w1,2 + o1

3(p)w1,3 = 2.6868,

o2
2(p) = w2,0 + o1

1(p)w2,1+ , o1
2(p)w2,2 + o1

3(p)w2,3 = −0.4829,

o2
3(p) = w3,0 + o1

1(p)w3,1+ , o1
2(p)w3,2 + o1

3(p)w3,3 = −0.6227.

Since o2
1(p) is the largest, through the competitive transfer function we have o1(p) = +1,

o2(p) = −1, and o3(p) = −1. Therefore, o(p) = (+1, −1, −1) and p is classified to category 1.

3. Dimensionality Reduction

As mentioned, RBF networks may suffer from the curse of dimensionality. To avoid the
overfitting problem, we develop and integrate several dimensionality reduction techniques to work
with RBF networks.

Appl. Sci. 2019, 9, 4036 8 of 20

3.1. Feature Selection

Irrelevant or weakly relevant attributes may cause overfitting. Several techniques are adopted to
select the attributes that are most relevant to the underlying classification problem.

3.1.1. Mutual Information

The mutual information [34] between two attributes u and v, denoted as MI(u,v), measures the
information that u and v share. That is, it measures how much knowing the values of one attribute
reduces the uncertainty about the values of the other. If MI(u,v) is large, there is likely some strong
connection between u and v. One favored property of mutual information is that it can measure
non-linearity relationship between u and v.

We develop a feature selection technique based on MI. Let there be q attributes x1, x2, . . . , xq, and
y be the target. We calculate mutual information between xi and y, MI(xi, y), 1 ≤ i ≤ q. Let MI

(
xd1 , y

)
be the largest, indicating that xd1 is most relevant to y. Therefore, xd1 . is selected. Next, we calculate
MI

({
xd1 , xi

}
, y

)
, 1 ≤ i ≤ q, and i , d1. Let MI

({
xd1 , xd2

}
, y

)
be the largest. Then, xd2 is also selected. Then,

we calculate MI
({

xd1 , xd2 , xi
}
, y

)
, 1 ≤ i ≤ q, i , d1 and i , d2, etc., until some criterion is achieved. In this

way, the attributes that are most relevant to y are determined [35,36].
For multi-label data, two transformations, binary relevance (BR) and label powerset (LP), are

adopted to deal with the target vectors for multi-label classification [37–39]. BR transforms the training
target vectors into m vectors y1, y2,..., and ym. For each training instance xi, if y j,i = +1(−1), the ith
element of y j is set to +1(-1) for 1 ≤ j ≤ m. The discriminative power of the attributes with respect to
each vector is evaluated. LP considers each unique set of categories that exists in a multi-label training
set as one new category. This may result in a large number of new categories.

3.1.2. Pearson Correlation

First, we calculate the correlation for attribute x and target y. Let (x1, . . . , xN) and (y1, . . . , yN) be
the attribute values for x and y, respectively. The correlation coefficient of these two variables, rxy, is
defined as [40]

rxy =
N ×

∑N
k=1 xkyk −

∑N
k=1 xk

∑N
k=1 yk√

N ×
∑N

k=1 xk
2 −

(∑N
k=1 xk

)2
×

√
N ×

∑N
k=1 yk

2 −
(∑N

k=1 yk
)2

. (15)

Note that rxy = ryx and −1 ≤ rxy ≤ 1. A higher value of
∣∣∣rxy

∣∣∣ indicates a stronger relationship
between x and y.

It was shown in [41] that by ignoring weakly correlated or uncorrelated attributes, prediction can
be done better. Suppose we have q attributes x1, x2, . . . , xq, and we want to find the attributes most
relevant to target y. We calculate the correlation coefficient rxi,y for every i, 1 ≤ i ≤ q. If

∣∣∣rxi,y
∣∣∣ is greater

than or equal to a specified threshold, xi is used for classification. In this way, weakly correlated or
uncorrelated attributes are ignored. BR and LP are also adopted to deal with the target vectors for
multi-label classification.

3.1.3. Information Gain

Information gain is used in selecting the most favorable attribute for a test during the construction
of decision trees [15,19]. It concerns how much information is gained about the classification of an
instance by knowing the value of an attribute and can be used as a criterion for selecting relevant
attributes for the purpose of dimensionality reduction. Suppose a dataset contain N training instances

Appl. Sci. 2019, 9, 4036 9 of 20

with m categories. Let there be n attributes, A1, A2, . . . , An, and each attribute Ai has pi values, a1,i, a2,i,
. . . , api,i. The entropy of the dataset is defined as

EI = −
∑
i=1

mpi log2 pi (16)

where pi denotes the proportion of instances belonging to category i in the dataset. Let the dataset be
divided into pi subsets according to the values of attribute Ai, and E j be the entropy of the resulting
subset j, 1 ≤ j ≤ pi. The entropy of the dataset after being divided by Ai is defined as

EAi =
∑
j=1

piN jE j/N (17)

where E j,i and N j,i are the entropy and size, respectively, of the subset with Ai = a j,i. Then, the
information gain from splitting on attribute Ai is

IGAi = EI − EAi . (18)

We choose q most relevant attributes such that q is as small as possible and the following holds:∑q
i=1 IGAi∑n
i=1 IGAi

≥ θ,θ ∈ [0, 1]. (19)

Note that θ is a pre-specified threshold. Clearly, g ≤ n.

3.2. Feature Extraction

Linear discriminant analysis (LDA) [42] is adapted here for multi-class classification. Let G
be a linear transformation, G ∈ Rn×`, ` < n, that maps xi in the n-dimensional space to xL

i in the
`-dimensional space as

xi ∈ Rn
→ xL

i ∈ R` = GTxi ∈ R`. (20)

Firstly, all the training input vectors x1, . . . , xN are divided into m sets, {X1, . . . , Xm}, where
X j ∈ Rn×N j with N j being the number of instances belonging to category j. BR and LP can be adopted to
deal with the target vectors for multi-label classification. Three scatter matrices, called within-class (Sw),
between-class (Sb), and total scatter (St) matrices in the n-dimensional space are defined as follows:

Sw =
1
N

m∑
j=1

∑
x∈X j

(
x− c j

)(
x− c j

)T
, (21)

Sb =
1
N

m∑
j=1

N j
(
c j − c

)(
c j − c

)T
, (22)

St = Sw + Sb (23)

where c j is the centroid of X j and c is the global centroid.
After transformation, the corresponding matrices in `-dimensional space are:

SL
w = GTSwG, SL

b = GTSbG, SL
t = SL

w + SL
b . (24)

LDA computes the optimal transformation GLDA by solving the following optimization problem:

GLDA = argmax
G
{trace(SL

b (S
L
t)
−1
)}. (25)

Appl. Sci. 2019, 9, 4036 10 of 20

The obtained GLDA is used for mapping from xi to xL
i , 1 ≤ i ≤ N. Since xi is n-dimensional, xL

i is
`-dimensional, and ` < n, dimensionality reduction is achieved.

4. Experimental Results

We show here the effectiveness of the proposed network schemes. Experimental results obtained
from benchmark datasets are presented. Comparisons among different methods are also presented.
To measure the performance of a classifier on a given dataset, a five-fold cross validation is adopted
in the following experiments. For each dataset, we randomly divide it into five disjoint subsets. To
ensure that all categories are involved in each fold, the data of each category are divided into five folds.
Therefore, every category is involved in both training and testing in each run. Then, five runs are
performed. In each run, four subsets are used for training and the remaining subset is used for testing.
The results of the five runs are then averaged. Note that the training data are used in the training phase
and the testing data are used in the testing phase, and the data for training are different from the data
for testing in each case.

4.1. Single-Label Multi-Class Classification

We show the performance of different methods on single-label multi-class classification. The
metric “Testing Accuracy” (ACC) is used for performance evaluation, defined as [43]

Accuracy(ACC) =

∑m
i=1

TPi+TNi
TPi+FPi+FNi+TNi

m
(26)

where TPi, FPi, FNi, TNi are the number of true positives, false positives, false negatives, and true
negatives, respectively, for category i. Ideally, we would expect ACC = 1, which implies no error, for
perfect classification. Clearly, higher values indicate better classification performance.

Fifteen single-label benchmark datasets, taken from the UCI repository [44], are used in this
experiment. The characteristics of these datasets are shown in Table 1, including the number of
attributes (second column), the number of instances (third column), and the number of categories
(fourth column) in each dataset. Each dataset contains collected instances for single-label classification
in a different situation. For example, the iris dataset contains 3 categories of 50 instances each, where
each category refers to a type of iris plant; the glass dataset is concerned about the study of classification
of types of glass motivated by criminological investigation; the wine dataset contains the results of a
chemical analysis of wines grown in the same region in Italy but derived from three different cultivars;
the sonar dataset contains 111 instances obtained by bouncing sonar signals off a metal cylinder at
various angles and under various conditions; etc.

Table 1. Characteristics of the datasets for single-label multi-class classification.

Dataset # Attribute # Instances # Categories

Iris 4 150 3
soybean 35 307 4

glass 10 214 6
yeast-sl 8 1484 10

ecoli 8 336 8
car 6 1728 4

madelon 500 2600 2
wine 13 178 3
sonar 60 208 2
libras 91 360 15
heart 13 270 2
breast 30 569 2

drivface 6400 606 3
pd-speech 26 1040 2

balance-scale 5 625 3

Appl. Sci. 2019, 9, 4036 11 of 20

Table 2 shows the testing ACC values obtained by different methods. In this table, we compare
our method, SL-Scheme, with six other methods. In this table, the boldfaced number indicates the
best value in the row. SVM is a support vector machine, DT is a decision tree classifier, KNN is the
k-nearest neighbors algorithm, MLP is a multi-layer perceptron with hyperbolic tangent sigmoid
transfer function, LVQ is a hybrid network employing both unsupervised and supervised learning
to solve classification problems [45], and RandForest is the random forest estimator. The codes of
these methods are taken from the MATHWORKS website https://www.mathworks.com/. From Table 2,
we can see that SL-Scheme performs best in testing accuracy for 8 out of 15 datasets. As can be
seen, SL-Scheme performs best, having the highest average ACC 94.53% or the lowest average error
1−94.53% = 5.47%.

Table 2. Testing accuracy (ACC) obtained by different methods.

Dataset SVM DT KNN MLP LVQ RandForest SL-Scheme

Iris 0.9660 0.9600 0.9689 0.9822 0.9933 0.9511 0.9788
soybean 1 1 0.9894 0.9400 1 0.9389 0.9889

glass 0.9070 0.9065 0.9081 0.9423 0.6733 0.9922 0.9783
yeast-sl 0.9185 0.9098 0.9197 0.9055 0.3187 0.9156 0.9362

ecoli 0.8720 0.9509 0.9635 0.8366 0.8930 0.8285 0.9661
car 0.9818 0.9777 0.9864 0.9737 0.9770 0.9792 0.9656

madelon 0.6746 0.7223 0.6646 0.5035 0.6639 0.7227 0.7546
wine 0.9888 0.9476 0.9813 0.5694 0.7868 0.9517 0.9924
sonar 0.8413 0.7548 0.8029 0.8271 0.8799 0.7264 0.9031
libras 0.9804 0.9507 0.9811 0.9596 0.7028 0.9719 0.9641
heart 0.8407 0.7704 0.8333 0.7556 0.8704 0.7481 0.8593
breast 0.9772 0.9051 0.9631 0.5182 0.9261 0.9157 0.9789

drivface 0.9692 0.9560 0.9692 0.9582 0.9587 0.9648 1.0000
pd-speech 0.8532 0.7870 0.9061 0.7434 0.8577 0.8095 0.9987
balance-scale 0.9445 0.8507 0.8592 0.9776 0.9267 0.8645 0.9413

average 0.9413 0.8900 0.9131 0.8262 0.8288 0.8854 0.9453

4.2. Multi-Label Multi-Class Classification

Next, we show the performance of different methods on multi-label multi-class classification. The
metric “Hamming Loss” (HL) is used for performance evaluation, defined as [43]

Hamming Loss(HL) =

∑Nt
i=1 Hd(yi, oi)

mNt
(27)

where Nt is the number of testing instances and Hd(a, b) is the Hamming distance between a and b.
Note that, instead of counting the number of correctly classified instances like ACC, HL uses Hamming
distance to calculate the mismatch between the original string of target categories and the string of
predicted categories for every testing instance and then calculates the average across the dataset. For
multi-label classification, HL is a more suitable metric than ACC. Ideally, we would expect HL = 0,
which implies no error, for perfect classification. Practically, the smaller the value of HL, the better the
classification performance.

Nine multi-label benchmark datasets, taken from the MULAN library [46], are used in this
experiment. The characteristics of these datasets are shown in Table 3. Each dataset contains collected
instances for multi-label classification in a different situation. For example, the birds dataset is a
benchmark for ecological investigations of birds; the cal500 dataset is a popular dataset used in music
autotagging, described as coming from “500 songs”; The flags dataset contains details of various
nations and their flags, etc. Note that an instance in a multi-label dataset may belong to more than one
category. The Cardinality column indicates the number of categories on average an instance belongs to.
The cardinality of a dataset can be greater than 1. For example, the cardinality of the yeast-ml dataset
is 4.237, indicating each instance belongs to 4.237 categories in average.

https://www.mathworks.com/

Appl. Sci. 2019, 9, 4036 12 of 20

Table 3. Characteristics of the datasets for multi-label multi-class classification.

Dataset # Attribute # Instances # Categories Cardinality

birds 260 645 19 1.014
scene 294 2407 6 1.074

emotions 72 593 6 1.869
yeast-ml 103 2417 14 4.237

cal500 68 502 174 26.044
genbase 1186 662 27 1.252

flags 19 194 7 3.392
corel5k 499 5000 374 3.522

mediamill 120 43,907 101 4.376

Table 4 shows the testing HL values obtained by different methods. In this table, we compare our
method, ML-Scheme, with six other methods. ML-SVM is a multi-label version of SVM, and ML-KNN
is a multi-label version of KNN. The codes of ML-SVM and ML-KNN are taken from the website
https://scikit-learn.org/. From this table, we can see that SL-Scheme performs best in Hamming loss
for seven out of nine datasets. As can be seen, ML-Scheme performs best, having the lowest average
HL 0.0781.

Table 4. Testing Hamming Loss (HL) obtained by different methods.

Dataset ML-SVM DT ML-KNN MLP LVQ RandForest ML-Scheme

birds 0.1154 0.2237 0.0510 0.2496 0.2259 0.2291 0.0460
scene 0.1568 0.2094 0.1130 0.2933 0.2325 0.1994 0.0602

emotions 0.2343 0.2428 0.2302 0.2967 0.1652 0.2192 0.1497
yeast-ml 0.2108 0.2787 0.2136 0.3122 0.1059 0.3130 0.1429

cal500 0.1380 0.2137 0.1400 0.1679 0.2286 0.1567 0.1263
genbase 0.0015 0.0302 0.0020 0.1366 0.1765 0.1194 0.0016

flags 0.2791 0.213 0.3099 0.2636 0.1493 0.2497 0.1466
corel5k 0.0090 0.0720 0.0654 0.0968 0.1160 0.0406 0.0088

mediamill 0.0335 0.1158 0.1024 0.1567 0.1752 0.1267 0.0204

average 0.1309 0.1775 0.1364 0.2193 0.1750 0.1838 0.0781

4.3. Effects of Dimensionality Reduction

We apply several dimensionality reduction techniques to avoid overfitting and improve
performance for RBF networks. Different techniques may have different effects. One technique
is good for some datasets but is not good for other datasets. Unfortunately, there are no universal
guidelines about the selection of dimensionality reduction techniques for a given dataset. Usually, trial
and error is necessary.

Table 5 shows the testing ACC values obtained by SL-Scheme with different dimensionality
reduction techniques for some single-label datasets, while Table 6 shows the testing HL values obtained
by ML-Scheme with different dimensionality reduction techniques for some multi-label datasets. Note
that WO indicates no dimensionality reduction is applied, and MI and IG mean mutual information
and information gain, respectively. Dimensionality reduction is not always good. For example, for the
yeast-sl dataset for single-label classification and the genbase dataset for multi-label classification, our
proposed schemes perform best without any dimensionality reduction. As can be seen from the above
two tables, no dimensionality reduction technique is the best for all the datasets. Pearson does not
have good effects for single-label datasets, but it has good effects for multi-label datasets. On the other
hand, MI has good effects for single-label datasets, but it does not so for multi-label datasets.

https://scikit-learn.org/

Appl. Sci. 2019, 9, 4036 13 of 20

Table 5. Testing ACC obtained by SL-Scheme with different reduction techniques.

Dataset WO MI Pearson LDA IG

iris 0.9689 0.9689 0.9689 0.9778 0.9689
soybean 0.9778 0.9778 0.8727 0.6808 0.9889
yeast-sl 0.9362 0.8966 0.8924 0.8976 0.8880

ecoli 0.7806 0.9661 0.8765 0.9329 0.9433
wine 0.9555 0.9367 0.7461 0.9924 0.9364
libras 0.9548 0.9641 0.9300 0.9300 0.9585
breast 0.9318 0.9298 0.6241 0.9789 0.9213

average 0.9294 0.9486 0.8444 0.9129 0.9436

Table 6. Testing HL obtained by ML-Scheme with different reduction techniques.

Dataset WO MI Pearson LDA IG

birds 0.0466 0.0687 0.0546 0.1065 0.0460
emotion 0.3966 0.3751 0.2874 0.1497 0.3793
yeast-ml 0.2131 0.2144 0.1429 0.2071 0.2079
genbase 0.0016 0.0345 0.0421 0.0452 0.0018

mediamill 0.0299 0.0284 0.0204 0.0322 0.0300

average 0.1376 0.1442 0.1095 0.1081 0.1330

In addition, multiple dimensionality reduction techniques can be used simultaneously to improve
performance of RBF networks. Figure 6 shows the performance of SL-Scheme with MI, LDA, and
MI+LDA, respectively, for some single-label datasets. As can be seen, MI performs best for the libras
and drivface datasets, LDA performs best for the heart and breast datasets, while MI+LDA performs
best for the pd-speech and balance-scale datasets. Figure 7 shows the performance of ML-Scheme with
Pearson, LDA, and Pearson+LDA, respectively, for some multi-label datasets. As can be seen, Pearson
performs best for the yeast-ml, genbase, and mediamill datasets, while Pearson+LDA performs best
for the cal500, flags, and corel5K datasets.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 20

Table 6. Testing HL obtained by ML-Scheme with different reduction techniques.

Dataset WO MI Pearson LDA IG
birds 0.0466 0.0687 0.0546 0.1065 0.0460

emotion 0.3966 0.3751 0.2874 0.1497 0.3793
yeast-ml 0.2131 0.2144 0.1429 0.2071 0.2079
genbase 0.0016 0.0345 0.0421 0.0452 0.0018

mediamill 0.0299 0.0284 0.0204 0.0322 0.0300
average 0.1376 0.1442 0.1095 0.1081 0.1330

In addition, multiple dimensionality reduction techniques can be used simultaneously to
improve performance of RBF networks. Figure 6 shows the performance of SL-Scheme with MI, LDA,
and MI+LDA, respectively, for some single-label datasets. As can be seen, MI performs best for the
libras and drivface datasets, LDA performs best for the heart and breast datasets, while MI+LDA
performs best for the pd-speech and balance-scale datasets. Figure 7 shows the performance of ML-
Scheme with Pearson, LDA, and Pearson+LDA, respectively, for some multi-label datasets. As can be
seen, Pearson performs best for the yeast-ml, genbase, and mediamill datasets, while Pearson+LDA
performs best for the cal500, flags, and corel5K datasets.

Figure 6. Performance of SL-Scheme with mutual information (MI), linear discriminant analysis
(LDA), and MI+LDA.

Figure 7. Performance of ML-Scheme with Pearson, LDA, and Pearson+LDA.

4.4. Discussions

The contributions of this work include the determination of the number of neurons in the hidden
layer, proposing SL-Scheme and ML-Scheme, respectively, for single-label and multi-label
classification, and integrating different techniques to reduce overfitting for multi-class classification.
As a result, a classification system can be built more easily due to the simplicity of the schemes and

Figure 6. Performance of SL-Scheme with mutual information (MI), linear discriminant analysis (LDA),
and MI+LDA.

Appl. Sci. 2019, 9, 4036 14 of 20

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 20

Table 6. Testing HL obtained by ML-Scheme with different reduction techniques.

Dataset WO MI Pearson LDA IG
birds 0.0466 0.0687 0.0546 0.1065 0.0460

emotion 0.3966 0.3751 0.2874 0.1497 0.3793
yeast-ml 0.2131 0.2144 0.1429 0.2071 0.2079
genbase 0.0016 0.0345 0.0421 0.0452 0.0018

mediamill 0.0299 0.0284 0.0204 0.0322 0.0300
average 0.1376 0.1442 0.1095 0.1081 0.1330

In addition, multiple dimensionality reduction techniques can be used simultaneously to
improve performance of RBF networks. Figure 6 shows the performance of SL-Scheme with MI, LDA,
and MI+LDA, respectively, for some single-label datasets. As can be seen, MI performs best for the
libras and drivface datasets, LDA performs best for the heart and breast datasets, while MI+LDA
performs best for the pd-speech and balance-scale datasets. Figure 7 shows the performance of ML-
Scheme with Pearson, LDA, and Pearson+LDA, respectively, for some multi-label datasets. As can be
seen, Pearson performs best for the yeast-ml, genbase, and mediamill datasets, while Pearson+LDA
performs best for the cal500, flags, and corel5K datasets.

Figure 6. Performance of SL-Scheme with mutual information (MI), linear discriminant analysis
(LDA), and MI+LDA.

Figure 7. Performance of ML-Scheme with Pearson, LDA, and Pearson+LDA.

4.4. Discussions

The contributions of this work include the determination of the number of neurons in the hidden
layer, proposing SL-Scheme and ML-Scheme, respectively, for single-label and multi-label
classification, and integrating different techniques to reduce overfitting for multi-class classification.
As a result, a classification system can be built more easily due to the simplicity of the schemes and

Figure 7. Performance of ML-Scheme with Pearson, LDA, and Pearson+LDA.

4.4. Discussions

The contributions of this work include the determination of the number of neurons in the hidden
layer, proposing SL-Scheme and ML-Scheme, respectively, for single-label and multi-label classification,
and integrating different techniques to reduce overfitting for multi-class classification. As a result, a
classification system can be built more easily due to the simplicity of the schemes and better accuracy
can be achieved due to less possibility of overfitting. Also, because of the integration of dimensionality
reduction techniques, our proposed schemes can deal with the scalability problem.

There are some RBF implementations available at public websites. One can be accessed from the
Weka website, www.cs.waikato.ac.nz/mL/weka. However, this version cannot apply to multi-label
multi-class classification. By default, the basis functions are obtained through K-means and the number
of hidden nodes is provided by the user. Without integrating with dimensionality reduction techniques,
the performance of this implementation is inferior to our SL-Scheme. For example, for the libras
dataset, the ACC obtained by the Weka implementation is 0.5861, while SL-Scheme is 0.9641; for the
yeast-sl dataset, the ACC obtained by the Weka implementation is 0.8641, while SL-Scheme is 0.9362.

Next, we present some comparisons between RBF and deep learning CNN. The results for
single-label datasets obtained by CNN are shown in Table 7. For this table, we ran CNN taken from the
MATHWORKS website https://pytorch.org/. Two convolution layers are used, 6 and 12 filters are used
in the first and second layers, respectively, the filter size is 3, and ReLU is used as activation function.
The car dataset is not used, since all the attributes are discrete, and CNN did not work well. From
Tables 2 and 7, we can see that SL-Scheme performs better in testing accuracy for 11 out of 14 datasets.
As mentioned earlier, deep learning networks, e.g., CNN, may have some difficulties. Long training
time, due to backpropagation, is required for CNN. For most datasets in Table 7, the training time
is tens or even hundreds of seconds long. But for SL-Scheme, the training is done at most in several
seconds. The computer used for running the codes is equipped with Intel(R) Core(TM) i7-7700 CPU
3.60 GHz and 16 GB RAM. In a CNN network, the number of hidden layers, the number of kernels,
and the kernel size can vary in a wide range. This may lead to a huge search space, and thus finding
the best configuration of hyper-parameters from it is a very inefficient and tedious tuning process. Our
RBF-based schemes are simpler. The number of layers, i.e., two layers, the Gaussian basis function, the
least squares method, and the activation functions associated with the output layer are the decisions
taken, while the number of neurons in the hidden layer is the customized parameter and is determined
by clustering. Note that the features have been properly selected and designed for the datasets of
Table 7. For the datasets without properly extracted features, CNN imposes less burden on the user for
feature extraction, compared to traditional classification algorithms. This is a big advantage of deep
learning networks. Features can be automatically extracted during the learning phase of the network.

www.cs.waikato.ac.nz/mL/weka
https://pytorch.org/

Appl. Sci. 2019, 9, 4036 15 of 20

Table 7. Results for single-label datasets obtained by CNN.

Dataset ACC Time(s) Dataset ACC Time(s)

iris 0.9667 7.0531 soybean 1.0000 3.4581
glass 0.6744 10.6245 yeast-sl 0.6027 66.0174
ecoli 0.8088 16.3213 madelon 0.5135 248.2281
wine 0.9722 9.1674 sonar 0.9286 12.2143
libras 0.9028 21.5882 heart 0.8197 14.5280
breast 0.9649 29.1769 drivface 0.9754 405.3066

pd-speech 0.8421 107.1434 balance-scale 0.9600 28.4199

Our schemes are robust. A slight variation in the values of the parameters does not introduce a
large variation in performance. Figure 8 shows the ACC of SL-Scheme with variation in the number
of hidden neurons in the hidden layer for some datasets. In this figure, three datasets, iris, yeast-sl,
and libras, are involved. The number on the top of a bar indicates the number of hidden nodes for
the underlying dataset. For example, four cases with the number of hidden nodes being 5, 6, 9, and
10, respectively, are presented for the iris dataset. As can be seen, the ACCs obtained for these four
cases do not vary much. Figure 9 shows the ACC of SL-Scheme with variation in the number of input
dimensions selected by MI for some datasets. In this figure, three datasets, soybean, ecoli, and libras,
are involved. The number on the top of a bar indicates the number of input dimensions selected by MI
for the underlying dataset. For example, four cases with the number of input dimensions being 4, 5,
6, and 7, respectively, are presented for the ecoli dataset. The ACCs obtained for these four cases do
not vary significantly. Figure 10 shows the ACC of SL-Scheme with variation in the number of input
dimensions extracted by LDA for some datasets. In this figure, three datasets, yeast-sl, ecoli, and libra,
are involved. The number on the top of a bar indicates the number of input dimensions extracted by
LDA for the underlying dataset. For example, four cases with the number of input dimensions being 2,
3, 4, and 5, respectively, are presented for the libras dataset. The ACCs obtained for these four cases are
almost identical. Our schemes can deal with a lot of data. For example, ML-Scheme work well with
the genbase dataset, which has 1186 attributes and the mediamill dataset, which has 43,907 instances,
as shown in Table 4. To show the scalability of SL-Scheme, we ran SL-Scheme on the pen-based dataset
which collected samples from writers and has 10,992 instances. A testing accuracy of 0.9841 is obtained.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 20

do not vary significantly. Figure 10 shows the ACC of SL-Scheme with variation in the number of
input dimensions extracted by LDA for some datasets. In this figure, three datasets, yeast-sl, ecoli,
and libra, are involved. The number on the top of a bar indicates the number of input dimensions
extracted by LDA for the underlying dataset. For example, four cases with the number of input
dimensions being 2, 3, 4, and 5, respectively, are presented for the libras dataset. The ACCs obtained
for these four cases are almost identical. Our schemes can deal with a lot of data. For example, ML-
Scheme work well with the genbase dataset, which has 1186 attributes and the mediamill dataset,
which has 43,907 instances, as shown in Table 4. To show the scalability of SL-Scheme, we ran SL-
Scheme on the pen-based dataset which collected samples from writers and has 10,992 instances. A
testing accuracy of 0.9841 is obtained.

Figure 8. Performance of SL-Scheme with variation in the number of hidden neurons.

Figure 9. Performance of SL-Scheme with variation in the number of input dimensions selected by
MI.

Figure 8. Performance of SL-Scheme with variation in the number of hidden neurons.

Appl. Sci. 2019, 9, 4036 16 of 20

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 20

do not vary significantly. Figure 10 shows the ACC of SL-Scheme with variation in the number of
input dimensions extracted by LDA for some datasets. In this figure, three datasets, yeast-sl, ecoli,
and libra, are involved. The number on the top of a bar indicates the number of input dimensions
extracted by LDA for the underlying dataset. For example, four cases with the number of input
dimensions being 2, 3, 4, and 5, respectively, are presented for the libras dataset. The ACCs obtained
for these four cases are almost identical. Our schemes can deal with a lot of data. For example, ML-
Scheme work well with the genbase dataset, which has 1186 attributes and the mediamill dataset,
which has 43,907 instances, as shown in Table 4. To show the scalability of SL-Scheme, we ran SL-
Scheme on the pen-based dataset which collected samples from writers and has 10,992 instances. A
testing accuracy of 0.9841 is obtained.

Figure 8. Performance of SL-Scheme with variation in the number of hidden neurons.

Figure 9. Performance of SL-Scheme with variation in the number of input dimensions selected by
MI.

Figure 9. Performance of SL-Scheme with variation in the number of input dimensions selected by MI.
Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 20

Figure 10. Performance of SL-Scheme with variation in the number of input dimensions extracted by
LDA.

5. Conclusions and Future Work

We adopt radial basis function (RBF) networks for multi-class classification. RBF networks are
two-layer networks with only one hidden layer and can have fewer problems with local minima and
learn faster. We have described how the configuration of hyper-parameters is decided and how the
curse of dimensionality is reduced for RBF networks. We use an iterative self-constructing clustering
to determine the number of hidden neurons. The centers and deviations of the basis functions can
also be determined from the clustered results. We have presented several techniques, mutual
information, Pearson correlation, information gain, and LDA, to reduce the dimensionality of the
inputs to make the RBF networks less likely to overfit.

We have presented two RBF-based neural network schemes for multi-class classification. The
first scheme, SL-Scheme, is for single-label multi-class classification. The competitive activation
function is used with the output nodes. As a result, an input object can be classified to only one
category. The second scheme, ML-Scheme, is for multi-label multi-class classification. The
symmetrical hard limit activation function is used with the output nodes. An input object can
therefore be classified to two or more categories.

In addition to the techniques adopted, ensemble classification [47,48] can also be applied to deal
with the curse of dimensionality problem. An ensemble of classifiers, each of which deals with a small
subset of attributes, are created from a given dataset. For an unseen instance, the predicted
classifications of the instance for each of the classifiers is computed. By combining the outputs of all
the classifiers, the final predicted classifications for the unseen instance is determined. Intuitively, the
ensemble of classifiers as a whole can provide a higher level of classification accuracy than any one
of the individual classifiers. Overfitting can be improved by reducing the number of hidden nodes in
the first layer. Given the basis functions obtained by the SCC clustering algorithm, the orthogonal
least squares (OLS) technique [31] can be applied to select the most effective ones. Firstly, the basis
function, which creates the largest reduction in error, is selected. Then, one basis function is added at
a time until some stopping criterion is met. Furthermore, nested cross validation [49] can be applied
to help determine the best configuration of hyperparameters for RBF networks. The total dataset is
split in k sets. One by one, a set is selected as the outer test set and the k-1 other sets are combined as
the corresponding outer training set. Each outer training set is further sub-divided into ℓ sets, and
each time a set is selected as the inner test set and the ℓ − 1 other sets are combined as the
corresponding inner training set. For each outer training set, the best values of the hyperparameters
are obtained from the inner cross-validation, and the performance of the underlying RBF model is
then evaluated using the outer test set. We will investigate these techniques in our future research.

Figure 10. Performance of SL-Scheme with variation in the number of input dimensions extracted
by LDA.

5. Conclusions and Future Work

We adopt radial basis function (RBF) networks for multi-class classification. RBF networks are
two-layer networks with only one hidden layer and can have fewer problems with local minima and
learn faster. We have described how the configuration of hyper-parameters is decided and how the
curse of dimensionality is reduced for RBF networks. We use an iterative self-constructing clustering
to determine the number of hidden neurons. The centers and deviations of the basis functions can also
be determined from the clustered results. We have presented several techniques, mutual information,
Pearson correlation, information gain, and LDA, to reduce the dimensionality of the inputs to make
the RBF networks less likely to overfit.

We have presented two RBF-based neural network schemes for multi-class classification. The first
scheme, SL-Scheme, is for single-label multi-class classification. The competitive activation function is
used with the output nodes. As a result, an input object can be classified to only one category. The
second scheme, ML-Scheme, is for multi-label multi-class classification. The symmetrical hard limit
activation function is used with the output nodes. An input object can therefore be classified to two or
more categories.

In addition to the techniques adopted, ensemble classification [47,48] can also be applied to deal
with the curse of dimensionality problem. An ensemble of classifiers, each of which deals with a
small subset of attributes, are created from a given dataset. For an unseen instance, the predicted
classifications of the instance for each of the classifiers is computed. By combining the outputs of all
the classifiers, the final predicted classifications for the unseen instance is determined. Intuitively, the

Appl. Sci. 2019, 9, 4036 17 of 20

ensemble of classifiers as a whole can provide a higher level of classification accuracy than any one of
the individual classifiers. Overfitting can be improved by reducing the number of hidden nodes in
the first layer. Given the basis functions obtained by the SCC clustering algorithm, the orthogonal
least squares (OLS) technique [31] can be applied to select the most effective ones. Firstly, the basis
function, which creates the largest reduction in error, is selected. Then, one basis function is added at a
time until some stopping criterion is met. Furthermore, nested cross validation [49] can be applied to
help determine the best configuration of hyperparameters for RBF networks. The total dataset is split
in k sets. One by one, a set is selected as the outer test set and the k-1 other sets are combined as the
corresponding outer training set. Each outer training set is further sub-divided into ` sets, and each
time a set is selected as the inner test set and the ` − 1 other sets are combined as the corresponding
inner training set. For each outer training set, the best values of the hyperparameters are obtained
from the inner cross-validation, and the performance of the underlying RBF model is then evaluated
using the outer test set. We will investigate these techniques in our future research.

Author Contributions: Individual contributions are: Conceptualization, S.-J.L.; methodology, S.-J.L.; software,
Y.-J.Y. and C.-Y.W.; validation, Y.-J.Y., C.-Y.W. and S.-J.L.; formal analysis, S.-J.L.; investigation, S.-J.L. and C.-K.L.;
resources, S.-J.L. and C.-K.L.; data curation, Y.-J.Y. and C.-Y.W.; writing—original draft preparation, S.-J.L.;
writing—review and editing, S.-J.L. and C.-K.L.; visualization, Y.-J.Y. and C.-Y.W.; supervision, S.-J.L.; project
administration, S.-J.L. and C.-K.L.; funding acquisition, S.-J.L. and C.-K.L.

Funding: This research was funded by Ministry of Science and Technology, MOST-106-2321-B-037-003,
MOST-107-2221-E-110-065 and MOST-107-2622-E-110-008-CC3, by Environmental Protection Agency,
MOST-107-EPA-F-012-001, by NSYSU-KMU Joint Research Project, #NSYSUKMU 108-P042, and by the Intelligent
Electronic Commerce Research Center, NSYSU.

Acknowledgments: The anonymous reviewers are highly appreciated for their comments which were very
helpful in improving the quality and presentation of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The iterative self-constructing clustering (SCC) algorithm [32] is an extension of the one proposed
in [50]. Let J be the number of existing clusters, initialized to be 0. SCC proceeds iteratively. In the
first iteration, for pattern i, (xi, yi), 1 ≤ i ≤ N, the membership degree of pattern i to existing cluster G j,
1 ≤ j ≤ J, is calculated as

µG j(xi) =
n∏
`=1

exp

−(x`,i − c`, j
v`, j

)2. (A1)

If µG j(xi) < ρ where ρ is a pre-defined constant, it is assumed that pattern xi is not similar to any
existing group. Then, J is increased by 1, i.e., J ← J + 1 , and a new group GJ is generated, having

cJ ← xi, vJ ← (v0, . . . , v0), SJ ← 1 (A2)

where v0 is a pre-defined constant. On the contrary, if µG j(xi) ≥ ρ and pattern i belongs to the same
category of G j, let cluster Ga be the one with the highest membership degree. Then, pattern i is added
to cluster Ga by

ca ←
Sa × ca + xi

Sa + 1
(A3)

v`,a ←

√
(Sa + 1)(v`,a − v0)

2 + Sa × c2
`,a + x2

`,i

Sa
−

Sa + 1
Sa

× c2
`,a + v0, 1 ≤ ` ≤ n, (A4)

Sa ← Sa + 1. (A5)

When all patterns are processed, SSC stops with J clusters.
In the next iteration, for pattern i, (xi, yi), 1 ≤ i ≤ N, it is removed from the cluster Gb, 1 ≤ b ≤ J, to

which it was assigned. One of the following three cases occurs:

Appl. Sci. 2019, 9, 4036 18 of 20

• If there is no pattern left in Gb, Gb is deleted, and the number of existing clusters is decreased by 1,
i.e., J ← J − 1 .

• If there is only one pattern left in Gb, the characteristics of Gb are reset by Equation (29), taking the
left pattern as the single member.

• Otherwise, Gb is updated as

cb ←
Sb × cb − xi

Sb − 1
(33) (A6)

v`,b ←

√√√
(Sb − 1)

(
v`,b − v0

)2
+ Sb × c2

`,b − x2
`,i

Sb − 2
−

Sb − 1
Sb − 2

× c2
`,b + v0, 1 ≤ ` ≤ n, (A7)

Sb ← Sb − 1 . (A8)

Then, the membership degree of pattern i to G j, 1 ≤ j ≤ J, is calculated by Equation (28), and a new
cluster is created by Equation (29) or pattern i is added to an existing cluster by Equations (30)–(32).
When all the training patterns are processed, (1) if the cluster assignment of any pattern is changed, the
next iteration proceeds; (2) otherwise, the algorithm stops with J clusters together with their centers
and deviations.

References

1. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; Wiley & Sons: New York, NY, USA, 2001.
2. Murty, M.N.; Devi, V.S. Pattern Recognition: An Algorithmic Approach; Springer: Berlin, Germany, 2011.
3. Lei, Y.; He, Z.; Zi, Y. Application of an intelligent classification method to mechanical fault diagnosis. Expert

Syst. Appl. 2009, 36, 9941–9948. [CrossRef]
4. Rahim, I.M.A.; Mat, F.; Yaacob, S.; Siregar, R.A. The classification of material mechanical properties using

non-destructive vibration technique. In Proceedings of the 2011 IEEE 7th International Colloquium on Signal
Processing and Its Applications, Penang, Malaysia, 4–6 March 2011. [CrossRef]

5. Süsstrunk, R.; Huber, S.D. Classification of topological phonons in linear mechanical metamaterials. Proc. Natl.
Acad. Sci. USA 2016, 113, E4767–E4775. [CrossRef]

6. Bhate, D.; Penick, C.A.; Ferry, L.A.; Lee, C. Classification and selection of cellular materials in mechanical
design: Engineering and biomimetic approaches. Designs 2019, 3, 19. [CrossRef]

7. De Vicente, S.M.G.; Prinja, N.; Gagliardi, M.; Rovere, S.L.; Perrault, D.; Taylor, N. Safety classification of
mechanical components for fusion application. Fusion Eng. Des. Part B 2018, 136, 1237–1241. [CrossRef]

8. Ion, J.C. Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application; Elsevier:
Amsterdam, The Netherlands, 2012.

9. Zissis, D. A cloud based architecture capable of perceiving and predicting multiple vessel behaviour. Appl. Soft
Comput. 2015, 35, 652–661. [CrossRef]

10. Zhang, M.-L.; Zhou, Z.-H. A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 2013,
26, 1819–1837. [CrossRef]

11. Lee, S.-J.; Jiang, J.-Y. Multi-Label Text Categorization Based on Fuzzy Relevance Clustering. IEEE Trans.
Fuzzy Syst. 2014, 22, 1457–1471. [CrossRef]

12. Fukunaga, K. Introduction to Statistical Pattern Recognition, 2nd ed.; Academic Press: Boston, MA, USA, 1990.
13. Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach.

Intell. 2000, 22, 4–37. [CrossRef]
14. Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern.

1991, 21, 660–674. [CrossRef]
15. Bramer, M. Principles of Data Mining, 3rd ed.; Springer: Berlin, Germany, 2016.
16. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
17. Aha, D.W. Lazy learning: Special issue editorial. Artif. Intell. Rev. 1997, 11, 7–10. [CrossRef]
18. Zhang, M.-L.; Zhou, Z.-H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognit.

2007, 40, 2038–2048. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2009.01.065
http://dx.doi.org/10.1109/CSPA.2011.5759873
http://dx.doi.org/10.1073/pnas.1605462113
http://dx.doi.org/10.3390/designs3010019
http://dx.doi.org/10.1016/j.fusengdes.2018.04.108
http://dx.doi.org/10.1016/j.asoc.2015.07.002
http://dx.doi.org/10.1109/TKDE.2013.39
http://dx.doi.org/10.1109/TFUZZ.2013.2294355
http://dx.doi.org/10.1109/34.824819
http://dx.doi.org/10.1109/21.97458
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1006538427943
http://dx.doi.org/10.1016/j.patcog.2006.12.019

Appl. Sci. 2019, 9, 4036 19 of 20

19. Kamiński, B.; Jakubczyk, M.; Szufel, P. A framework for sensitivity analysis of decision trees. Cent. Eur. J.
Oper. Res. 2018, 26, 135–159. [CrossRef] [PubMed]

20. Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Pearson Hall: Upper Saddle River, NJ, USA, 2011.
21. Ojha, V.K.; Abraham, A.; Snńžel, V. Metaheuristic design of feedforward neural networks: A review of two

decades of research. Eng. Appl. Artif. Intell. 2017, 60, 97–116. [CrossRef]
22. Suykens, J.A.K.; van Gestel, T.; de Brabanter, J.; de Moor, B.; Vandewalle, J. Least Squares Support Vector

Machines; World Scientific Publishing Company: Singapore, 2002.
23. Hsu, C.-W.; Lin, C.-J. comparison of methods for multiclass support vector machines. IEEE Trans. Neural

Netw. 2002, 13, 415–425. [PubMed]
24. Elisseeff, A.; Weston, J. A kernel method for multi-labelled classification. In Advances in Neural Information

Processing Systems 14; MIT Press: Cambridge, MA, USA, 2002; pp. 681–687.
25. Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998,

2, 121–167. [CrossRef]
26. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
27. Eunsuk, C.; Chulwoo, H.; Parka, F.C. Deep learning networks for stock market analysis and prediction:

Methodology, data representations, and case studies. Expert Syst. Appl. 2017, 83, 187–205.
28. Nabian, M.A.; Meidani, H. Deep Learning for Accelerated Reliability Analysis of Infrastructure Networks.

Comput. Aided Civ. Infrastruct. Eng. 2017, 33, 443–458. [CrossRef]
29. Broomhead, D.S.; Lowe, D. Multivariable function interpolation and adaptive networks. Complex Syst. 1988,

2, 321–355.
30. Marsupial, D. What Are Alternatives of Gradient Descent? Available online: https://stats.stackexchange.

com/q/97026 (accessed on 9 May 2014).
31. Hagan, M.T.; Demuth, H.B.; Beale, M.H.; de Jesús, O. Neural Network Design, 2nd ed.; Martin Hagan:

Stillwater, OK, USA, 2014.
32. Wang, Z.-Y. Some Variants of Self-Constructing Clustering; National Sun Yat-Sen University: Kaohsiung,

Taiwan, 2017.
33. Golub, G.H.; van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2012.
34. Kraskov, A.; Stgbauer, H.; Grassberger, P. Estimating Mutual Information. Phys. Rev. E 2004, 69, 066138.

[CrossRef] [PubMed]
35. Stojanović, M.B.; Božić, M.M.; Stanković, M.M.; Stavić, Z.P. A methodology for training set instance selection

using mutual information in time series prediction. Neurocomputing 2014, 141, 236–245. [CrossRef]
36. Chen, T.-T.; Lee, S.-J. A weighted LS-SVM learning system for time series forecasting. Inf. Sci. 2015, 299,

99–116. [CrossRef]
37. Boutell, M.; Luo, J.; Shen, X.; Brown, C. Learning multi-label scene classification. Pattern Recognit. 2004, 37,

1757–1771. [CrossRef]
38. Chen, W.; Yan, J.; Zhang, B.; Chen, Z.; Yang, Q. Document transformation for multi-label feature selection in

text categorization. In Proceedings of the 7th IEEE International Conference on Data Mining, Los Alamitos,
CA, USA, 28–31 October 2007; pp. 451–456.

39. Trohidis, K.; Tsoumakas, G.; Kalliris, G.; Vlahavas, I. Multilabel classification of music into emotions. In
Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR 2008), Philadelphia,
PA, USA, 14–18 September 2008.

40. Rodgers, J.L.; Nicewander, W.A. Thirteen ways to look at the correlation coefficient. Am. Stat. 1988, 42,
59–66. [CrossRef]

41. Li, L.; Wu, J.; Hudda, N.; Sioutas, C.; Fruin, S.A.; Delfino, R.J. Modeling the concentrations of on-road air
pollutants in Southern California. Environ. Sci. Technol. 2013, 47, 9291–9299. [CrossRef]

42. Izenman, A.J. Linear discriminant analysis. In Modern Multivariate Statistical Techniques; Springer: New York,
NY, USA, 2013.

43. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process.
Manag. 2009, 45, 427–437. [CrossRef]

44. UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu (accessed on 27 July 2019).
45. Schneider, P.; Biehl, M.; Hammer, B. Adaptive relevance matrices in learning vector quantization. Neural

Comput. 2009, 21, 3532–3561. [CrossRef]

http://dx.doi.org/10.1007/s10100-017-0479-6
http://www.ncbi.nlm.nih.gov/pubmed/29375266
http://dx.doi.org/10.1016/j.engappai.2017.01.013
http://www.ncbi.nlm.nih.gov/pubmed/18244442
http://dx.doi.org/10.1023/A:1009715923555
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1111/mice.12359
https://stats.stackexchange.com/q/97026
https://stats.stackexchange.com/q/97026
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://www.ncbi.nlm.nih.gov/pubmed/15244698
http://dx.doi.org/10.1016/j.neucom.2014.03.006
http://dx.doi.org/10.1016/j.ins.2014.12.031
http://dx.doi.org/10.1016/j.patcog.2004.03.009
http://dx.doi.org/10.2307/2685263
http://dx.doi.org/10.1021/es401281r
http://dx.doi.org/10.1016/j.ipm.2009.03.002
https://archive.ics.uci.edu
http://dx.doi.org/10.1162/neco.2009.11-08-908

Appl. Sci. 2019, 9, 4036 20 of 20

46. Tsoumakas, G.; Spyromitros-Xioufis, E.; Vilcek, J.; Vlahavas, I. MULAN: A Java library for multi-label
learning. J. Mach. Learn. Res. 2011, 12, 2411–2414.

47. Rieger, S.A.; Muraleedharan, R.; Ramachandran, R.P. Speech based emotion recognition using spectral
feature extraction and an ensemble of kNN classifiers. In Proceedings of the 9th International Symposium
on Chinese Spoken Language Processing, Singapore, 12–14 September 2014; pp. 589–593.

48. Gu, Q.; Ding, Y.-S.; Zhang, T.-L. An ensemble classifier based prediction of G-protein-coupled receptor
classes in low homology. Neurocomputing 2015, 154, 110–118. [CrossRef]

49. Wikipedia. Cross-Validation (Statistics). Available online: https://en.wikipedia.org/wiki/Cross-validation_
(statistics) (accessed on 27 July 2019).

50. Lee, S.-J.; Ouyang, C.-S. A neuro-fuzzy system modeling with selfconstructing rule generation and hybrid
SVD-based learning. IEEE Trans. Fuzzy Syst. 2003, 11, 341–353.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neucom.2014.12.013
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Network Schemes
	RBF-Based Network Schemes
	Construction and Learning of RBF Networks
	An Illustration

	Dimensionality Reduction
	Feature Selection
	Mutual Information
	Pearson Correlation
	Information Gain

	Feature Extraction

	Experimental Results
	Single-Label Multi-Class Classification
	Multi-Label Multi-Class Classification
	Effects of Dimensionality Reduction
	Discussions

	Conclusions and Future Work
	
	References

