Supplementary Materials: Modular Diversity of the BLUF Proteins and Their Potential for the Development of Diverse Optogenetic Tools

Manish Singh Kaushik, Ramandeep Sharma, Sindhu KandothVeetil, Sandeep Kumar Srivastava and Suneel Kateriya

Table S1. String analysis [1] output showing the details of query proteins, domains, interacting proteins and annotated functions.

S. No.	Query protein	Domain	Interacting Partner	Annotation
			JD73_03740	C-di-GMP phosphodiesterase
			YeaP	Diguanylate cyclase
			JD73_23680	Diguanylate cyclase
			JD73_23675	Diguanylate cyclase
1.	JD73_24940	EAL (Diguanylate - cyclase) -	YdaM	Diguanylate cyclase
			AriR	Regulator of acid resistance
			YcgZ	Two-component-system connector protein
			YcgE	HTH-type transcriptional regulator, MerR
				domain protein
			JD73_25605	Regulatory protein MerR
			GJ12_01945	Transcriptional regulator
		-	AMSG_00147	Phosphodiesterase
			AMSG_00905	Phosphodiesterase
			AMSG_01576	Uncharacterized protein
		-		Adenylyl cyclase-associated protein belongs to
			AWI5G_01591	the CAP family
		CHD (class III nucleotydyl cyclase)	AMSG_04591	DNA-directed RNA polymerase subunit beta
C	AMEC 04670		AMSG_08774	Uncharacterized protein
۷.	AM3G_04679		AMCC 000(7	cGMP-dependent 3',5'-cGMP
			AM5G_08967	phosphodiesterase A
			AMSG_09378	Adenylate/guanylate cyclase with GAF and
				PAS/PAC sensor
			AMSG_10048	3,4-dihydroxy-2-butanone 4-phosphate
				synthase
			AMSG_11978	DNA helicase
			Hhal_0366	Multi-sensor hybrid histidine kinase
			Hhal_0474	CheA signal transduction histidine kinase
		-	Hhal_0522	Putative CheW protein
			Hhal_0934	CheA signal transduction histidine kinase
	Hhal_1818	PAS (blue light sensor) - - -	Hhal_1716	CheBmethylesterase; MCP methyltransferase,
3.				CheR-type
			Hhal_1819	4-coumarate-CoA ligase
			Hhal_1820	Phenylalanine/histidine ammonia-lyase
			Hhal_2150	Multi-sensor hybrid histidine kinase
			Hhal_2151	Hpt sensor hybrid histidine kinase
			Hhal_2167	CheA signal transduction histidine kinase
	Rsph17025_30 45	- - - binding - - - -	Rsph17025_0524	Prephenate dehydratase
4.			tyrS	Tyrosyl-tRNA synthetase
			Rsph17025_0963	Hypothetical protein
			Rsph17025_1890	Hypothetical protein
			Rsph17025_2731	SARP family transcriptional regulator
			Rsph17025_2732	PA-phosphatase-like phosphoesterase
			mutL	DNA mismatch repair protein
			Rsph17025_2994	TonB family protein
			Rsph17025_3046	Hypothetical protein
			Rsph17025_3047	Cobalamin (vitamin B12) biosynthesis CbiX
				protein

www.mdpi.com/journal/applsci

-

5.			dnaE	DNA polymerase III subunit α	
			dnaQ	DNA polymerase III subunit ε	
			dnaN	β sliding clamp	
		DNA PolIII_yIII	dnaB	Replicative DNA helicase	
	Drav	(DNA polymerase	recR	Recombination protein	
	Dnax	III, subunits	holA	DNA polymerase III subunit δ	
		gamma and tau)	holB	DNA polymerase III subunit δ	
			holC	DNA polymerase III subunit chi	
			holD	DNA polymerase III subunit psi	
			polA	DNA polymerase I	
			cypD	Bifunctional cytochrome P450/NADPH-P450	
				reductase 1	
			hemE	Uroporphyrinogen decarboxylase	
			yitS	DegV domain-containing protein involved in	
				lipid transport	
6.			yjiB	Putative cytochrome P450	
		p450 (monooxygenase) —— ——	pksJ	Intermediate polyketide synthase involved in	
	CypC			secondary metabolism	
			pksM	Intermediate polyketide synthase involved in	
				secondary metabolism	
			сурВ	Bifunctional cytochrome P450/NADPH-P450	
				reductase 2	
			yrzI	Uncharacterized protein	
		_	bioI	Biotin biosynthesis cytochrome P450	
			cypX	Pulcherriminic acid synthase	

Figure S1.Multiple sequence alignment of the BLUF coupled EAL domain using BioEdit tool [2]. Sequence representing EAL domain from BlrP1 protein was retrieved from National Center for Biotechnology Information (NCBI; <u>https://www.ncbi.nlm.nih.gov/</u>) and used as template for the sequence alignment analysis. Amino acid residues in solid box are the conserved residues involved in the formation of EAL active site.

bPAC_ CHD

		10	20	30	40	50	60
bPAC_ A	- <mark>II<mark>B</mark>F</mark> S D I	. . L <mark>afs</mark> -t <mark>lt</mark> E	KLPVN <mark>E</mark> VVIL	VN <mark>RYF</mark> SI <mark>CTR</mark>		FIGDCVMASET	I K 58
CHD CHD LRR_RI super family CHD Med26_M super family Clustal Consensus	VVV <mark>4F</mark> IYL	V <mark>EFS</mark> SIL <mark>AH</mark>	PGLTE <mark>QCAD</mark> II	I <mark>A PEVDAC</mark> VR I S <mark>ELYE</mark> HVTS	SE NVEGTGGQVAK SI <mark>VRA</mark> GGEVVK	E LEDGIMAVEN E I <mark>lgicmay</mark> we E I <mark>gkdvmvc</mark> fe : : *. :	I 60 - 33
		70	80	90	100	110 1	.20
bPAC_A CHD CHD LRR_RI super family CHD Med26_M super family Clustal Consensus	EQC <mark>DAATR</mark> DE174ASLE NRAE <mark>D</mark> ALV <mark>B</mark> ADVL :	TSIDIISEL AVRQISAKL GLQQISEDL F <mark>A</mark> LHALHNL	KQLRHHVEAD KSLRASRSAN AELRSQQPPG HVLTTVLCDR *	NPL <mark>HILYTC</mark> I DPESLLFACE SALSLIYS <mark>RC</mark> S <mark>SL<mark>PGASVA</mark>M</mark>	SLSYC <mark>H</mark> VIECN SISHGKVLECN SVHYGRQLECN SACAGEVVEIN * * ; *	× G S — SI K × DH v G S — VS R X DY G G — F S K 2 DF I G S VD F K 2 DF × · · · · · · · · · · · · ·	I 116 T 72 T 117 T 90
		130	140	150	160	170 1	.80
bPAC_ A CHD CHD LRR_RI super family CHD Med26_M super family Clustal Consensus	LLGDAVNV YLGDTVNT LLGDCINT LLGNVVNT **:::*.	AARIE AARLQAVTR ASRIJSLSV ASRIKSLAA *:*:	KUCRSVIEDE KUKVPLLLSE SLCHDLVVAP	SVLAAGN EVRCLLG SV <mark>AE</mark> LL <mark>APGG</mark>	ASLPAQPGAQL	LSNVQEIG DEMREELESS AAAEWT <mark>LV</mark> SLC	 - 129 R 115 L 163 E 150
		190					

bpac a	
CHD	YVE <mark>RGKD</mark> HELRLFSL-
CHD LRR_RI super family	HKVKGRDKFVQVYQ
CHD Med26_M super family	HVLKGLADPQPAETVV
Clustal Consensus	

Figure S2.Multiple sequence alignment of the BLUF coupled CHD domain using BioEdit tool [2]. Sequence representing CHD domain from bPAC protein was used as template for the sequence alignment analysis. Amino acid residues in solid box are the conserved residues involved in the formation of nucleotide binding site.

129 130 177

Figure S3.Multiple sequence alignment of the BLUF coupled PAS domain using BioEdit tool [2]. Sequence representing PAS domain from photoactivated yellow protein (PYP) from Halorhodospira halophila was retrieved from National Center for Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov/) and used as template for the sequence alignment analysis. Amino acid residues in solid box are representing the PAS core motif responsible for generation and propagation of signal to the adjoining effector domain.

Figure S4.Multiple sequence alignment of the BLUF coupled vitamin B₁₂ binding domain using BioEdit tool [2]. Sequence representing B₁₂ binding domain from CarH and AerR proteins were retrieved from National Center for Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov/) and used as template for the sequence alignment analysis. The conserved amino acids (Trp 131, Val138, Glu141 and His142) essential for forming the binding pocket for substrate i.e. AdoB₁₂, is not found in the aligned portion of BLUF coupled vitamin B₁₂ binding domain.

Figure S5.Multiple sequence alignment of the BLUF coupled DNA pol III γ III domain using BioEdit tool [2]. The sequence of the well characterized truncated (1-373 amino acids) DNA polymerase III subunit gamma/tau (WP_113440333.1) from *E. coli* was retrieved from National Center for Biotechnology Information (NCBI; <u>https://www.ncbi.nlm.nih.gov/</u>) and used as template for the sequence alignment analysis. Amino acid residues in solid box represents the important residues crucial for the enzyme activity.

Figure S6.Multiple sequence alignment of the BLUF coupled p450 and well characterized CYP protein from *Bacillus subtilis* (retrieved from National Center for Biotechnology Information (NCBI; <u>https://www.ncbi.nlm.nih.gov/</u>) and used as template) using BioEdit tool [2]. Amino acid residues in solid box representing the conserved (Arg) and altered (Pro to Ser) amino acid residues essential for the substrate binding.

(a)

(e)

Figure S7. Protein-Protein interaction network depicting interacting partners of the selected effector domains (EAL, CHD, PAS, B12, DNA POL III Y III and p450) of the BLUF modular proteins. Proteinprotein interaction analysis was performed using String version 11 (https://string-db.org/) [2] and further modified using CytoScape [3]. Protein highlighted in yellow is the query protein. (a) The protein-protein interaction analysis of query protein sequence containing the EAL output domain revealed several interacting partners belongs to either EAL domain-containing PDEs or GGDEF domain-containing DGCs, (b) Protein-protein interaction analysis CHD domain containing protein showing the possible interacting partners, which range from phosphodiesterases, the RNA polymerase subunit β , and the DNA helicase to another adenylate cyclase/guanylate cyclase – associated with the GAF and PAS/PAC sensor,(c) Protein-protein interaction analysis PAS domain containing protein showing the possible interactions with CheW, CheA signal transduction histidine Kinase 1, 2 and 3, multisensor histidine Kinase 1 and 2, CheB methyltransferases, Hpt sensor histidine kinase,(d) The protein-protein interaction analysis for query protein containing the B12 domain showed several interacting partners involved in the regulation of different signaling pathways like prephenate dehydratase enzyme, tyrosyl-tRNA synthetase (TyrS) and a DNA mismatch repair protein, MutL, (e) The protein-protein interaction analysis for DNA pol III γ III (dnaX) revealed the interacting partners are the components involved in the regulation of DNA replication, i.e. DNA pol I (Pol A), replicative DNA helicase (dnaB), DNA mismatch repair protein (recR), DNA pol III subunit α (dnaE), δ (holA and holB), ε (dnaO), chi (holC), psi (holD) and β sliding clamp (dnaN),(f) The protein-protein interaction analysis for protein containing p450 domain showed interacting partners belonged to the fatty acid metabolism (CypB, CypC, CypD, and YitS) and to the secondary metabolism (PksJ and PksM). Details of the query proteins, domains along with the annotations are given in Table S1.

References

- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. *Nucleic Acids Res.* 2016, *45*, 362–368.
- Hall, A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for window 95/98/NT. *Nucliec Acid Res.* 1999, 41, 95–98.

3. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. CytoScape: a software environment for integral model of biomolecular interaction network. *Genome Res.* **2003**, *13*, 2498–2504.