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Abstract: This paper presents a fast and compact hardware implementation using an efficient haze
removal algorithm. The algorithm employs a modified hybrid median filter to estimate the hazy
particle map, which is subsequently subtracted from the hazy image to recover the haze-free image.
Adaptive tone remapping is also used to improve the narrow dynamic range due to haze removal.
The computation error of the proposed hardware architecture is minimized compared with the
floating-point algorithm. To ensure real-time hardware operation, the proposed architecture utilizes
the modified hybrid median filter using the well-known Batcher’s parallel sort. Hardware verification
confirmed that high-resolution video standards were processed in real time for haze removal.

Keywords: hardware implementation; haze removal; hazy particle map; modified hybrid median
filter; Batcher’s parallel sort

1. Introduction

With the development of self-driving vehicles and intelligent monitoring systems, there is a
growing demand for haze removal algorithms [1–3]. Loss of contrast and color fidelity of observed
images due to hazy weather can strongly interfere with these applications. Therefore, several image
processing algorithms are needed to improve the visibility of observed images. Some of them include
haze removal, noise reduction, and wide dynamic range expansion.

The haze removal algorithms can be roughly divided into two main categories: multiple image
processing [4,5] and single image processing [6–17]. Although multiple image processing is generally
superior in performance, it is not attractive due to the high complexity of frame storage memories.
Therefore, the recent focus has shifted to single image processing. He et al. proposed the dark channel
prior (DCP) [6], which is used to estimate the transmission map based on the assumption that a
few pixels with at least one very dark channel are present. However, block artifacts occurred in the
estimated transmission due to the pre-assumed constant transmission in local patches. Therefore, the
computationally intensive soft matting [18] was used additionally to refine the transmission, resulting
in a very slow processing speed of the DCP. Tarel et al. proposed a faster haze removal method with a
standard median filter instead of the time-consuming soft matting approach [7]. Thereby, the processing
time was shortened, and the haze was reduced. However, this method resulted in halo artifacts in the
corner (or line) areas with depth discontinuities caused by the large median filter for the estimation
of the whiteness of the observed image. Nishino et al. proposed a Bayesian probability-based haze
removal method utilizing a factorial Markov random field to model the dependence between scene
albedo and depth from a single hazy image [8]. The algorithm effectively reduced the haze and
color artifacts. However, it was also a time-consuming method requiring manual parametrization
by depth prior [3,8]. Zhu et al. found that the difference between the brightness and saturation in
a hazy image was generally correlated with the increasing haze concentration along with the scene
depth [9]. Therefore, a linear model called color attenuation prior (CAP) was set up to estimate the
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scene depth. Using the linear model and the guided image filter [19], the processing time and the haze
in the observed images were reduced. However, this approach failed to handle grayscale images and
dark regions in the images adequately. Bui et al. proposed a color ellipsoid prior (CEP) [15], which
was theoretically similar to DCP as proved by Gibson et al. [16]. They also proposed using the fuzzy
segmentation process in lieu of soft matting and derived an efficient formula for estimating and refining
the transmission map concurrently. This could reduce haze removal time. However, experiments with
provided code and parameters have shown that CEP tends to excessively dehaze the input images,
causing visible color artifacts in the results. Liu et al., in contrast, proposed a unified strategy to estimate
the transmission map and scene radiance simultaneously using total variation-based regularization [17].
Nevertheless, this iterative method required the atmospheric light and transmission map estimated by
DCP in its initialization stage. Therefore, it was not computationally friendly. Most importantly, all the
algorithms mentioned above require multiple frame memories, which greatly increase the hardware
complexity at a high cost in the hardware implementation phase. Another approach proposed by Kim
et al. removed haze from hazy images using hazy particle maps, estimated via modified hybrid median
filter (mHMF) [11]. It used fewer frame storage memories in the hardware design, and its algorithmic
complexity was solely a linear function of input image pixels, as will be discussed in Section 2.

In real-time image processing systems, a fast and compact solution for these algorithms is
always essential. Park et al. proposed a fast implementation of DCP by lightening the complexity of
the atmospheric light estimation and exploiting the high similarity of successive video frames [12].
In contrast, Salazar-Colores et al. shortened the processing time of DCP by utilizing morphological
reconstruction instead of soft matting to refine the transmission map [13]. According to the provided
experimental results, Park et al.’s design was able to process a 320 × 240 image in 0.228 s (i.e.,
1/0.228 ≈ 4.39 frames per second (fps)), while Salazar-Colores et al.’s design required 0.14 s to handle
a 1920 × 1080 image (i.e., 1/0.14 ≈ 7.14 fps). These faster versions of DCP are still inappropriate for
real-time applications requiring a processing speed of at least 25 fps. Similarly, Table 1 shows the
system complexity based on the CPU times using He et al.’s, Tarel et al.’s, Nishino et al.’s, Zhu et
al.’s, Bui et al.’s, and Kim et al.’s algorithms [6–9,11,15]. Nishino et al.’s algorithm was programmed
via Anaconda, while the other five algorithms were programmed via MATLAB R2019a. They were
all tested on a Core i7-6700 CPU (3.4 GHz) with 16GB RAM. For the smallest 320 × 240 image, the
fastest Bui et al.’s algorithm was only able to handle up to 20 fps (= 1/0.05). For the 4K standard of
a 4096 × 2160 image, the speed of even the fastest Kim et al.’s algorithm was significantly declined
to 0.09 fps (≈1/11.09), and the processing time of He et al.’s algorithm could not be measured due to
insufficient RAM. This finding suggests that the real-time processing is completely impossible, and the
memory capacity is a key factor in the hardware design for haze removal.

Table 1. Processing time in seconds of haze removal algorithms.

Image Size He [6] Tarel [7] Nishino [8] Zhu [9] Bui [15] Kim [11]

320 × 240 4.11 0.23 29.56 0.11 0.05 0.08
640 × 480 17.83 0.79 96.50 0.47 0.65 0.35
800 × 600 28.05 1.69 129.67 0.72 1.06 0.67

1024 × 768 46.82 2.18 173.86 1.18 1.74 0.96
1920 × 1080 143.86 4.27 583.18 3.14 4.76 2.25
4096 × 2160 - 25.76 2388.85 13.20 20.38 11.09

An alternative might be to implement these algorithms on a graphics processing unit (GPU) with
GPU-accelerated libraries included in the Compute Unified Device Architecture toolkit. GPU can be a
main means of realizing data-driven haze removal algorithms. For example, a cascaded convolutional
neural network for dehazing proposed in Reference [14] was able to handle a 640 × 480 image in 0.1029 s
(i.e., 1/0.1029 ≈ 9.75 fps). Unfortunately, this processing speed still does not meet the requirement of
real-time processing. In addition, an in-depth study on both classical and deep learning haze removal
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methods stated that the classical ones tend to generate results favored by human perception [20]. As well
as this, researchers may be increasingly interested in designing the hardware using field-programmable
gate arrays (FPGA) because of the high cost of the GPU platform in terms of both market price and
energy consumption [21] and the inability to handle large image sizes in real time. Several hardware
implementations until now including Shiau et al.’s and other designs [1,2,22] are only appropriate for
small-size imaging applications because of their low throughput. Therefore, a strategy for processing a
large size image in real time is highly required. This paper presents a 4K-capable hardware design
using Kim et al.’s algorithm that meets the real-time processing criteria and does not require frame
storage memory for consecutive images (or video frames) with high similarity. The proposed hardware
architecture also utilizes the noted Batcher’s parallel sorting algorithm [23] to realize the mHMF,
consequently reducing the resource utilization and boosting the processing speed significantly.

The rest of the paper is organized as follows. Section 2 introduces the haze removal with hazy
particle maps in detail. Section 3 describes the hardware architecture for the real-time processing of
mHMF, a very important filter for the estimation of hazy particle maps. Section 4 presents the overall
hardware design of the haze removal system and provides experimental results to demonstrate that
the design can handle the 4K standard in real time. Section 5 concludes the paper.

2. Haze Removal with Hazy Particle Maps

The atmospheric scattering model, proposed by McCartney [24], is widely used to describe the
formation of hazy images and is expressed as follows [6]:

I(x, y) = J(x, y)t(x, y) + A(1− t(x, y)), (1)

where (x, y) denotes the pixel locations in the hazy image I, the haze-free image J as well as the
transmission map t, and A represents the global atmospheric light. Unfortunately, only the I value
is known in this equation. The goal of haze removal algorithms is to identify robust estimators of A
and t to restore J according to Equation (1). When white balance is performed correctly in an ideal
environment, the haze looks completely white [7]. It means that the global atmospheric light A can be
set to one (A = 1). Then, the atmospheric scattering model is rewritten as follows:

Î(x, y) = J(x, y)t(x, y) + 1− t(x, y), (2)

where Î is the white-balanced image calculated using Equation (3) and wb(·) refers to the operator
denoting white-balance processing, which was described in Reference [7]. Kim et al. defined a new
variable termed hazy particle maps, shown in Equation (4), representing the haze distribution of the
hazy image. Since the haze distribution correlates with the scene depth, it can change abruptly along
the corners or lines of observed objects. Hence, the mHMF that preserves corners and edges can be
used to estimate the hazy particle map, which is assumed to show positive values of the minimum
color channel at each pixel [11]. The following equations are adopted to obtain the scene radiance:

Î(x, y) = wb(I(x, y)), (3)

H(x, y) = 1− t(x, y), (4)

Ĥ(x, y) = khmhm f
(
minRGB

(
Î(x, y)

))
, (5)

J(x, y) =
Î(x, y) − Ĥ(x, y)

1− Ĥ(x, y)
, (6)

where Ĥ stands for the estimated value of the hazy particle map H, kh represents a weight factor of
0 ≤ kh ≤ 1, mhm f (·) denotes the operator of mHMF, and minRGB(·) is the operator choosing each pixel’s
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minimum value. The last step is to perform adaptive tone remapping to expand the dynamic range of
the recovered scene radiance J [25]:

EL(x, y) = L(x, y) + GL(x, y)WL(x, y), (7)

EC(x, y) = C(x, y) + GC(x, y)WC(x, y) + 128, (8)

where EL denotes the expanded luminance, L is the input luminance, GL represents the luminance
gain, WL stands for the adaptive luminance weight, EC refers to the enhanced color, C is the input
color, GC is the color gain, and WC is the adaptive color weight. Readers can refer to Reference [25] for
a detailed description on the calculation of luminance/color gains and adaptive weights.

A block diagram of the hazy particle map-based algorithm is shown in Figure 1. It comprises
four consecutive steps: white balance, hazy particle map estimation, scene radiance recovery and
adaptive tone remapping. EJ is the dehazed output image composed of EL and EC with expanded
dynamic range. It can be seen from the block diagram in Figure 1 and Equations (3)–(8) that the
haze removal using hazy particle maps is a fact and efficient algorithm, since the most complicated
operation is solely the mHMF in the white balance and hazy particle map estimation blocks. Other
computations are simple and then can be done in constant time. For an image of size H ×W and the
mHMF of window size N × N, the complexity of this approach is O(H ×W × N2

× logN) when using
brute-force implementation of mHMF, where logN refers to the binary logarithm of N. Fortunately, the
mHMF operation can be done in constant time by virtue of the constant time median filter provided by
Reference [26]. In this context, constant time means that the filtering operation is independent of the
window size. Therefore, the algorithmic complexity of Kim et al.’s algorithm is a linear function of the
number of image pixels O (H ×W). This could be verified by the results of processing time analysis in
Table 1.
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In Reference [11], authors provided a comprehensive assessment of the dehazing performance
with three benchmarking methods [6,7,9] on both real hazy image dataset [27] and synthetic dataset [28].
In order to replicate their work, we carry out a thorough evaluation on three new image datasets,
including D-HAZY [29], O-HAZE [30] and I-HAZE [31]. D-HAZY is a synthetic dataset consisting
of over 1400 images of real scenes and corresponding depth maps captured by a Microsoft Kinect
camera. The atmospheric scattering model is then employed to synthesize hazy images with two
assumptions: (i) the atmospheric light is uniform and (ii) the haze is homogeneous. O-HAZE and
I-HAZE, on the other hand, are real datasets comprising pairs of hazy and clear images of outdoor
and indoor scenes, respectively. To evaluate performance of haze removal algorithms, Mean Squared
Error (MSE), Structural Similarity (SSIM) [32], Tone-Mapped image Quality Index (TMQI) [33] and Fog
Aware Density Evaluator (FADE) [34] are used. SSIM and TMQI take on values within the range [0,1],
in which higher values are better. In contrast, FADE is used to assess the haze density in a scene, a
smaller FADE usually means that haze is more efficiently removed.

Table 2 displays the average MSE, SSIM, TMQI and FADE results on D-HAZY, O-HAZE and
I-HAZE datasets, respectively. The best result is marked bold. On D-HAZY dataset, He et al.’s
algorithm is best performing method under the MSE and SSIM metrics, while Kim et al.’s algorithm
exhibits best performance under the TMQI and FADE metrics. On O-HAZE and I-HAZE datasets, the
dehazing methods proposed by He et al. and Kim et al. show the best results in general, respectively.
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Interestingly, Kim et al.’s method possesses the best TMQI score over all three datasets due largely to
the adaptive tone remapping. This post-processing step efficiently resolves the narrow dynamic range
of the haze removal process.

Table 2. Average Mean Squared Error (MSE), Structural Similarity (SSIM), Tone-Mapped image Quality
Index (TMQI), and Fog Aware Density Evaluator (FADE) results on three datasets.

Dataset Method MSE SSIM TMQI FADE

D-HAZY

He 0.0303 0.8348 0.8631 0.7422
Tarel 0.0611 0.7475 0.8000 0.9504
Zhu 0.0481 0.7984 0.8206 0.9745
Kim 0.0373 0.7672 0.8782 0.5054

O-HAZE

He 0.0200 0.7709 0.8403 0.3719
Tarel 0.0283 0.7263 0.8416 0.4013
Zhu 0.0274 0.6647 0.8118 0.6531
Kim 0.0346 0.7255 0.8921 0.4038

I-HAZE

He 0.0535 0.6580 0.7319 0.8328
Tarel 0.0318 0.7200 0.7740 0.8053
Zhu 0.0359 0.6864 0.7512 1.0532
Kim 0.0237 0.7672 0.7978 0.9632

Hazy scenes with corresponding dehazed images are presented in Figure 2 to visually assess the
dehazing performance of four methods. In this case, it is evident that dehazing approaches proposed
by He et al. and Kim et al. share the top performance. This is consistent with the quantitative results in
Table 2. He et al.’s method accidentally enlarges the sun after dehazing in the first row and suffers
from background noise in the sky of the second row. Tarel et al.’s method introduces halo artifacts at
small edges like the tree twigs or the pointed roofs in the first two rows. Zhu et al.’s method produces
too dark image because of large haze removal in the first and third rows. Only Kim et al.’s method
shows visually-good results for three input hazy images.
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Based on this quantitative and qualitative evaluations, as well as the comparison of running time
for various image sizes in Table 1, we decided to implement Kim et al.’s algorithm by the means of
FPGA to meet the real-time processing requirement. Consequently, our proposed FPGA design is
highly appropriate for smart surveillance system or self-driving vehicles. The first step in the hardware
design procedure is to convert the floating-point algorithm into its fixed-point version. The brief
introduction to this conversion is in order. A real number can be represented by a 32-bit, 64-bit, or 128-bit
floating-point value FL with high precision (IEEE Standard 754-2019 [35]) or by a reduced-precision
N-bit fixed-point value FI, where N is greatly smaller than 32. Floating-point number representation is
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widely used in software for algorithm design and simulation, while fixed-point number representation
is mainly used in hardware design. An N-bit fixed-point representation is actually an N-bit binary
number with an ‘implied binary point’ separating the number into FC-bit fraction and (N − FC)-bit
integer parts, analogous to the decimal point between the fraction and integer digits of an ordinary
decimal number. By converting a number from its floating-point representation to its fixed-point
representation using Equation (9), reduced hardware utilization and increased processing speed can be
achieved at the cost of losing arithmetic accuracy. Accordingly, hardware designers have to decide
the number of fraction bits for every signal in the design so that the propagated loss of accuracy at
the output is within a predetermined limit. In addition, they also allocate the number of integer bits
to adequately accommodate the signal range. Our hardware design can achieve the computation
error of less than ±0.5 Least Significant Bit (LSB) compared with the floating-point algorithm. This
computation error is calculated using Equation (10).

FI = round
(
FL× 2FC

)
, (9)

E = FLEJ −
FIEJ

2FCEJ
(10)

where E is the computation error, FLEJ denotes the floating-point value, and FIEJ represents the
fixed-point value of FLEJ with FCEJ fraction bits at the final output EJ in Figure 1.

The visual evaluation in Figure 2 shows that Kim et al.’s algorithm resolves completely halo
artifacts that occur in Tarel et al.’s approach. This is achieved by employing the mHMF, which
outperforms the standard median filter used in Tarel et al.’s method to estimate the haze distribution.
Hence, it is worthwhile to design a compact hardware architecture for the mHMF that can handle large
size images in real time.

3. Hardware Architecture for Modified Hybrid Median Filter

The median filter is an effective filter that preserves edges in the areas with depth continuities [7].
As a result, the filter may leave halo artifacts in the areas of corners or lines with depth discontinuities.
To overcome this drawback, a hybrid median filter (HMF) is needed to ensure corner areas with depth
discontinuities [36]. Since outdoor scenes display a series of hazy distributions, it is better to use
the median filter in areas with depth continuities and the HMF in areas with depth discontinuities.
Therefore, a 7 × 7 mHMF was proposed according to the median of a square window instead of a
window’s center pixel [11], as depicted in Figure 3. The mHMF initially determines the medians of 140,
121, and 213 corresponding to the three windows and identifies the final median of 140. In the case of
HMF, the final median of 213 was selected, which was significantly larger than that of mHMF since the
center pixel was used instead of the median of the square window (213 instead of 140). Since this large
value (213) highly likely refers to a noisy pixel, mHMF improves HMF performance to enhance the
prediction of hazy particle maps.

Using the square window median instead of the center pixel enhances the performance in flat
areas with depth continuities and corner areas with depth discontinuities, such as outdoor scenes.
However, the hardware implementation is more burdensome since the hardware size of mHMF is
substantially larger than that of HMF. The hardware design of each mHMF consists of three standard
median filters corresponding to the three window types and a single three-input median filter for
selecting the final median. In addition, a total of four mHMFs are needed: three mHMFs for white
balancing of Equation (3) in RGB channels and a single mHMF for the estimation of the hazy particle
maps of Equation (5). In general, the median filter can be implemented based on a sorting network [37]
or without such a network [38]. A sorting network is appropriate for filtering with a small window
size, but not for applications requiring a large window size.



Appl. Sci. 2019, 9, 3443 7 of 15

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 14 

representation to its fixed-point representation using Equation (9), reduced hardware utilization and 
increased processing speed can be achieved at the cost of losing arithmetic accuracy. Accordingly, 
hardware designers have to decide the number of fraction bits for every signal in the design so that 
the propagated loss of accuracy at the output is within a predetermined limit. In addition, they also 
allocate the number of integer bits to adequately accommodate the signal range. Our hardware 
design can achieve the computation error of less than ±0.5 Least Significant Bit (LSB) compared with 
the floating-point algorithm. This computation error is calculated using Equation (10). 𝐹𝐼 = 𝑟𝑜𝑢𝑛𝑑(𝐹𝐿 2 ), (9)

𝐸 = 𝐹𝐿 − 𝐹𝐼2  (10)

where 𝐸 is the computation error, 𝐹𝐿  denotes the floating-point value, and 𝐹𝐼  represents the 
fixed-point value of 𝐹𝐿  with 𝐹𝐶  fraction bits at the final output 𝐸𝐽 in Figure 1. 

The visual evaluation in Figure 2 shows that Kim et al.’s algorithm resolves completely halo 
artifacts that occur in Tarel et al.’s approach. This is achieved by employing the mHMF, which 
outperforms the standard median filter used in Tarel et al.’s method to estimate the haze distribution. 
Hence, it is worthwhile to design a compact hardware architecture for the mHMF that can handle 
large size images in real time. 

3. Hardware Architecture for Modified Hybrid Median Filter 

The median filter is an effective filter that preserves edges in the areas with depth continuities 
[7]. As a result, the filter may leave halo artifacts in the areas of corners or lines with depth 
discontinuities. To overcome this drawback, a hybrid median filter (HMF) is needed to ensure corner 
areas with depth discontinuities [36]. Since outdoor scenes display a series of hazy distributions, it is 
better to use the median filter in areas with depth continuities and the HMF in areas with depth 
discontinuities. Therefore, a 7 × 7 mHMF was proposed according to the median of a square window 
instead of a window’s center pixel [11], as depicted in Figure 3. The mHMF initially determines the 
medians of 140, 121, and 213 corresponding to the three windows and identifies the final median of 
140. In the case of HMF, the final median of 213 was selected, which was significantly larger than that 
of mHMF since the center pixel was used instead of the median of the square window (213 instead 
of 140). Since this large value (213) highly likely refers to a noisy pixel, mHMF improves HMF 
performance to enhance the prediction of hazy particle maps. 

   
(a) (b) (c) 

Figure 3. Modified hybrid median filter: (a) square window, (b) diagonal window, and (c) cross 
window. 

Using the square window median instead of the center pixel enhances the performance in flat 
areas with depth continuities and corner areas with depth discontinuities, such as outdoor scenes. 
However, the hardware implementation is more burdensome since the hardware size of mHMF is 

Figure 3. Modified hybrid median filter: (a) square window, (b) diagonal window, and (c) cross window.

Figure 4 outlines the sorting procedure of a seven-input median filter. Figure 4a depicts the sorting
procedure using the well-known odd-even sorting-network (OESN) [37], and Figure 4b displays a novel
sorting procedure proposed in this paper based on Batcher’s sorting network (BSN) [23]. The vertical
line connecting the two inputs represents a compare-and-swap (CS) unit, which compares the two
input values in the descending order. The CS units in the blue rectangular group operate concurrently
in a single clock cycle. The proposed procedure based on BSN, consisting of six blue rectangular
groups with 14 CS units, identifies the median in six clock cycles whereas OESN procedure with 18 CS
units requires seven clock cycles. Notably, there are differences in the number of units and clock cycles:
four and one, which significantly reduce the system complexity in hardware implementation.
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The three hardware architectures of mHMF illustrated in Figure 5 have been designed and tested
to compare the hardware complexity. To this end, a filter consisting of a 7 × 7 window filter and 10-bit
data was used for mHMF. The three figures in Figure 5 display the hardware architectures implemented
using OESN, cumulative histogram (CumHist) [38] and the proposed method, respectively. The sorting
procedure in Figure 4a can be extended according to the 7 × 7 window size. The square window
comprises 49 inputs, and the diagonal and cross windows contain 13 inputs. Therefore, the OSEN-based
architecture depicted in Figure 5a consists of median filters with 49 and 13 inputs. A 3-input median
filter is used to determine the final median at the output. Regarding the CumHist architecture in
Figure 5b, the sizes of Read-Only Memories (ROMs) and a priority encoder depend on the number of
bits in the input data and the window size of a median filter [38]. The 13-input OSEN-based median
filter can also be used in diagonal and cross windows of the CumHist architecture. The hardware
design used a 7 × 7 window filter and 10-bit data herein. Therefore, 14 1024 × 1024-bit ROMs, 1024 6-bit
registers, and a 1024-to-10 priority encoder are required for the square window of the median filter.
The sorting procedure with reduced CS units and clock cycles is used as the hardware architecture
for the proposed method. Figure 5c shows the architecture, which also contains 49 and 13 inputs for
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the median filters. The results of hardware implementation using the method proposed in this paper
along with the other two methods are discussed in the next section.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 14 
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4. Hardware Implementation

In order to verify the complexity of the three hardware architectures shown in Figure 5, an mHMF
filter was implemented in a system-on-a-chip (SoC) evaluation board (Xilinx Zynq-7000 SoC ZC706
Evaluation Kit) [39] using Verilog hardware description language. Table 3 summarizes the results of
FPGA implementation. Registers and lookup tables (LUT) represent logical gate areas, and RAMB36E1
represents memory areas. The proposed method used 11,139 registers and 9745 LUTs, which were
substantially smaller than those of OESN and CumHist. Therefore, the proposed method based on
BSN was selected to implement the hardware design for haze removal using hazy particle maps.

Table 3. Field Programmable Gate Array (FPGA) implementation of a 7 × 7 mHMF.

Slice Logic Utilization OESN [37] CumHist [38] Proposed Method

Registers (#) 21,870 42,264 11,139
LUTs (#) 22,756 42,060 9745

RAMB36E1 6 6 6

Figure 6 shows a detailed block diagram of a 4K-capable FPGA implementation of haze removal
using hazy particle maps. It comprises eight main processing blocks with 30 SPRAM memories.
The input hazy images (or video frames) supplied to the system controller were provided by the
Visual Studio platform running on the host computer for hardware experiments. The platform was
programmed to extract frame data from the hazy image I and feed them to the controller implemented
on the SoC evaluation board. The controller reads and stores the image data using double-buffering.
The hazy image was processed to estimate the hazy particle map Ĥ in Equation (5) after white
balancing, and the result was used to recover scene radiance J in Equation (6). The macro block
provides mathematical functions such as dividers and square rooters. The blocks of RGB-to-YCbCr422
and YCbCr422-to-RGB convert the format of color component signals. The recovered scene radiance
was supplied to the adaptive tone remapping to restore video visibility of the final output image
EJ comprising EL and EC in Equations (7) and (8), respectively. This output image was then fed
to the platform to analyze the performance of the proposed design on the host computer. The two
memories 1024 × 32-bit SPRAMs were used to construct the histogram required for the adaptive tone
remapping [25]. Other memories were used as line buffers to filter operations in white balancing
and hazy particle map estimation. The proposed architecture does not use any of SPRAMs as frame
storage memories.
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The SoC evaluation board integrates an FPGA, application process units, and numerous subsystems.
The FPGA implementing the proposed design for the evaluation of real-time performance is shown in
the bottom third of Figure 7. The top third and the middle third of Figure 7 represent the Visual Studio
platform, which provides input images to and displays the results from the evaluation board. In the
top third, the left panel shows an input hazy image, and the right panel shows the dehazed image
obtained using the hardware design proposed in this paper. In the middle third, the left platform
control allows users to select the input data (e.g., a still image, a video stream from a webcam or a file
on the host computer) and to save the results. The right algorithm control allows users to change the
parameters provided to the hardware implemented on the SoC evaluation board. This Visual Studio
platform was used to evaluate the performance of the proposed design.
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Table 4 summarizes the results of FPGA implementation. The entire haze removal system utilized
approximately 16.21% of registers and 25.92% of LUTs. The memory areas used for RAMB36E1 were
85, respectively, which constituted 15.60% of the total available memories. The maximum operating
frequency of the implemented hardware was 236.29 MHz. Considering additional horizontal and
vertical blank periods in hardware implementation, the maximum processing speed (MPS) in fps can
be calculated easily using the following equation:

MPS =
fmax

(W + HB)(H + VB)
, (11)

where fmax is the maximum operating frequency, W denotes the width of the input image, HB represents
the horizontal blank, H refers to the height of the input image, and VB indicates the vertical blank. In
this study, the proposed design required a clock cycle and a horizontal line for each horizontal and
vertical blank period.
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Table 4. FPGA implementation of the proposed method.

Slice Logic Utilization Available Used Utilization

Registers (#) 437,200 70,864 16.21%
LUTs (#) 218,600 56,664 25.92%

RAMB36E1 545 85 15.60%
Minimum Period (ns) 4.23

Maximum Frequency (MHz) 236.29

Table 5 shows the processing speeds for various video standards. The number of clock cycles
required to process the DCI 4K video standard of a 4096 × 2160 image was 8,853,617 (= 4097 × 2161),
suggesting that the proposed haze removal system can handle up to 26.7 fps (= 236.29 × 106/8,853,617)
and meets the real-time processing criteria of handling at least 25 fps. This result demonstrates that the
proposed method can be applied to real-time applications using up to 4K video standards.

Table 5. Processing speeds for various video standards.

Video Standard Image Size Required Clock Cycles (#) Processing Speed (fps)

Full HD (FHD) 1920 × 1080 2,076,601 113.8

Quad HD 2560 × 1440 3,690,401 64.0

4K
UW4K 3840 × 1600 6,149,441 38.4

UHD TV 3840 × 2160 8,300,401 28.5
DCI 4K 4096 × 2160 8,853,617 26.7

The comparison with other hardware designs is also shown in Table 6. Since Shiau et al. and
Zhang et al. did not present the implementation results thoroughly as Park et al. did, their data of
Registers, LUTs, DSPs (Digital Signal Processing blocks), and Memory are listed as NA (Not Available).
In Reference [1], Shiau et al. claimed that their design can achieve 200 MHz using TSMC 0.13-µm
technology. However, when they implemented it on Altera Stratix EP1S10F780C6 FPGA platform,
the maximum frequency is only 58.43 MHz, leading to the fact that it is solely fast enough to process
a video resolution of FHD at 28.1 fps in real time. Park et al. proposed a hardware architecture for
haze removal at fixed frame sizes of 320 × 240, 640 × 480, and 800 × 600. Accordingly, even though
their design achieved the maximum frequency of 88.70 MHz, it can only process the maximum video
resolution of Super VGA (SVGA). Adding to that, it requires 32,000 ALMs (Adaptive Logic Modules),
which comprises two adaptive lookup tables and then can be inferred to 64,000 LUTs. Except the
number of registers, more LUTs, DSPs, and memory are needed to implement a design that cannot be
compared to our proposed design in terms of processing speed and resource utilization. Finally, the
design of Zhang et al. can be considered as an improvement upon Shiau et al.’s under the processing
speed metric. Their design is capable of processing a Quad HD video resolution at 31.4 fps in real time.
All the calculations of processing speed for designs of Shiau et al. and Zhang et al. are based on the
assumption that they also require a clock cycle and a horizontal line for each horizontal and vertical
blank period. In fact, their requirement for horizontal and vertical blank period may be different,
and the processing speed may decrease. Therefore, it is evident from Table 6 that our proposed
hardware architecture is superior to other benchmarking designs in term of processing speeds in
References [1,2,22] and requires less resources than the design in Reference [2].
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Table 6. Comparison of FPGA synthesized results.

Hardware Utilization Shiau et al. [1] Park et al. [2] Zhang et al. [22] Proposed Method

Registers (#) NA 53,400 NA 70,864
LUTs (#) NA 64,000 NA 56,664
DSPs (#) NA 42 NA 0

Memory (Mbits) NA 3.2 NA 1.5
Maximum Frequency (MHz) 58.43 88.70 116.00 236.29
Maximum Video Resolution FHD SVGA Quad HD DCI 4K

As mentioned in Section 2, the computation error of the proposed hardware architecture is within
±0.5 LSB compared with the floating-point algorithm. This may cause a possible issue of slight color
shift, as illustrated in Figure 8. The color around the train headlights is slightly stronger due to the
limited bit width of every signal in the hardware implementation. Except for this kind of minor
shortcoming, the results of two methods shown in Figure 8 are virtually identical. The results of the
implemented hardware in Table 7 are very similar to those of Kim et al.’s algorithm. Small differences
in the results were caused by the limited bit widths to achieve compact and fast hardware designs.
In the floating-point algorithm, kh in Equation (5) could be fine-tuned to get the best results, as shown
in Table 2. However, when converting to the fixed-point representation for hardware implementation,
we allocated four bits to the fraction of kh. As a result, kh could only be coarse-tuned in the hardware
design at intervals of 0.0625 (=1/24). Accordingly, even when kh = 0.9 gives the best result when tuning
the floating-point algorithm, we can only select kh = 0.875 or 0.9375 in the implemented hardware. This
leads to a slight difference, as shown in Figure 8 and Table 7.
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Table 7. Average MSE, SSIM, TMQI and FADE results on three datasets.

Dataset Method MSE SSIM TMQI FADE

D-HAZY
Ours 0.0430 0.7738 0.8615 0.5143
Kim 0.0373 0.7672 0.8782 0.5054

O-HAZE
Ours 0.0220 0.7636 0.8917 0.4125
Kim 0.0346 0.7255 0.8921 0.4038

I-HAZE
Ours 0.0246 0.7700 0.7883 0.9919
Kim 0.0237 0.7672 0.7978 0.9632
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5. Conclusions

A fast and efficient hardware architecture for haze removal was presented in this paper.
The hardware was compact due to the novel Batcher’s sort-based modified hybrid median filter
implementation and provided high throughput for real-time video processing based on pipeline
architecture. In order to guarantee the high performance of the proposed architecture, the hardware was
also designed to minimize the computation error to less than ±0.5 LSB compared with the floating-point
algorithm. The maximum operating frequency of the designed hardware was 236.29 MHz, which was
fast enough to handle 4K video standards in real time at 26.7 fps. Finally, the designed hardware was
verified on the SoC board.
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the paper; B.K. wrote the manuscript with the editing of all authors and is the director of this work.
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