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Featured Application: This work deals with the dynamic response calculation and energy dissipation
analysis of a linear elastic single-degree-of-freedom (SDOF) system with a supplemental nonlinear
eddy current damper (ECD) subjected to base excitation, in preparation for optimum design and
performance evaluation for structural vibration control with ECDs.

Abstract: The nonlinear model and energy dissipation of a rotary axial eddy current damper (ECD)
and the dynamic responses to harmonic and seismic base excitations of a linear elastic SDOF system
with the nonlinear ECD (SDOF-ECD) are investigated. Firstly, the nonlinear force-velocity relationship
of the ECD is studied using finite element simulation, experimental testing and mathematical model
fitting. Secondly, the energy dissipated by the nonlinear ECD under a cycle of harmonic motion is
derived analytically and its optimal critical velocity is determined such that the energy dissipation
is maximized. Finally, the responses of the SDOF-ECDs subjected to harmonic and seismic base
excitations are calculated using numerical algorithm, where the displacement and acceleration
control performance and the energy dissipation capacity of the ECD are compared with those of the
conventional fluid viscous dampers (FVDs). The results indicate that the seismic control performance
of ECDs outperforms that of FVDs in most cases and it is anticipated that the ECDs can be used as
good alternative devices to conventional FVDs for seismic control applications.

Keywords: eddy current damper; passive vibration control; nonlinear damper; seismic response
mitigation; energy dissipation

1. Introduction

Structural vibration control has been widely applied in civil engineering, such as wind-induced
vibration reduction and seismic protection of high-rise buildings [1–5], seismic response mitigation of
long span bridges [6–8], human-induced vibration control of footbridges and floor decks [9,10], vibration
control of stay cables [11–13], vibration control of wind turbines [14–16] and vibration control of
marine structures [16,17], etc. Energy dissipation devices, such as fluid viscous dampers (FVDs) [6,18],
magnetorheological (MR) dampers [7,11,12], pounding dampers [17,19–21] and electromagnetic
dampers [2,9,22–25], can suppress structural vibration effectively. In recent years, an innovative control
device named eddy current damper (ECD) has gained more and more attention in the field of structural
vibration control. The eddy current damping is a kind of magnetic damping, which is contactless
between the movable members. Therefore, wear and fatigue are minimized in the ECDs, minimum
maintenance is required and lifetime is maximized, gently outperforming that of contact-type dampers.
Compared to conventional FVDs, there is no working fluid and no fluid degradation and leakage
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problems exist in the ECDs. The ECDs can be made tube-like and produce an axial force [26], or coupled
with a ball screw to form a rotary axial eddy current damper [27]. The eddy current damping unit can be
also integrated with a mass and a spring to form an eddy current tuned mass damper (EC-TMD) [2,22].

In its simplest form, an ECD device consists of a conductive plate and a pair of magnets. When the
conductive plate moves through a magnetic field, the movement induces an eddy current in the
conductive plate. The interaction of the eddy currents and the applied magnetic field induces a drag
force that resists the relative motion between the conductive plate and the magnets. The drag force
is also called the eddy current damping force. However, the energy dissipation density of such an
eddy current damping system is usually very low, and this disadvantage does restrict its industrial
applications [26]. In recent years, significant improvements have been made by either enhancing
magnetic strength or increasing the speed of relative movement. For example, the use of back irons
in the ECDs is shown to increase the damping coefficients by a factor of up to five [22]. The relative
speed between the conductive plate and magnets can be amplified using a ball screw [27] or a linear
magnetic gear [28]. A ball screw can transform low speed linear motion into high speed rotary motion
and a linear magnetic gear can amplify the linear speed by several times.

For the ECDs without velocity amplification, the relative velocity between the conductive plate
and magnets is not very high if the external excitations are in the low frequency band. In such cases,
the constitutive behavior of eddy current damping is linear for the relationship between the damping
force and relative velocity [22]. When the external excitations are in very high frequency band such as
earthquakes and impact loads, or the ECDs are enhanced with amplification mechanisms such as the
ball screw or magnetic gear, the relative velocity between the conductive plate and magnets becomes
much higher. In such cases, the constitutive behavior of eddy current damping is nonlinear due to the
influence of the reaction field of the eddy current in the conductive plate [29].

It is common in both design and retrofit of structures to approximate the real multi-degree-
of-freedom (MDOF) system with an equivalent single-degree-of-freedom (SDOF) system such that
the latter represents the most relevant characteristics of the former for a particular motion mode.
In this way, any preliminary attempt to design a supplemental damping system for a structure can be
simplified allowing the designer to use an equivalent SDOF model instead. In view of the nonlinear
properties of ECDs, the governing equation for an SDOF-ECD system becomes nonlinear, which is
difficult to calculate the system response analytically. On the other hand, as structural engineers are
most familiar with classical viscous damping, it is essential to compare the performance of ECDs with
FVDs, which are nonlinear in nature as well.

This investigation aims to demonstrate how nonlinear ECDs affect the dynamic responses of
SDOF systems and evaluate the seismic control performance compared with FVDs. Presented first
are the nonlinear characteristics of a rotary axial ECD, where we demonstrate that its force-velocity
relationship can be characterized by the Wouterse’s model [29]. Secondly, the energy dissipation
capacity of the nonlinear ECD is derived analytically when subjected to harmonic motion and its
optimal critical velocity for energy dissipation are obtained, where its energy dissipation characteristics
are compared with FVDs. Thirdly, steady-state responses of the SDOF-ECD systems under harmonic
excitations are calculated using numerical simulations, their displacement and acceleration responses
are compared with those of the SDOF-FVD systems. Fourthly, the seismic response control performance
and energy dissipation capacity of the SDOF-ECD systems under real earthquakes are analyzed and
compared with the SDOF-FVD systems. Some conclusion remarks are drawn in the final part.

2. Nonlinear Constitutive Behavior of an Eddy Current Damper

Generally speaking, the mathematical models for supplemental damping devices are quite
complicated. The most widely used energy dispassion devices are FVDs. Experimental evidence [30]
reveals that the constitutive behavior of FVDs for the force-velocity relationship can be described by a
fractional velocity power law as follows
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FFVD = cdvα (1)

where cd is a damping coefficient, α is a velocity exponent, and v is the relative velocity between two
ends of the damper. The exponent α is responsible for the nonlinear damping of FVDs and depends
upon the hydraulic circuit employed. Typically, α ranges from 0.35 to 1.00 for seismic mitigation
applications [18].

For eddy current dampers, the constitutive behavior models for the force-velocity relationship are
quite different from those of FVDs. When the relative speed is low, the force-velocity relationship is
linear, and it becomes nonlinear when the relative speed goes higher. In 2014, Chen proposed a rotary
axial eddy current damper [27], in which a ball screw is employed to amplify the relative speed by
transforming the linear motion to a rotary motion. The longitudinal and transverse cross sections of
the rotary axial ECD are shown in Figure 1. The damper comprises two main components, i.e., a ball
screw assembly and an eddy current damping generator. The ball screw assembly comprises a ball
screw drive pair, a stator and a rotor respectively made of magnetic conductive materials. The eddy
current damping generators comprise permanent magnets (PMs) and conductive plate, which are
arranged on the stator and the outer rotor, respectively.
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Figure 1. Cross sections of the rotary axial eddy current damper (ECD): (a) Longitudinal view; (b) 
transverse view. 

  

Figure 1. Cross sections of the rotary axial eddy current damper (ECD): (a) Longitudinal view;
(b) transverse view.

In order to characterize the constitutive behavior for the force-velocity relationship of such a new
kind of rotary axial ECDs, both finite element simulations and full scale laboratory experiments are
conducted. It is found that the nonlinear constitutive behavior of the force-velocity relationship can be
well characterized by the Wouterse’s model [29] as follows

FECD = Fmax
2

v
vcr

+ vcr
v

(2)

where Fmax is the maximum damping force, and vcr is the critical relative velocity when the damping
force reaches the maximum value. It should be noted that Fmax and vcr are dependent on the design
parameters of the damper, such as the remanence of the PMs, the thickness of the conductive plate
and the air gap, etc.. The measured data points from full scale laboratory experiments, the finite
element method (FEM) simulation curve and the fitting curve by the Wouterse’s model are plotted
in Figure 2. The designed vcr for the tested damper is 0.259 m/s. It can be seen that the Wouterse’s
model can depict the nonlinear constitutive behavior of such kind of ECDs very well. In the following,
the energy dissipation and response mitigation analysis are all based on this model. From Figure 2,
it can be seen that the eddy current damping force is approximately linearly proportional to the relative
velocity in the low speed region, gradually increasing with decreasing slope when the relative velocity
becomes higher, reaching a maximum value at the critical speed, and then decreasing for much higher
speeds. Although the experimental data do not cover the decreasing stage due to the limitations of
the testing machine, the finite element simulation curve has revealed the characteristic of damping
force decreasing at much higher speeds. This characteristic of eddy current damping has also been
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reported in other literatures [29,31–33]. This unique characteristic can protect the damper and the
connection part between the damper and structure from damage when an over-load is exerted on the
damper. For example, when a huge impact load is exerted on the damper, the damping force will
decrease at much higher speeds for ECDs, but for conventional FVDs without unloading mechanisms,
the damping force will go up again and consequently the damper and the connection part will be
damaged due to relatively great local stress.
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Figure 2. Comparison of fitting curve with measured points and FEM curve for ECDs. 

  

Figure 2. Comparison of fitting curve with measured points and FEM curve for ECDs.

3. Energy Dissipation Analysis

3.1. Energy Dissipation Capacity Under Harmonic Motion

Compared with FVDs, the ECDs have quite different constitutive behavior for the force-velocity
relationship. In view of these differences, we have to analyze their energy dissipation capacities as
compared with FVDs. The dampers are assumed to be subjected to harmonic motion u = u0 sin (ωt).
Here, we assumed the maximum damping force Fmax in the ECD is the same as the maximum damping
force in the FVD under the same harmonic motion. It should be noted that the maximum damping
force of ECDs will occur at the critical velocity which is not necessary the same as the maximum
velocity, while the maximum damping force of FVDs happens at the maximum velocity. Under the
conditions of the same harmonic motion and the same maximum damping force, we will compare the
energy dissipation capacities of ECDs and FVDs.

For FVDs which is governed by Equation (1), the energy dissipated by the damper during a cycle
of harmonic motion u = u0 sin (ωt) is [18]

EFVD = 4
∫ u0

0
FFVDdu =

2Cd
√
πuα + 1

0 ωαΓ(α2 + 1)

Γ(α+3
2 )

(3)

where Γ(x) is the gamma function.
For ECDs which is governed by Equation (2), the energy dissipated by the damper during a cycle

of the same harmonic motion u = u0 sin (ωt) is

EECD = 4
∫ u0

0

2Fmax
v

vcr
+ vcr

v
du =

4vcrFmaxπ
ω

(1−
vcr√

v2
cr + u2

0ω
2
) (4)
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The detailed formula derivation is shown in Appendix A. It can be seen that EECD is a function of
vcr when Fmax, u0 and ω are specified. In the following section, we will derive the optimal vcr when the
energy dissipation capacity EECD is maximized.

3.2. Optimal Critical Velocity Under Harmonic Motion

In order to determine the maximum energy dissipation capacity of ECDs, here we use FVDs as
the reference, and take the dimensionless energy ratio EECD/EFVD as the objective function. It should
be noted that the maximum velocity of the harmonic motion u = u0 sin (ωt) is u0ω. Here, we take the
dimensionless velocity ratio X = vcr/u0ω as the dependent variable. From the governing Equation (1)
of FVDs, the maximum damping force is

Fmax = cd(u0ω)
α (5)

From Equations (3)–(5), the dimensionless energy ratio can be obtained as

EECD

EFVD
=

2
√
πΓ(α + 3

2 )

Γ(α2 + 1)
X(1−

1√
1 + 1

X2

) (6)

Through observing the mathematical structure of Equation (6), it can be seen that the term
2
√
πΓ(α + 3

2 )

Γ(α2 + 1) is determined by the velocity exponent α of the FVDs, and the other term X(1 − 1√
1 + 1

X2

)

is determined by the dimensionless velocity ratio X of ECDs.
For a certain design of FVD, the velocity exponent α is specified. Here, we use the dimensionless

velocity ratio X as the dependent variable to find an optimal design of ECD such that the energy
dissipation of ECD is maximized as compared to that of the FVD. Let’s denote Y = X(1− 1√

1 + 1
X2

),

and take its derivatives, we can know that when X =
√

1
2 (−1 +

√
5) ≈ 0.786, the energy dissipation

ratio EECD
EFVD

reaches the maximum (See Appendix B). It can be seen that when the ratio of the critical
velocity to the maximum velocity is 0.786, the energy dissipation capacity of ECD reaches its maximum.
It should be noted that the energy dissipation ratio is also dependent on the velocity exponent α of
FVDs. The energy dissipation ratio versus the velocity ratio is plotted in Figure 3.
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Figure 3. The energy dissipation ratio versus the velocity ratio.
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From Figure 3, it can be seen that it always can find a better design of ECD when the velocity
exponent α of FVD is larger than 0.2 such that the energy dissipation capacity of ECD is larger than
that of FVD under the same harmonic motion. As we know, the velocity exponent α of FVDs ranges
from 0.35 to one for seismic applications, and therefore the ECDs can be used as good alternative
devices for seismic response mitigation. It is particularly worth pointing out that the critical velocity
corresponding to the maximum damping force is not the designed maximum velocity of the damper
and the damping force will fall down when the velocity is larger than the critical velocity. This unique
characteristic guarantees that the failure risk of dampers and mounting supports can be reduced in
case of an over-limit earthquake.

4. SDOF Systems with Nonlinear Eddy Current Dampers

In order to further analyze the response mitigation performance and energy dissipation capacity of
nonlinear ECDs, we consider a linear elastic SDOF system supplemented with an ECD. The governing
equation of the SDOF-ECD coupling system, the steady state response to the harmonic excitation,
and the dynamic response and energy dissipation to seismic excitation are analyzed in detail in the
following sessions.

4.1. Equations of Motion and System Paramerts

The schematic model of the SDOF system with a supplemental damper subjected to ground
motion is shown in Figure 4. The equation governing the motion of the SDOF system with mass
m, elastic stiffness k, linear viscous damping coefficient c, and a nonlinear FVD subjected to ground
acceleration

..
ug(t) is

m
..
u + c

.
u + ku + cd

.
uα = −m

..
ug (7)

while for the SDOF-ECD coupling system, the equation governing the motion is

m
..
u + c

.
u + ku + Fmax

2
.
u.

ucr
+

.
ucr.
u

= −m
..
ug (8)

 

4 

 
  

Figure 4. The schematic model of the SDOF system with a supplemental damper subjected to
ground motion.

The system parameters are selected from a longitudinal motion mode of a long span suspension
bridge as follows: The mass m = 1.4 × 107 kg; the natural frequency f = 0.124 Hz; the structural
damping ratio ζ = 0.02; the peak ground acceleration

..
ugo = 1.5247 m/s2. In order to compare the

response mitigation performance of ECDs and FVDs, here we set the damping coefficient of the FVD
cd = 1.2× 107N/(m/s)α, the critical velocity of the ECD vcr = 0.786vmax, and the maximum damping
force for ECD is the same as that of FVD Fmax = cdvαmax.
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4.2. Response to Harmonic Excitations

Before analysis of seismic responses, the steady-state responses to harmonic excitations are studied,
in which two key response quantities, i.e., the displacement response and acceleration response are
selected. The harmonic excitation is assumed to be

..
ug =

..
ugosinωt. The responses are calculated using

the Runge-Kutta algorithm.

4.2.1. Displacement Response

Define the displacement response factor to be the ratio of the displacement response amplitude
to the maximum value of static displacement Rd = uo/usto, and the frequency ratio to be the ratio of
the external excitation frequency to the system natural frequency ω/ωn. The displacement response
factors are first calculated for FVDs when the velocity exponent α = 0.2, 0.4, 0.6, 0.8, 1, and their
results are plotted against the frequency ratio in Figure 5 using dotted lines. Then, the displacement
response factors are calculated for ECDs and their results are plotted against the frequency ratio in
Figure 5 using solid lines. These results indicate that for the frequency ratio in the vicinity of one, i.e.,
in the resonance frequency band, the displacement responses of SDOF-ECDs are smaller than those of
SDOF-FVDs. As the velocity exponent α of the FVD increases, the control performance of the ECDs
get better and better compared with that of FVDs. It should be pointed out that the displacement
responses of SDOF-ECDs are almost the same as or even slightly worse than those of SDOF-FVDs in
the far from the resonance frequency band.

 

5 

 
  

Figure 5. Comparison of displacement response factors for SDOF-ECDs and SDOF-FVDs.

4.2.2. Acceleration Response

Define the transmissibility (TR) as the ratio of the total acceleration amplitude of the structural
mass to the peak ground acceleration TR =

..
ut

o/
..
ugo. The TRs are plotted against the frequency ratio in
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Figure 6, in which TRs of SDOF-ECDs are in solid lines and TRs of SDOF-FVDs are in dotted lines.
These results indicate similar acceleration control performance as the displacement control performance.
The acceleration responses of SDOF-ECDs are smaller than those of SDOF-FVDs in the resonance
frequency band. It should be pointed that the acceleration responses of SDOF-ECDs are larger than
those of SDOF-FVDs (α > 0.2) in the frequency band of a certain distance from resonance, but it will
return to smaller values for SDOF-ECDs when the frequency ratios are very far from the resonance.

 

6 

 
  

Figure 6. Comparison of acceleration transmissibilities for SDOF-ECDs and SDOF-FVDs.

4.3. Response to Seismic Excitations

4.3.1. Characteristics of Selected Ground Motions

In this study, eight sets of ground motions are selected for the seismic response analysis, i.e.,
Elcentro wave, Irpinia wave, Chichi wave, Kobe wave, Northridge wave, Niigat wave, Loma Prieta
wave and Iwate wave. Their time histories are shown in Figure 7 and their power spectral densities
(PSDs) are shown in Figure 8. All of these ground motions are processed with amplitude modulations
such that the peak ground accelerations (PGAs) are set to be 1.5247 m/s2. From Figure 8, it can be
seen that Kobe and Loma Prieta are long period ground motions in which low frequency components
have taken up a large scale in the whole frequency domain, and the others are standard seismic waves
which contain plenty of high-frequency components.
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Figure 7. Time histories of ground motions. 
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Figure 8. Power spectral densities of ground motions.
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4.3.2. Displacement and Acceleration Responses to Real Earthquakes

The system parameters are the same as before, and the responses to different ground motions are
calculated using the Runge-Kutta algorithm. The peak displacement responses (PDRs) and the peak
acceleration responses (PARs) are shown in Tables 1 and 2, respectively. Here, we define the response
reduction ratio ρ as follows

ρ =
Ao − Ad

Ao
(9)

where Ao is the peak displacement or acceleration response without a damper and Ad is the peak
displacement or acceleration response with a damper. The larger the reduction ratio, the better the
response control performance of supplemental devices. The reduction ratios of displacement and
acceleration are compared for ECDs and FVDs in Figures 9 and 10, respectively. The points above
the zero line indicate that the control performance of ECD is better than that of FVD, and vice versa.
From Figures 9 and 10, it is found that the displacement and acceleration reduction ratios of ECDs are
larger than those of FVDs in most cases, and the displacement reduction ratios are generally greater
than the acceleration reduction ratios for both ECDs and FVDs. It should also be pointed out that
there are still some cases where ECDs do not work better than FVDs for Kobe and Loma Prieta seismic
waves. In the previous Section 4.2, it is found that although the control performance of the ECDs are
better than that of FVDs in the resonance frequency band, in the frequency band of a certain distance
from the resonance or far from the resonance, the control performance of the ECDs are slightly worse in
some cases. That is the reason why ECDs do not work better than FVDs when the dominant frequency
band of the seismic excitation is far from the resonance.

Table 1. Peak displacement responses (PDRs) of SDOF-ECDs and SDOF-FVDs.

Seismic
Wave

Without
Damper (m)

FVD-SDOF ECD-SDOF

α PDR (m) ρ PDR (m) ρ

Elcentro 0.1553

0.2 0.0097 93.75% 0.0158 89.81%
0.4 0.0200 87.12% 0.0186 88.04%
0.6 0.0324 79.12% 0.0273 82.43%
0.8 0.0404 73.96% 0.0333 78.56%
1 0.0498 67.91% 0.0441 71.63%

Irpinia 0.1977

0.2 0.0399 79.82% 0.0416 78.97%
0.4 0.0634 67.92% 0.0579 70.69%
0.6 0.0846 57.22% 0.0724 63.39%
0.8 0.1033 47.75% 0.0890 54.95%
1 0.1155 41.54% 0.1049 46.94%

ChiChi 1.0532

0.2 0.0225 97.86% 0.0225 97.86%
0.4 0.0321 96.95% 0.0316 97.00%
0.6 0.0460 95.63% 0.0417 96.04%
0.8 0.0967 90.81% 0.0561 94.67%
1 0.1640 84.43% 0.0787 92.53%

Kobe 0.1271

0.2 0.0817 35.67% 0.0778 38.80%
0.4 0.0883 30.48% 0.0802 36.89%
0.6 0.0950 25.24% 0.0863 32.11%
0.8 0.0963 24.19% 0.0936 26.37%
1 0.0969 23.76% 0.0981 22.80%

Northridge 0.1441

0.2 0.0178 87.68% 0.0161 88.82%
0.4 0.0300 79.18% 0.0248 82.76%
0.6 0.0373 74.13% 0.0329 77.15%
0.8 0.0458 68.23% 0.0396 72.50%
1 0.0578 59.92% 0.0447 68.97%

Niigat 0.4533

0.2 0.0220 95.14% 0.0252 94.43%
0.4 0.0426 90.59% 0.0384 91.52%
0.6 0.0721 84.10% 0.0554 87.77%
0.8 0.1208 73.34% 0.0795 82.47%
1 0.1733 61.77% 0.1023 77.44%



Appl. Sci. 2019, 9, 3427 11 of 18

Table 1. Cont.

Seismic
Wave

Without
Damper (m)

FVD-SDOF ECD-SDOF

α PDR (m) ρ PDR (m) ρ

Loma
Prieta

0.1475

0.2 0.0749 49.21% 0.0636 56.84%
0.4 0.0652 55.80% 0.0669 54.62%
0.6 0.0646 56.17% 0.0687 53.43%
0.8 0.0636 56.86% 0.0695 52.89%
1 0.0684 53.59% 0.0673 54.34%

Iwate 0.6960

0.2 0.0466 93.30% 0.0362 94.81%
0.4 0.0629 90.96% 0.0511 92.66%
0.6 0.0830 88.07% 0.0726 89.57%
0.8 0.1304 81.26% 0.0931 86.62%
1 0.1767 74.61% 0.1150 83.48%

Table 2. Peak acceleration responses (PARs) of SDOF-ECDs and SDOF-FVDs.

Seismic
Wave

Without
Damper (m/s2)

SDOF-FVD SDOF-ECD

α PAR (m/s2) ρ PAR (m/s2) ρ

Elcentro 2.98

0.2 2.57 13.60% 2.55 14.43%
0.4 2.69 9.58% 2.59 13.09%
0.6 2.72 8.68% 2.75 7.54%
0.8 2.88 3.13% 2.81 5.54%
1 2.93 1.59% 2.86 3.99%

Irpinia 3.08

0.2 2.96 3.92% 3.05 0.89%
0.4 2.84 7.80% 2.84 7.77%
0.6 2.98 3.29% 2.92 5.16%
0.8 2.98 3.12% 2.94 4.40%
1 3.01 2.20% 2.97 3.39%

ChiChi 3.26

0.2 2.57 21.14% 2.56 21.54%
0.4 2.78 14.67% 2.74 15.78%
0.6 2.91 10.83% 2.85 12.70%
0.8 2.97 8.72% 2.92 10.51%
1 3.05 6.49% 2.95 9.47%

Kobe 3.13

0.2 2.54 18.77% 2.54 18.71%
0.4 2.81 10.21% 2.78 11.26%
0.6 3.02 3.48% 2.92 6.75%
0.8 3.11 0.71% 3.02 3.45%
1 3.12 0.42% 3.08 1.70%

Northridge 2.99

0.2 2.55 14.65% 2.51 15.96%
0.4 2.71 9.43% 2.66 11.00%
0.6 2.85 4.72% 2.75 7.91%
0.8 2.92 2.14% 2.87 4.07%
1 2.98 0.26% 2.90 2.88%

Niigat 3.10

0.2 2.79 10.10% 2.78 10.52%
0.4 2.94 5.22% 2.88 6.99%
0.6 2.96 4.48% 2.94 5.16%
0.8 3.01 3.03% 2.97 4.17%
1 3.01 2.85% 2.99 3.45%

Loma
Prieta

3.11

0.2 3.14 −1.16% 2.96 4.63%
0.4 3.06 1.49% 3.03 2.35%
0.6 2.97 4.51% 3.03 2.46%
0.8 2.96 4.77% 2.97 4.34%
1 3.02 2.80% 2.94 5.34%

Iwate 3.18

0.2 2.61 17.77% 2.82 11.19%
0.4 2.98 6.15% 2.96 6.75%
0.6 3.03 4.49% 3.03 4.62%
0.8 3.12 1.88% 3.07 3.47%
1 3.09 2.73% 3.09 2.58%
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Figure 9. Displacement reduction ratios under different earthquakes. 
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Figure 10. Acceleration reduction ratios under different earthquakes.

4.3.3. Energy Dissipation Analysis Under Seismic Excitations

For elastic SDOF systems, the input energy of seismic excitations will be finally dissipated by the
structural inherent damping and supplemental damping devices. In this paper, the energy dissipated
by the inherent damping is expressed as

Ein =

∫ Tt

0
c

.
u

.
udt =

∫ Tt

0
2ζmωn

.
u

.
udt (10)

where Tt is the duration of the ground motions. The energy dissipated by the supplemental damping
devices (ECDs or FVDs) is

EECD(FVD) =

∫ Tt

0
FECD(FVD)(

.
u)

.
udt (11)
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The total dissipated energy is

Etotal = Ein + EECD(FVD) (12)

The time history results of the normalized dissipated energy of FVD and ECD subjected to the
Elcentro ground motion are shown in Figure 11. As shown in Figure 11a, the normalized energy
dissipated by the FVD (α = 1) is 0.9648, which is 27.38 times of that dissipated by the corresponding
inherent damping (0.0352), indicating that the FVD improves the energy dissipation capability of
uncontrolled systems by 27.38 times. As a contrast, it is clear that in Figure 11b, the energy dissipated
by the ECD is larger than the energy dissipated by the FVD. Specifically, the normalized energy
dissipated by the ECD in Figure 11b is 0.9808, which is about 50.98 times of the energy dissipated by
the corresponding inherent damping (0.0192). These results indicate that the ECD could improve the
energy dissipation capability of uncontrolled systems by about 50.98 times.
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Figure 11. Dissipated energy of SDOF systems (ζ = 2%) with FVD and ECD subjected to the
Elcentro earthquake.

As indicated by Equation (10), if the inherent damping is prescribed, the energy dissipated by
the inherent damping depends on the response amplitude. To protect the structure, the supplemental
damping devices are required to dissipate the majority of the input seismic energy. Here, we define a
new criterion named as the energy dissipation ratio (ER) to represent the energy dissipation capacity
of supplemental damping devices. The larger the energy dissipative ratio, the larger the energy
dissipation capability of supplemental devices.

ERECD(FVD) =
EECD(FVD)

Ein
(13)

The energy dissipation ratios of the SDOF systems (ζ = 2%) with FVDs and ECDs subjected to
different ground motions are compared in Table 3 and Figure 12. From Figure 12, the points above the
zero line indicate that the energy dissipation capacity of ECD is better than that of FVD, and vice versa.
It is found that the energy dissipation capacity of ECDs are larger than those of FVDs in most cases.
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Table 3. Energy dissipation ratios (ERs) of SDOF-ECDs and SDOF-FVDs.

Seismic
Wave

SDOF-FVD SDOF-ECD

α Normalized Energy ER Normalized Energy ER

Elcentro

0.2 0.9974 383.51 0.9967 302.27
0.4 0.9946 183.40 0.9946 185.37
0.6 0.9892 91.83 0.9915 117.22
0.8 0.9801 49.14 0.9870 75.77
1 0.9648 27.38 0.9808 50.98

Irpinia

0.2 0.9955 219.02 0.9950 199.28
0.4 0.9914 114.72 0.9920 123.24
0.6 0.9857 68.99 0.9881 83.02
0.8 0.9771 42.62 0.9837 60.25
1 0.9649 27.50 0.9783 45.18

ChiChi

0.2 0.9976 424.25 0.9973 372.16
0.4 0.9947 187.15 0.9950 200.18
0.6 0.9894 92.95 0.9919 122.12
0.8 0.9798 48.40 0.9877 80.03
1 0.9649 27.50 0.9822 55.29

Kobe

0.2 0.9919 122.42 0.9926 133.27
0.4 0.9892 91.89 0.9898 97.12
0.6 0.9839 60.99 0.9868 74.52
0.8 0.9759 40.58 0.9833 58.78
1 0.9649 27.50 0.9792 47.06

Northridge

0.2 0.9974 383.35 0.9974 381.09
0.4 0.9943 173.06 0.9946 185.42
0.6 0.9889 89.46 0.9912 113.20
0.8 0.9799 48.71 0.9871 76.30
1 0.9649 27.50 0.9818 54.08

Niigat

0.2 0.9968 315.39 0.9969 322.72
0.4 0.9944 178.90 0.9947 189.16
0.6 0.9889 89.25 0.9917 119.90
0.8 0.9789 46.43 0.9874 78.53
1 0.9649 27.50 0.9824 55.89

Loma Prieta

0.2 0.9910 110.46 0.9930 140.99
0.4 0.9895 94.66 0.9902 101.01
0.6 0.9843 62.67 0.9871 76.57
0.8 0.9763 41.12 0.9835 59.72
1 0.9649 27.47 0.9794 47.57

Iwate

0.2 0.9966 296.45 0.9963 267.73
0.4 0.9942 171.17 0.9939 162.51
0.6 0.9882 83.77 0.9909 108.47
0.8 0.9785 45.54 0.9869 75.48
1 0.9649 27.50 0.9824 55.78
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Figure 12. Energy dissipation ratios under different earthquakes.
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5. Conclusions

This paper investigates the dynamic characteristics of a rotary axial ECD and its seismic reduction
performance when applied in a linear elastic SDOF system. The nonlinear force-velocity relationship
of the ECD is expressed using the Wouterse’s model which are validated by Finite element simulation
and experimental testing. The energy dissipation capacity of the ECD is obtained analytically and its
optimal parameters for maximum energy dissipation are also derived. The control performance of
ECDs is investigated and evaluated under harmonic excitations and real earthquake ground motions.
The most important findings are summarized below:

(1) The force-velocity constitutive behavior of the ECD can be well depicted by the Wouterse’s
model. The eddy current damping force is linearly proportional to the velocity for low speed
region, gradually increasing with decreasing slope when the velocity become higher, reaching
a maximum at the critical speed, and then decreasing for much higher speeds. These unique
characteristics can protect the damper and structure from damage when an over-load is exerted
on the damper.

(2) When the ratio of the critical velocity of the ECD to the maximum velocity is 0.786, the energy
dissipation capacity of ECD reaches its maximum under harmonic motions. It always can find a
better design of ECD when the velocity exponent α of FVD is larger than 0.2 such that the energy
dissipation capacity of ECD is larger than that of FVD under the same harmonic motion.

(3) In the resonance frequency band, both the displacement and acceleration responses of SDOF-ECDs
are smaller than those of SDOF-FVDs under the same harmonic excitation. As the velocity
exponent α of the FVD increases, the control performance of the corresponding ECD gets better
and better compared with that of FVD.

(4) The displacement and acceleration reduction ratios of ECDs are larger than those of FVDs in most
of the cases under real earthquake excitations, and the displacement reduction ratios are generally
greater than the acceleration reduction ratios for both ECDs and FVDs. The energy dissipation
capacity of ECDs outperforms that of FVDs in most of the cases under real earthquake excitations.

Currently, this paper is limited to the numerical evaluation of ECDs for elastic SDOF systems.
The conclusions summarized above are based on the limited data presented in this paper. To further
extrapolate the findings, the next step is to experimentally test the performance of ECDs with structures.
Meanwhile, the further studies on applying ECDs in MDOF systems will also be developed in the future.
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Appendix A

The mathematic proofs of Equation (4) are shown in this appendix section. The energy dissipation
of ECD under a cycle of harmonic excitation is

EECD = 4
∫ u0

0
2Fmax
v

vcr +
vcr
v

du = 4
∫ π

2ω
0

2vcrFmax

1+
v2

cr
(u0ω cos (ωt))2

dt

= 8vcrFmax
∫ π

2ω
0

1

1+
v2

cr
(u0ω cos (ωt))2

dt
(A1)
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The indefinite integral in Equation (A1) can be rewritten as∫
1

1 + v2
cr

(u0ω cos (ωt))2

dt =
∫

1

1 + v2
cr(sec (ωt))2

(u0ω))2

dt (A2)

Substitute s = ωt and ds = ωdt into Equation (A2), it becomes∫
1

1 +
v2
cr

(u0ω cos (ωt))2

dt = 1
ω

∫
1

v2
crsec2 (s)

u0
2ω2 +1

ds = 1
ω

∫ sec2 (s)
v2

crsec4 (s)

u0
2ω2 +sec2 (s)

ds

= 1
ω

∫ sec2 (s)

(1+tan2(s))(1+
v2
cr(1+tan2(s))

u0
2ω2 )

ds
(A3)

Substitute p = tan (s) and dp = sec2 (s)ds into Equation (A3), it becomes∫
1

1 +
v2
cr

(u0ω cos (ωt))2

dt = 1
ω

∫
1

(p2+1)(
v2

cr(p
2+1)

u0
2ω2 +1)

dp

= 1
ω

∫
( 1

p2+1 −
v2

cr
v2

crp2+v2
cr+u02ω2 )dp

= −
v2

cr
ω

∫
1

v2
crp2+v2

cr+u02ω2 dp + 1
ω

∫
1

p2+1 dp

= −
v2

cr
ω

∫
1

(v2
cr+u02ω2)(

v2
crp2

v2
cr+u0

2ω2 +1)
dp + 1

ω

∫
1

p2+1 dp

= −
v2

cr
ω(v2

cr+u02ω2)

∫
1

v2
crp2

v2
cr+u0

2ω2 + 1
dp + 1

ω

∫
1

p2+1 dp

(A4)

Substitute v =
vcrp

√
v2

cr + u02ω2
and dv = vcr√

v2
cr + u02ω2

dp into Equation (A4), it becomes

∫
1

1+
v2
cr

(u0ω cos (ωt))2

dt = − vcr

ω
√

v2
cr+u02ω2

∫
1

v2+1 dv + 1
ω

∫
1

p2+1 dp

=
tan−1 (p)

ω −
vcr tan−1 (v)

ω
√

v2
cr+u02ω2

= t−
vcrtan−1(

vcr tan (ωt)
√

v2
cr+u0

2ω2
)

ω
√

v2
cr+u02ω2

(A5)

According to Equations (A1) and (A5)

EECD = 8vcrFmax
∫ π

2ω
0

1

1 +
v2

cr
(u0ω cos (ωt))2

dt

= 8vcrFmax( lim
t→ π

2ω

(t−
vcr tan−1 (

vcr tan (ωt)
√

v2
cr+u0

2ω2
)

ω
√

v2
cr+u02ω2

) − 0)

= 8vcrFmax(
π

2ω −
πvcr

2ω
√

v2
cr+u02ω2

)

= 4vcrFmaxπ
ω (1− vcr√

v2
cr+u02ω2

)

(A6)

Appendix B

The mathematic proofs of optimal value for critical velocity of ECDs are shown in this appendix
section. Firstly, obtaining the derivative and second derivative of Y = X(1− 1√

1 + 1
X2

)

Y′ = 1−
1√

1 + 1
X2

−
1

(1 + 1
X2 )

3/2
X2

(A7)

Y′′ =
3

(1 + 1
X2 )

5/2
X5
−

1

(1 + 1
X2 )

3/2
X3

(A8)
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Let Y′ = 0, Equation (A7) can be rewritten as

1− 1√
1+ 1

X2

−
1

(1+ 1
X2 )

3/2
X2

= 0

(1 + 1
X2 )

3/2
X2 +

√
1 + 1

X2 = (1 + 1
X2 )

2
X2

(A9)

Denote a =
√

1 + 1
X2 , (a > 0 & a , 1, X , ∞) and substitute it into Equation (A9), it becomes

a3

a2−1 + a = a4

a2−1
a4
−2a3 + a

a2−1 = 0
a(a−1)(a2

−a−1)
a2−1 = 0

(A10)

Since a > 0 & a , 1, Solve (a2
− a− 1) = 0 and it gets

a =
1
2
(1 +

√

5) (A11)

Substitute this value back into a =
√

1 + 1
X2 and it gets

X =

√
1
2
(−1 +

√

5) ≈ 0.786 (X > 0) (A12)

Substitute X = 0.786 to Equation (A8)

Y′′ =
3

(1 + 1
X2 )

5/2
X5
−

1

(1 + 1
X2 )

3/2
X3
≈ −0.415 < 0 (A13)

Therefore, when X = 0.786, Y reaches its maximum, and then the energy dissipation ratio EECD
EVD

reaches its maximum.
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