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Abstract: Street lighting characterizes many smart city initiatives around the world. In fact, significant
savings can be achieved by not only replacing traditional luminaires with low-power LEDs, but also
providing streetlights with smart light controllers and network connectivity, allowing the introduction
of a sensible light intensity management and reduction of maintenance costs. Moreover, if designed
with a far-looking view, smart lighting infrastructure could also support city-wide Internet of Things
services, becoming key enablers of the smart city revolution, also in the 5G perspective. In this
paper, we provide a thorough discussion on network architectures and communication technologies
that could be adopted for smart public lighting applications, showing their benefits and downsides.
Starting with significant activity on research, implementation and in-field testing, we also outline
the steps required for the deployment of a smart public lighting infrastructure, each discussed in
accordance with the network topology considered. Finally, we introduce some additional services
that a smart public lighting infrastructure could support and discuss the benefits that would arise
from integration with the upcoming 5G cellular network.
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1. Introduction

As the world population grows at an ever-faster pace, with the majority of people living in urban
areas, the idea of creating a more livable and sustainable city is becoming increasingly important.
Projections show that by 2030 there will be more than 41 mega-cities worldwide (with more than
10 M people each), with a significant increase with respect to the current 28 mega-cities. Accordingly,
the percentage of the population residing in urban areas is expected to reach 66% by 2050, compared
to a figure of 54% in 2014 [1]. Since world cities already account for 75% of world energy consumption
and contribute more than 80% to global greenhouse gas emissions [2], there are growing concerns
about the availability and cost of energy, as well as about the environmental impact of its generation.

Most likely, the solution (if any) to such issues will come from converging developments in several
fields [3]: renewable energy sources, cogeneration, electric mobility, heating and cooling systems and
lighting technologies, just to mention a few. Certainly, a key role will be played by Information and
Communication Technologies (ICTs), which have created new opportunities to improve the quality
of life in urban areas with intelligent and energetically efficient solutions. ICTs, through wireless
communications and the Internet of Things (IoT) paradigm, will be transforming traditional cities
into smart cities, providing the core infrastructure behind more efficient public services. This process
has already started: in early 2018, China had about 500 smart city pilot projects [4], the highest in the
world, and over 1000 smart city pilot projects were ready or under construction worldwide.
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In this framework, the momentum for smart public lighting is mounting, as several trials and
large-scale implementations showed their effectiveness [5]. In particular, LED fixtures are expected to
dramatically reduce urban electricity costs, now due to street lighting for a share of 40% [6]. Smart
luminaires will dynamically adapt lighting to actual needs, for instance lowering the lumen output
when there are low traffic volumes and good visibility conditions are detected.

Important references in this regard are the “GPP Revision of the EU Green Public Procurement
Criteria for Road Lighting and traffic signals” [7], authored by the Joint Research Centre (JRC) of
the European Commission, and the CEN/TR 13201 lighting standards [8–12], which define how to
properly design lighting systems. As reported in Reference [7], “due to the multiple benefits of dimming,
dimming controls must be installed in all cases unless, in exceptional circumstances, it can be demonstrated
that the total cost of ownership would increase by installing dimming controls. The EN 13201 standard
itself [8–12] recognizes that the required lighting levels are dynamic in nature and an appropriate lighting level
at all times can only be ensured with adequate dimming control during off-peak hours. Dimming has obvious
environmental benefits via lower energy consumption and reduced light pollution. Furthermore, dimming can
enhance the lifetime of LED luminaires due to a reduced risk of overheating, which is the principal cause of abrupt
LED failure.” In this regard, results from a global trial of LED streetlights show that, when coupled
with smart controls, LED fixtures can deliver electricity savings of up to 80% over classic lighting
technologies [13].

Beyond energy savings, since each smart streetlight needs to be provided with bidirectional
communication capabilities, an ubiquitous city-wide communication network arises from the lighting
infrastructure, reaching every location where a smart light fixture is present. Apart from enabling the
remote control of each luminaire independently of the others, as well as the remote monitoring of its
functional parameters (power consumption, lamp temperature, electrical parameters), this widespread
network allows to collect data gathered by sensors (air pollution, vehicular traffic, water flooding, etc.)
possibly mounted on streetlights, or transmitted by IoT wireless devices located in their surroundings.

For instance, smart streetlights equipped with wireless communication interfaces can detect
nearby vacant parking lots and inform interested drivers; they can alert waste collectors when the
neighborhood bins need to be emptied, or can monitor the traffic flow and send key data to an
intelligent transport system platform. Ultimately, according to the smart lighting paradigm, streetlights
are no longer isolated elements, but establish a capillary, multifunctional, city-wide communication
network, capable of relaying information, gathering data and delivering services to and from millions
of IoT devices. Public smart lighting becomes a dynamic platform serving as a backbone for “smart
city” developments. Cities can thus rethink the role of the public-light asset, which offers opportunities
to deliver new services and generate revenues, instead of just being a cost factor.

Moreover, smart lighting infrastructure might play a crucial role also for 5G (and beyond) cellular
networks. In fact, the need to provide cellular users with ever-increasing transmission rates, necessarily
calls for ever-smaller cells, along with the adoption of massive MIMO antennas and millimeter wave
communications. To meet both the seamless coverage requirement at such high frequencies (which
requires line-of-sight propagation) and the desired data rate for each user, the spatial density of 5G
base stations (BSs) is anticipated to come up to 40–50 base stations/km2 [14]. Future 5G networks will
be, therefore, ultra-dense; in this perspective, the integration of smart lighting infrastructures and 5G
networks is a great opportunity, as the streetlight density in urban environments perfectly meets the
ultra-dense deployment requirement of next generation cellular networks, with the additional benefit
that the 5G BSs would find the power supply already available in each light fixture.

Focusing attention on LED streetlights, the paper is organized as follows. Section 2 is a survey of
the literature on smart street lighting, whereas Section 3 discusses the general architecture of a smart
lighting infrastructure and its main tasks. Section 4 focuses on the savings that can be achieved thanks
to remotely controlled LED fixtures. The different communication technologies that can support the
smart lighting service are thoroughly presented in Section 5, where their advantages and downsides are
discussed. Section 6 describes the steps needed for the deployment of a smart lighting infrastructure,
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whereas Section 7 outlines the IoT services that such infrastructures may provide in the next future as
well as their integration with 5G networks. Final conclusions are drawn in Section 8.

2. Related Works

The possibility to dynamically and remotely control LED streetlights has been investigated mainly
in the last decade. Starting from the first papers on this topic [15–20], different remote-control systems
have been proposed, which rely on the exchange of information between light fixtures and a Control
Center, the latter being the management headquarter for the lighting service. An overview of early
researches concerning smart street lighting systems is presented in [13].

The ability to adapt the light intensity to actual conditions was considered since the pioneering
era of smart lighting. For instance, the intelligent control of luminaries based on the detection of
moving objects was proposed in 2013 [21]. In the same year, an intelligent streetlight management was
presented in [22], which was jointly based on wireless communication technologies and environmental
monitoring. Another investigation on intelligent street lighting based on the sensing of vehicles
appeared in 2014 [23], which stated that energy savings could exceed 50% on roads with low traffic.

In the meanwhile, the smart city paradigm gained ground and smart lighting infrastructures
were increasingly considered as a pillar of such concept [24–26]. In particular, they were meant
(and are meant) to provide additional services, such as predicting traffic flows and regulate traffic
lights [27]. Smart lighting infrastructures are thus assimilated to wireless sensor networks (WSNs),
as in [28], where the performances of a WSN-based solution for the conversion of a standard public
lighting network into a smart lighting system are reported and discussed. As in [29–36], smart lighting
infrastructures can also be included in the IoT framework.

In recent years, the topic of urban smart lighting gained attention and several aspects of this
technology were investigated separately. Some papers deal with the design of the hardware (e.g., light
controller, lamp driver) [37–41], whereas other papers deal with the automatic, context aware, control
of illumination [29,42,43]. There are papers concerning software/cloud-computing issues in smart
city scenarios [44–46], others focusing on energy efficiency [47–52], as well as paper presenting smart
lighting solutions based on specific communication technologies [53–57]. Photometric computations
have been also addressed to achieve substantial power savings [58,59], whereas a formal model based
on graph theory aimed at incorporating knowledge regarding multiple sensors into the lighting control
model is proposed in [60].

As for significant testbeds, one of the largest is Smart Santander [61], where around 3000 IEEE
802.15.4 devices were deployed in the city of Santander (Spain), which makes the size of such testbed
similar to the ones we discuss in our manuscript. However, in contrast to this paper [61] does not
deal with smart lighting, thus no specific insight is provided on such application. As a matter of fact,
current literature dealing with complete public-lighting infrastructures either shows simulation results,
such as [62,63] or presents the results of limited testbeds with few nodes [24,30,64] or campus-wide
installations [65,66].

To the best of the authors’ knowledge, the scientific literature is lacking a complete discussion of
all the aspects that have an impact on possible energy savings, which must be taken into account when
planning a smart lighting infrastructure. In fact, different choices, in terms of adopted communications
technologies and light controllers, generates different costs (e.g., for deployment and maintenance)
and different energy savings as well as different opportunities to use the same communication network
for other smart-city services. This paper aims at filling this gap, also considering future developments
of smart lighting infrastructures, such as their integration with 5G networks. Furthermore, this paper
provides the steps to be followed for the deployment of city-wide lighting infrastructures, which
appear here as a further original contribution.
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3. Smart Public Lighting: Infrastructure Architecture and Main Tasks

The most general architecture of a smart public lighting infrastructure is shown in Figure 1, which
outlines all the main components, namely, the Control Center, the communication network (the core
network in Figure 1) and the light controller (LC).

Figure 1. Architecture of a smart lighting infrastructure.

The Control Center is the infrastructure management office: it commands/configures (e.g.,
light-on, light-off, dimming) each streetlight and monitors the infrastructure operating conditions for
maintenance purposes. The command/information exchange between the Control Center and each
streetlight takes place through the communication network, which must provide adequate coverage
over the whole area where the light fixtures are deployed. Finally, LCs are the smart components of
streetlights, as they actuate the commands received by the Control Center and send back the required
information. In a smart city perspective, LCs may also be equipped with IoT sensors (e.g., for vehicular
traffic metering or air quality monitoring), whose measurements are transmitted to application specific
management centers (depicted in Figure 1 as Other Applications). Even in their basic version, smart
LCs are in charge of four main tasks:

• Task 1: to monitor in real-time the state of the luminaire,
• Task 2: to monitor in real-time the electric parameters of the fixture,
• Task 3: to drive the power supply, so as to dim the light intensity,
• Task 4: to establish a communication link towards the Control Center.

Accomplishing Task 1 and Task 2 allows a timely maintenance, which results in shorter outages
and lower operational costs. As for Task 3, both dynamic (context aware) or scheduled light dimming
can be pursued, depending to the LC complexity. To provide a thorough discussion of Tasks 1, 2 and
3, a closer look at the LC communication ports is needed.

As shown in Figure 1, LCs have two main interfaces. The power supply interface allows to
command the light dimming and collect data concerning electric parameters, whereas the network
interface allows the bidirectional exchange of information between the LC and the Control Center.

With regard to the power supply interface, which concerns Tasks 1, 2 and 3, there are two
traditional modalities to establish a communication link between the LC and the power supply: by
means of an analog 0–10 V pilot signal or through a digital bus. In the former case, the LC outputs a
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pilot signal, whose voltage is interpreted by the power supply as the light percentage that must be
provided (e.g., 1 V = 10%, 5 V = 50%, 10 V = 100%). In the latter case, a bidirectional digital bus is used.
When this solution is adopted, the most common choice is the Digital Addressable Lighting Interface
(DALI) bus [67]. In this case, data are exchanged by means of an asynchronous, half-duplex, serial
protocol over a two-wire bus, with a fixed data transfer rate of 1200 bit/s. Bidirectional communications
allowed by DALI are certainly a major advantage with respect to the unidirectional 0–10 V control.
Ultimately, the following functionalities are digitally enabled by DALI [67]:

• light dimming,
• failure detection,
• ability to send data related to the lamp’s status,
• ability to send electric information (e.g., voltage, current and power factor).

Additionally, DALI is more flexible than the 0–10 V control, as no polarity has to be respected for
the two wires, whereas the opposite is true for the 0–10 V control. On the other hand, DALI entails
an extra cost due to the added electronics and, in case of troubleshooting of dimming issues, it is
more complex in terms of diagnostic. Typically, when the DALI bus is adopted in smart streetlight
infrastructures, it is embedded in the LC of each luminaire.

As for the communication interface (Task 4), several solutions may be adopted, either wired
or wireless. This choice is of paramount importance because the “smartness” of the lighting
infrastructure as well the cost for its deployment and management strictly depend on the adopted
communication technology. Given its importance, this issue will be discussed in Section 5, which is
completely dedicated to communication aspects. In the following subsections, instead, Tasks 1, 2 and 3
are discussed.

3.1. Lamp Status Monitoring

For maintenance purpose, the most important information about a luminaire is whether its lamp
is properly working or not. To this aim, two approaches can be adopted by the LC:

• relying on the DALI bus to exchange information directly with the power supply, which provides
measurements of electric parameters in a digital form,

• exchanging information with an energy meter, so to diagnose possible LED module breakdowns
comparing actual end expected energy consumption.

Both solutions allow to detect not only total breakdowns of luminaires, but also partial
malfunctions due to failures of a fraction of the many LEDs chips of a lamp, which in fact result
in a detectable reduction of energy consumption. Indeed, the event of a partial malfunctioning
of a LED luminaire is not rare. It is usually due to high-voltage spikes, generated for instance by
thunderbolts not totally filtered by surge protections, that could damage only some LED chips.

3.2. Electric Parameters Monitoring

LCs can be differentiated also according to the quantity and quality of information they can
acquire about the electrical network. For instance, beyond active and reactive power consumption,
further parameters can be of interest: voltage, current, power factor (cos phi), average consumption
(hourly, daily, weekly, monthly, yearly).

The real-time acquisition of such values turns LCs into a distributed analyzer of the lighting
infrastructure. Collected information, although not directly concerned with the energy saving objective,
are useful to optimize the maintenance of the lighting plant. For instance, hardware failures and
faults can be immediately detected and even, in some cases, anticipated. The real-time monitoring
allows therefore predictive maintenance, which reduces expenditures avoiding costly emergency
repairs, which sometimes also requires modifications to vehicular circulation. Moreover, such real-time
distributed analyzer provides insightful data on the operating condition of the city power grid to
which it is connected, which are valuable information for the grid operator.
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Therefore, LCs can be classified according to their capability of providing data with a high time
resolution, rather than simply providing aggregated (e.g., averaged) data on a daily basis. In terms of
technical requirements, a real-time monitoring of a multitude of parameters claims for higher technical
performance, but allows a more effective infrastructure management.

3.3. Light Dimming

Clearly, the most important task of LCs is to dim light according to some criterion, to generate
savings. Over the years, basic control systems have evolved into extremely advanced ones, providing
enhanced capabilities to adapt the lighting intensity to the actual operating environment. In contrast
to the simplest and old-fashioned LCs, which allow to settle the light intensity only according to a
predefined schedule, cutting edge control systems allow to tailor the lumen output to the current
vehicular traffic [68], whose amount is monitored by specific sensors, in some cases even taking into
account meteorological conditions jointly with measured road surface luminance. Such advanced
features are developed in accordance with specific regulations that allow to dynamically reduce the
light intensity when specific conditions are met.

In particular, according to the CEN/TR 13201-2 lighting standard [9], each road is assigned a
given lighting class, which mostly depends on the expected traffic flow. With reference to motorized
traffic roads, [9] defines six classes, from M1 to M6 in decreasing importance order, each of which
corresponds to a specific average luminance requirement. For instance, an average luminance of
2 cd/m2 is required for the M1 class, 1.5 cd/m2 for the M2 class, whereas 0.30 cd/m2 is sufficient
for the M6 class. However, the standard allows to dynamically adapt the lighting class to the actual
conditions, assessed by means of real-time measurements.

In Italy, for instance, the CEN/TR 13201-2 standard is implemented through the norm UNI 11248,
which standardises adaptive lighting strategies, thus allowing the design of systems that regulate
lighting conditions according to factors that may vary over time, such as traffic flow, luminance or
weather conditions. In particular, two different operating methods can be adoped: (a) TAI (Traffic
Adaptive Installation), where only the traffic volume is measured; (b) FAI (Full Adaptive Installation),
where even meteorological conditions and road surface luminance are measured.

When TAI is deployed, the lighting class can be downgraded by one if the measured traffic is
lower than 50% of the nominal value, whereas a downgrade of 2 lighting classes is possible when the
traffic is lower than 75% of the nominal value. Within TAI systems, the traffic volume is measured in
given time intervals (usually in the order of 10 min), and dimming is allowed when two consecutive
samples are below the limit.

The EU GPP document [7] provides some examples of operational profiles, which allow to gain
an insight on the benefit of light dimming. In particular, a scenario is considered in which the light
output is reduced by 50% during hours of low use, from 00.00 to 06.00. However, when traffic sensors
indicate that road use is lower than a certain minimum level, the lighting output is automatically
decreased to 10%. Although the exact energy savings vary from day to day, the road traffic pattern used
in [7] resulted in a 30% reduction of the energy consumption with respect to the simple 100%-to-50%
dimmed installation and almost 46% less than the same undimmed installation.

In contrast to TAI, which adopts a discrete step dimming, FAI updates the lighting class
progressively and continuously between one and the other, to obtain the maximum energy saving.
In this case, the dimming level is based on the joint assessment of traffic conditions, road surface
luminance and meteorological conditions.

Clearly, distinct approaches (preset dimming, TAI or FAI) lead to distinct savings, require
different technologies and systems of varying complexity. If the most saving is to be achieved a
low-latency communication network is required. In fact, when TAI or (to greater reason) FAI are
adopted, streetlights belonging to the same TAI/FAI segment continuously exchange information,
and they should react to varied conditions (adopting a different dimming level) simultaneously, so as
to avoid to confuse drivers with differently illuminated portions of the road.
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An additional feature, which is related to both security and energy saving is the so-called Constant
Light Output (CLO). In this regard, it should be observed that the light flux of LED luminares reduces
over time as the diode ages and dirt accumulates, just as most of other light sources. Typically, in the
absence of any dimming capability, streetlights are overdriven since the first day, in such a way to
significantly exceed the required light intensity, so that a reduction over time of the luminaire efficiency
does not infringe the regulation on the minimum required illumination level.

This surplus margin depends on the Maintenance Factor (MF), which defines the percentage of the
total light output at the start of the installation life, to which the output may eventually fall. The MF is
computed taking into account the luminous flux factor (i.e., the depreciation of the luminous flux over
time due to the light source aging) as well as other factors, namely the survival factors, the luminaire
maintenance factor and the surface maintenance factor (see the ISO/CIE TS 22012 standard [69] for a
complete description). Needless to say that this policy causes a useless waste of energy.

If the CLO functionality is implemented, the luminaire itself can compensate for the light
depreciation, providing a constant light output [70–72]. The LED is initially powered at a given
percentage (<100%) of its lighting capability and then continuously dimmed upwards to a final 100%
current supply so that the required illuminance level is kept constant until the end of the service
life. Clearly, this dim programming protects the LED chip and saves electricity costs over the entire
luminaire lifespan.

4. Economic Analysis

In this section, we discuss the economic benefits that can be achieved transforming a traditional
lighting infrastructure into a smart one.

In absolute monetary terms, costs and possible savings vary from one country to another.
However, according to our experience, the relative contribution of each cost item (e.g., electricity,
maintenance) to the overall cost figure is approximately the same all over the world, so as the possible
savings that can be achieved introducing smart features. For this reason, in the following we will
express such savings as a percentage of the yearly operational cost, maintenance included, of a
traditional non-LED fixture. According to [73], this cost can be broken down as follows:

• 70% for the cost of electricity, computed assuming 4200 lighting hours per year per each streetlight
and 130 W traditional lamps.

• 30% for maintenance operations, computed taking into account the costs of manpower (50%),
the use of specialized vehicles (30%) and materials (20%).

Retrofitting with LED luminaires. Expected saving. In terms of energy consumption, simply
replacing traditional luminaires with LED ones leads to a significant saving. In fact, a 130 W non
LED lamp is equivalent, in terms of lighting intensity, to a 70 W LED one. Thus, a 46% saving in
terms of electricity cost is achieved by simply replacing the luminaire, which means (considering
the overall electricity+maintenance cost) a 32% saving per year per each fixture. This estimation,
confirmed also by [13], is prudential as several papers claim that higher reductions in energy cost can
be achieved [64,74]. In particular, Valentová et al. published a report on 106 test-beds from 17 European
countries, showing an average energy saving of 59% compared with that of the original installation [5].

Light fixture remote monitoring. Expected saving. Additional savings can be achieved introducing an
LC capable of both monitoring in real-time the lamp functioning (lamp status and electric parameters)
and transmitting collected data along with the pole ID to the Control Center, which can timely infer
or predict failure conditions. This allows both to prevent malfunctions (e.g., when a defective power
supply poses a lamp in a stress condition) and to optimize failure recovery operations. In fact, broken
lamps can be timely detected, along with their positions, so that repair teams can be dispatched
according to a well-planned scheduling, also taking into account the best route to fix all failures in the
same area. The amount of saving provided by improved maintenance practices is hard to estimate,
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as it depends on how maintenance is locally managed. It is expected, however, that it is in the order of
a few percentage points per year per streetlight.

Light dimming. Expected saving. Making the LC also capable of dimming LED lights leads to two
more benefits. On the one hand, this feature enables the luminaire to follow daylight variations,
meaning that the light intensity can be “tuned” with a fine time granularity to compensate variations
in natural light at the sunset and sunrise, thus avoiding the energy wastage caused by a simple on/off
policy [75]. On the other hand, the dimming profile can be easily adjusted over the years also to
compensate the unavoidable luminous flux degradation due to luminaire aging. As anticipated in
Section 3.3, dimmable light sources, such as LEDs, allow the implementation of the CLO functionality,
which provides further energy saving.

The economic benefit of light dimming depends on many factors, such as the luminaire Wattage,
the adopted dimming profile and the daylight duration. Nonetheless, several trials showed that a
reduction of 40%∼45% in energy consumption is a realistic target [76,77], which leads to a 15%∼17%
saving per year per each fixture.

Dynamic dimming. Expected saving. Further economic benefit can be achieved introducing a
dynamic, context-aware, lighting control mechanism.

An example of such technology is the previously introduced TAI, which adapts the light intensity
to traffic conditions. According to the lighting standards CEN/TR 13201 [8–12], the traffic intensity
must be calculated over a recent period of time. However, the norm gives no specification about the
duration of such period. Clearly, the shorter the time window, the more responsive the system is,
which might potentially lead to higher energy savings. The drawback is that more frequent vehicular
traffic assessments entail an increase of the communication traffic among luminaries as well as of the
data processing burden. A common value is a 15 min interval [78].

According to case studies investigated in Poland [68], the expected energy saving due to TAI
adopting a 15 min interval could reach 47% compared to a preset dimming schedule, which is about
33% of the overall cost per year per each streetlight. Similar results can be found in [79].

LC operational cost. Clearly, the adoption of smart LCs introduces also some costs. In fact, LCs must
be active 24 h a day, either because they also support additional IoT services or simply because they
continuously listen to possible messages from the Control Center. Commercially available LCs have
a global power consumption that varies between 1 W and more than 5 W (see [80,81] for further
readings). This is a very significant difference. In a (conservative) ten years perspective of the plant
lifetime and considering, for instance, a medium town with 10 k streetlights, two extreme solutions
might lead to a difference of about 3.5 GWh in the whole period. This corresponds to hundreds of
thousands dollars/euro, which might be saved with a proper choice of the LC.

Furthermore, in absolute economic terms, the saving generated by dynamic dimming is about
10 dollar/euro per year per each street light. Clearly, the operational cost of such feature cannot
exceed the saving it provides. The thing is, though, that this functionality relies on frequent real-time
communications (not only few bytes a day) whose cost should be carefully considered. In this regard,
it appears very challenging to obtain from a telco operator the support for such an amount of data
traffic with a yearly cost per each fixture significantly lower than the saving achieved by dynamically
dimming the light. It follows that providing the LC with the dynamic dimming functionality calls for
a proper choice of the communication technology, which might hardly be a third-party network (e.g.,
cellular), with the consequent fee.

More in general, the choice of the communication technology requires a more comprehensive
discussion, as different choices have different impacts on costs as well as on the smartness of the lighting
service and the possibility to offer additional services (not related to public lighting), supported by the
same communication infrastructure. This fundamental issue is thoroughly discussed in Section 5.
Overall economic balance. The San Diego case. As far as the cost of the whole infrastructure is
concerned, a good reference is provided by the city of San Diego (USA), which recently replaced 14,000
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of the city’s more than 40,000 streetlights with energy-efficient LED lamps that can communicate with
one another and operators and allow lighting adjustments to save energy. As reported in [82], “the
price tag comes in at US $30 million, but it won’t break the budget (. . . ) because it will save 60 percent in the
cost of powering the city’s lights. Over the next 13 years, these savings will more than cover the hardware and
cloud-computing services required for the streetlight IoT.”

The reader may refer to the Annex IV (“Examples of Life Cycle Costing”) of [7] for other examples
of city-wide installations, which are described providing the economic details (investment, saving,
payback period, . . . ).

5. Network Architectures and Transmission Technologies

The fundamental issue that needs to be addressed when designing a smart lighting infrastructure
is how to establish a connection between each streetlight and the Control Center. Given the static nature
of lighting infrastructures, both wired and wireless networks can be adopted. In the following we
discuss both solutions, considering the related network architectures and communication technologies,
having in mind the constraint that the Control Center must have the possibility to manage each light
fixture individually.

5.1. Wired Networks

The most straightforward way to integrate all public light fixtures into a wired communication
network is to exploit the existing power lines to convey also data signals. This is the Power Line
Communication (PLC) technology, which turns the conventional electrical grid into a communication
infrastructure. As reported in [83,84], PLC systems can be classified according to their bandwidth:

• broadband PLC (1.8–100 MHz), which yields data rate in the order of Mbps with a coverage of
few hundreds meters,

• narrowband PLC (3–500 kHz), which provides data rate in the order of few hundred of kbps over
several kilometers,

• ultra-narrowband PLC (125–3000 Hz), which conveys very low data rates (roughly 100 bps) at
tens or even one hundred kilometers.

Broadband PLC and ultra-narrowband PLC are not usually adopted in smart lighting scenarios,
owing to their low coverage range and data rate, respectively [85,86]. Narrowband PLC is, instead,
commonly adopted for this application. As shown in Figure 2, which depicts the typical PLC-based
smart lighting infrastructure, communications take place over the low-voltage power cables (segments)
between the luminaires and the electrical cabinet (segment controller). On its turn, the cabinet is
connected to the Control Center by means of a wired (e.g., optic fiber) or wireless (e.g., cellular) wide
area network (WAN).

This architecture is widely adopted in smart lighting infrastructures currently operating
worldwide. PLC is, in fact, a mature technology, with the consequence that many manufacturers have
been providing off-the-shelf solutions since many years. In perspective, however, it is questionable
whether PLC is the best solution for the smart lighting infrastructures of future smart cities in the IoT
era, which are expected to serve as backbone for plenty of location-based wireless services. In fact,
future streetlights will be certainly equipped with wireless communication technologies, aimed at
gathering/exchanging data from/with IoT devices (sensors, smart bikes, cars, parking lots, waste
bins, . . . ) located in their surroundings. In view of this, there is no reason not to use the same wireless
network to support both future IoT services and the smart lighting service, with no need of any PLC
system dedicated to the latter.

Indeed, the awareness that IoT wireless services and smart lighting will be tightly intertwined in
future smart city scenarios, is forcing several PLC manufacturers to upgrade their products in order to
accommodate also IoT wireless technologies; PLC is mainly used for data transmission between the
electrical cabinet and the luminaires, whereas the supplementary RF network, established by means of
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radio devices installed in each streetlight, is used to support communications with nearby IoT devices
as well as (if necessary) between the luminaires.

In the authors’ opinion, this solution, although in the right direction and fully understandable in
a commercial perspective, does not have solid technical motivations, as the wireless network alone
could easily uphold also (among the others) the smart lighting service, with obvious cost reductions.
In addition, a properly designed wireless network is characterized by an intrinsic redundancy which
is absent in common PLC architectures, which are more vulnerable to failures. Adding redundancy to
PLC networks is certainly possible, but it comes at cost, as duplicated devices must be installed.

In the following section, an overview of the wireless communication technologies that can
support smart lighting applications is provided, along with a thorough discussion of their strengths
and weaknesses in such scenario.

Figure 2. PLC-based smart lighting architecture.

5.2. Wireless Networks

5.2.1. Cellular Networks

Cellular networks are ubiquitous and widespread, covering around 95% of world inhabitants [87]
and almost the totality of populated areas. Given their ubiquitous reach, cellular networks appear
the ideal solution to effortlessly connect light fixtures to the Control Center. In principle, under the
umbrella of the cellular network coverage, connecting a streetlight to the smart lighting infrastructure
is as simple as equipping it with a cellular radio interface and turning it on. It will immediately connect
with the cellular network that is already in place. From the perspective of the public lighting holders,
this is certainly a good point, as no network installation is required nor its maintenance.

Moreover, cellular networks provide data rates that can scale from few kbps to hundreds of
Mbps, thus supporting almost every service, from simple telemetering to more bandwidth-demanding
applications, like video-surveillance. Focusing the attention on the basic smart lighting service, which
generates small amount of data, it could rely on the two emerging cellular-based IoT standards,
namely narrowband-IoT (NB-IoT) and long-term evolution (LTE)-Cat-M1, which have been designed
to implement Low-Power Wide-Area Networks (LPWANs).

Both technologies are deployed as overlays of the LTE 4G cellular networks and provides data
rate up to 250 kbps (NB-IoT) and 1 Mbps (LTE-Cat-M1), respectively. Like all LPWAN technologies,
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they have been designed to allow long range (several kms) communications at a low bit rate among
connected “things”, such as sensors powered by batteries.

Cellular networks, along with their LPWAN developments, certainly appear a convenient solution
for providing the smart lighting infrastructure with the required connectivity. There is, however,
a number of issues that should be carefully considered.

First of all, connectivity is very critical to smart lighting. Street lights that do not
experience an adequate level of received power from the cellular base stations are out of the
infrastructure-management control. This issue is particularly critical because, although it is true
that cellular networks are ubiquitous and widespread, a target coverage of 100% can not be reached
in dense urban environments. Buildings or other obstacles can obstruct the signal propagation to an
extent that in some locations the communication is impossible or, at least, intermittent. Furthermore,
this situation may occur at any time, as new buildings are raised. Fixing such issue could be very
difficult, because the cellular network is owned by a third party (the network operator), which could
not be willing (owing to cost or technical difficulties) to change the network layout.

Secondly, since cellular networks are run by third party providers, lighting infrastructure holders
have to pay a cost for their usage, which could be significant because thousands of streetlights have to
be connected. Thus, the economic saving achieved thanks to the smart light management is reduced
owing to this additional cost. Moreover, network operators might decide to increase over time the cost
for the service subscription, according to dynamics not controlled by the lighting infrastructure holders.

Thirdly, using the cellular network to provide connectivity to streetlights suggests that the lighting
infrastructure holder is unwilling to implement and manage its private communication network.
Although this choice is understandable, as it reduces the effort on the public lighting holder’s side, it
prevents the possibility to use such private network also for additional IoT services that might be of
interest. For instance, the lighting infrastructure holder could gain revenues by giving other utilities
(waste collectors, smart bike rentals, . . . ) the access to its private network, or simply give them free
access in order to foster such services.

Finally, the expected lifetime of a lighting infrastructure is around 15–20 years, which is a very
long period in terms of technological evolution. In such a long period, the cellular technology chosen
for the smart lighting infrastructure at the time of its deployment might be switched off by network
operators to free up frequencies for new technologies. This is what is currently happening with the
3G technology that, although still excellent for many IoT applications, will be dismissed in the next
years, 15–20 years after its deployment. It has to be observed, in this regard, that a communication
technology is possibly chosen for the smart-lighting service only during its full maturity, which means
that its expected residual lifetime might be less than the lighting infrastructure lifespan.

5.2.2. Non-Cellular LPWANs

Non-cellular LPWANs are increasingly adopted for smart lighting applications, as they allow
to reduce the operational costs of streetlights networking with respect to cellular networks. Long
Range (LoRa) and Sigfox are, in particular, the LPWAN technologies mostly considered in smart
lighting scenarios, thus deserving specific discussions.

LoRa wide area network (LoRaWAN): LoRaWAN [88] is a point-to-multipoint networking
protocol for WAN communications that uses the LoRa proprietary modulation scheme
owned by chip manufacturer Semtech. More specifically, LoRaWAN is an open-standard that
defines the medium access control (MAC) layer for LPWANs based on the LoRa chip, which
transmit over license-free bands (169 MHz, 433 MHz, 868 MHz and 915 MHz) with a very
long transmission range (more than 10 km in rural areas) and low power consumption [89–92].
It supports bit rates ranging from 250 bps to 21.9 kbps.

It was designed to connect battery-powered, low bit rate, IoT devices across a wide coverage
area. Regarding network aspects, LoRaWANs are generally laid out according to a star
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topology and the central node is usually called gateway. In urban scenarios, more than one
gateway might be installed to increase the coverage, so that several star networks might be
deployed to cover the whole service area.

The typical communication infrastructure adopted in smart lighting scenarios is shown in
Figure 3, where two star networks providing connectivity to groups of light fixtures are
depicted. Each gateway, acting as a hub, is then connected to the Control Center by means of
the widespread cellular network or another IP-based communication technology.

As can be observed, the resulting network is very similar, from an architectural point of view,
to a cellular network. In fact, the LoRa gateways spread across the city play exactly the same
role of the cellular BSs. The main difference is that LoRa networks are private ones, so that
the holder of the smart lighting infrastructure is also the owner of this fundamental asset.
In any case, if the cellular network is adopted to connect the LoRa gateways to the Control
Center a fee is to be paid, which is however scarcely significant owing to the low number
of gateways.

Sigfox: Sigfox is an LPWAN network operator that offers end-to-end low bit-rate IoT
connectivity based on its patented technology. Its proprietary BSs are deployed in the service
area by Sigfox partners and are connected to the back-end servers through an IP-based
network. They provide wireless connectivity to end devices in unlicensed ISM bands
(868 MHz in Europe, 915 MHz in North America, and 433 MHz in Asia). By employing
ultra-narrow band (100 Hz) signals, Sigfox communications experience very low noise levels,
thus achieving large coverage distances (up to 10–40 km in rural zones and 1–5 km in urban
zones) at the expense of maximum throughput of only 100 bps [93].

Sigfox supports limited bidirectional communications: downlink communications can only
occur following an uplink communication. The number of uplink messages is limited to
140 per day, with maximum payload of 12 bytes for each message, whereas the number of
downlink messages is limited to 4 messages per day, with maximum payload of 8 bytes [94].

As far as the network topology is concerned, Sigfox adopts the same architecture previously
described for LoRa. Also in this case, an adequate number of hubs, usually called Sigfox
stations, are deployed in the services area, each of them establishing a star network (as
shown in Figure 3). However, differently from LoRaWAN, Sigfox networks are owned by
Sigfox itself, hence, end users have to pay for the connectivity. In the case of smart lighting
scenarios, this entails that a fee is to be paid for thousands of streetlights.

Both LoRa and Sigfox technologies are currently adopted by several light fixture manufacturers.
The choice between one or the other depends on the willingness of the public lighting holder to deploy
and manage its own network with a low (if any) communication fee (this is the LoRa case) or, contrarily,
to avoid any issue with the installation and management of the communication network, which entails
that a communication cost is to be borne for each streetlight (this is the Sigfox case). As previously
observed, in the former case the lighting infrastructure holder might also gain revenues from its private
network, whereas in the latter case the communication service is simply a cost, which could increase
over time.

It is worth observing, moreover, that both technologies suffer from the same coverage issue that
affects cellular networks, which in fact have the same architecture: differently from mobile phones,
which can counteract a poor communication quality thanks to the mobility of users, street lights
are static, which make them very vulnerable to obstructions (foliage, buildings, . . . ) that clutter the
communication link. Although it is true that both LoRa and Sigfox devices greatly outperform cellular
devices in terms of receiver sensitivity, the occurrence of local coverage gaps cannot be excluded and
might happen unexpectedly (e.g., when a new building is raised).
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Mostly important, such networks were not conceived to support real-time communications, which
are required to allow the simultaneous dimming of all interested streetlights when traffic adaptive
lighting profiles are adopted.

Figure 3. LoRaWAN/Sigfox-based smart lighting architecture.

5.2.3. Mesh Networks

Connectivity issues arising with star networks can be overcome adopting a mesh network
architecture. In this case, wireless nodes can connect directly, non-hierarchically and even dynamically,
to as many other peer nodes as required, provided that they are in their coverage range, and cooperate
with one another to efficiently route data. This lack of dependency on a central node allows for every
node to participate in the relay of information, which propagates hop-by-hop.

The typical mesh network in a smart lighting scenario is depicted in Figure 4. One observes
that streetlights are grouped in clusters, in which hop-by-hop communications are allowed among
neighbors. These communications usually take place by means of short range, low cost, communication
technologies, such as IEEE802.11.4 and Bluetooth. Within each cluster, one or more streetlights can
communicate with a special network node that is also equipped with a long-range communication
technology (cellular, optical fiber, . . . ). This enhanced node acts as a gateway, allowing the bidirectional
exchange of information/commands between the Control Center and all poles of the cluster. If the
cellular network is adopted to connect the gateways to the Control Center a fee is to be paid, which is
however scarcely significant as the number of gateways is much lower than the number of streetlights.

This architecture is much less prone to coverage issues, because neighboring streetlights are
close one to the other, and in most cases they experience line-of-sight propagation conditions.
Moreover, inter-pole communications do not require any subscription (nor any fee) to a network
provider, because the owner of the public lighting infrastructure is also the owner of the inter-pole
communication network. In the following, two of the most important technologies for mesh networking
are presented, namely IEEE802.15.4 and Bluetooth.

IEEE 802.15.4: IEEE 802.15.4 [95] is a short-range wireless technology supporting applications
with relaxed throughput in wireless personal area networks (WPANs). The standard
specifies the physical and media access control layers for Low Rate-Wireless PANs
(LR-WPANs), and is maintained by the IEEE 802.15 working group. It is the basis for
the Zigbee, WirelessHART, ISA100.11a, 6LoWPAN, MiWi, Thread and SNAP specifications,
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each of which further extends the standard by developing the upper layers, which are not
defined in IEEE 802.15.4.

As far as the physical layer is concerned, several modulations schemes can be used, providing
over the-air speeds of up to 250 kbps in specific unlicensed (depending on the geographic
region) 800, 900 and 2400 MHz bands. The transmission range goes from tens to hundred
meters, depending on the propagation conditions.

Figure 4 shows the general architecture of a smart lighting mesh network based on the
IEEE802.15.4 technology. At the lowest level, an IEE802.15 equipped LC is mounted in
each streetlight, directly controlling the luminaire and providing connectivity with the other
light-poles. At the intermediate level, managing a sector of the lighting infrastructure, there
is an enhanced IEEE 802.15.4 node that acts as a gateway towards the Control Center, thanks
to an additional long-range communication interface, either wireless (e.g., cellular) or wired
(e.g., optical fiber). According to the IEEE 802.15.4 terminology, the gateway is termed
Coordinator, whereas each sector of the lighting infrastructure controlled by a Coordinator is
termed personal area network (PAN). In order to avoid mutual interference, adjacent PANs
work on different channels. Lastly, at the upper level there is the Control Center, which
manages all sectors of the lighting infrastructure.

The information propagates from the center to the peripheral (and backwards) hopping from
one luminaire to another. Since luminaires are usually deployed along streets, the resulting
topology is composed by linear segments and some branches, which eventually form a
number of trees, rooted at the corresponding gateways.

In actual deployments, IEEE802.15.4 transceivers have a transmission range that covers not
only the adjacent light-poles but also a number of nearby luminaries. This makes the system
intrinsically robust to possible failures, as a given streetlight is usually reachable by more
than one neighbor.

Bluetooth mesh networking: Bluetooth is one of the best known and most ubiquitous
wireless communications technologies on the planet. It has been in existence since 2000 and
is currently integrated into billions of devices. It operates in the 2.4 GHz ISM band and
uses frequencies between 2402 and 2480 MHz. Initially, it was simply intended as a cable
replacement technology, becoming soon the dominant solution for the connection of audio
devices as well as of computer peripherals. However, it has been systematically improved
with the addition of new functionalities, enabling it to keep pace with market requirements.

Bluetooth mesh networking (BMN), conceived in 2015 and adopted on July 2017 [96,97], is the
latest chapter in this evolution path. It was designed to allow many-to-many communications
by meshing together hundreds (or even thousands) of devices capable of handing off
messages to each other, thus is gaining momentum for smart lighting applications.

Similarly to the previously described IEEE802.15.4 technology, BMN establish a
communication infrastructure where light fixtures can communicate with one another to
relay commands, diagnostic information and possible data transmitted by nearby smart
devices. The resulting mesh network architecture is the same depicted in Figure 4.
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Figure 4. Bluetooth/IEEE802.15.4 mesh-based smart lighting architecture.

5.3. Communication Technologies for Smart Lighting Infrastructures: Conclusions

At the end of this section, some conclusion can be drawn concerning the choice of the
communication technology best suited to public lighting scenarios.

Wired or wireless networks? The first question that must be addressed is whether to rely on
wired or wireless solutions. In the authors’ opinion, wired networks, although currently adopted
in many street lighting infrastructures, do not represent a reasonable choice when considered in the
modern perspective of smart city and IoT scenarios. Such kind of networks, mainly implemented
using PLC technologies, represent dedicated communication infrastructures, aimed at providing only
the smart lighting service. Considering the ongoing evolution of urban environments, which will be
more and more studded with smart object requiring connectivity to exchange data, the deployment
of a city-wide network to support a single service is certainly, if nothing else, a missed opportunity.
Contrarily, wireless networks are the key enablers for upcoming smart city and IoT applications.
Their flexibility, widespread coverage and low deployment cost make them the only feasible choice to
interconnect the multitude of smart devices that are being deployed in our cities.

Street lights as smart objects or connectivity providers? Each streetlight of a smart lighting
infrastructure might be, on the one hand, one of the many smart objects (sensors, meters, . . .)
disseminated in the urban area, which require a wireless connection to operate, or, on the other
hand, it could be itself part of a city-wide wireless network that provides connectivity to other objects.

Undoubtedly, the former is the simplest solution. Under the coverage of a third-party wireless
network (e.g., cellular or Sigfox), connecting a streetlight to the smart lighting infrastructure simply
means to provide it with the proper radio interface and turn it on. It will immediately connect with
the wireless network that is already in place. The main downsides of this choice are the need for a
service subscription that covers all streetlights, with the corresponding fee to be paid to the network
provider, and the impossibility to gain revenues from the smart lighting infrastructure, which remains
a passive asset.

On the other hand, turning the smart lighting infrastructure into a capillary, multifunctional,
city-wide communications network, capable of relaying information, gathering data and delivering
services to and from IoT devices, makes it a dynamic platform serving as backbone for smart city
developments. In this case, the public light asset offers opportunities to deliver new services and
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generate revenues, instead of just being a cost factor. However, this requires the installation of a private
network (e.g., LoRa or mesh).

The latter scenario is certainly the most challenging one, as it requires a higher commitment by
the lighting infrastructure holders. They need to be fully involved in development path of the urban
area in which they operate, as they play a key role in the process that turns a city into a smart city.

To conclude this discussion, Table 1 provides a SWOT analysis (strengths, weakness, opportunities,
threats) of the previously introduced communication technologies for smart lighting applications.
Focusing the attention on wireless communication technologies, in the following section we will
provide the design criteria of a smart lighting infrastructure.

Table 1. Communication networks. SWOT analysis (strengths, weakness, opportunities, threats).

Communication Strengths Weakness Opportunities ThreatsTechnology

Wired: PLC Well proven technology Single service network. N/A. N/A.
for smart lighting services. Maintenance required.
No need for cable laying. Vulnerability to failures.

Low bit-rate.

Wireless: Cellular (NB-IoT) No need for Fee for all streetlights. N/A. Third party network.
network deployment Possible coverage gaps. Network switch off

and maintenance. High latency due to obsolescence.
(no dynamic dimming). Possible increasing

Low bit rate. fee over time.
Lighting infrastructure

not used for other services.

Wireless: Cellular (3G/4G) No need for Fee for all streetlights. N/A. Third party network.
network deployment Possible coverage gaps. Network switch off

and maintenance. Lighting infrastructure due to obsolescence.
High bit rate. not used for other services. Possible increasing

Low latency fee over time.
(for dynamic dimming)
only with increased fee.

Sigfox No need for Fee for all streetlights. N/A. Third party network.
network deployment Possible coverage gaps. Possible increasing

and maintenance. High latency. fee over time.
(no dynamic dimming).

Low bit-rate.
Lighting infrastructure

not used for other services.

Wireless: LoRa Possible fee only for gateways Need for network deployment. Private network. N/A.
to Control Center connectivity. and maintenance. Possibility to support

Possible coverage gaps. other services and
High latency gain revenues.

(no dynamic dimming).
Low bit-rate.

Wireless: Mesh Possible fee only for gateways Need for network deployment Private network. N/A.
(BMN, IEEE802.15.4, . . . ) to Control Center connectivity. and maintenance. Possibility to support

No coverage gaps. Higher number of gateways. other services and
Low latency. Low bit-rate gain revenues.

6. Deployment and Configuration of a Smart Lighting Infrastructure

Getting to the final deployment of a smart lighting infrastructure requires three main steps:

• Step 1: preliminary design,
• Step 2: in-field verification and light fixtures upgrade,
• Step 3: network partitioning and lighting tasks configuration.

each of which is thoroughly discussed in the following.

6.1. Step 1. Preliminary Design

The preliminary design of a smart lighting infrastructure is composed by the following phases:
Phase 1.1. Acquisition of the plant topology and connectivity survey. The preliminary design

begins with the acquisition of layout of the existing lighting infrastructure, to identify areas that
might suffer from connectivity problems. Already available networks (cellular, WiFi, optical fiber, . . . )
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are accurately mapped, as they can serve as backbone or provide backbone alternatives to reduce
management costs (for instance, avoiding the subscription to a service provider).

Phase 1.2. Choice of the communication technology and detection of gateways positions.
Starting from the analysis in Phase 1.1, as well as from the willingness of the public lighting holder
to create its own network or to rely on a third party network infrastructure, the communication
technologies are chosen.

If a third party network (e.g., cellular, Sigfox) is used to establish communication links between
streetlights and the Control Center, no dedicated gateway needs to be installed, as the network is
already in place. If, on the contrary, a proprietary network must be installed, either with a star topology
(e.g., LoRa) or a mesh topology (e.g., IEEE802.15.4, BMN), the best locations for the gateways must be
detected. Star networks (e.g., LoRa) must prioritize the highest and most central locations, to allow a
better coverage, although this could generate additional costs if a fee is to be paid for the hosting of the
gateways. Furthermore, star networks can hardly guarantee 100% coverage in urban environments.
Therefore, in this phase it is important to consider whether the cost for extending the coverage to
unserved areas is reasonable with respect to the saving that can be achieved.

Mesh networks allow a greater flexibility in the gateway positioning phase, because gateways
need to cover only a very small subset of network devices. Moreover, since the network arises from
hop-by-hop communications among devices installed on streetlights, which are close one to another,
it is usually able to guarantee 100% coverage. Clearly, the number of gateways is higher than that
required for LoRa networks. This is even more true considering that it is generally not kept at the strict
minimum, in order to avoid bottlenecks, provide higher throughput and reduce the latency.

Phase 1.3. Choice of traffic sensors locations. The third step is the detection of the streets where
to place vehicular traffic sensors, which are needed to implement traffic-adaptive energy saving
algorithms, such as TAI or FAI [68,79]. As outlined in Section 3.3, significant savings can be achieved
by dynamically adapting the light intensity to actual traffic conditions. However, dynamic light
dimming is allowed provided that safety conditions are guaranteed. Thus, the designer of the lighting
infrastructure must identify candidate streets, perform a risk analysis and, in case, find the dimming
policies capable of achieving the highest saving without affecting transport security.

In this regard, it is worth observing that, to avoid confusing the drivers, the light dimming
must take place simultaneously in all the interested light fixtures, which requires a low-latency
communication network.

6.2. Step 2. In-Field Verification and Light Fixtures Upgrade

Phase 2.1. In-field verification and gateway installation. If a third party network is chosen to
provide the connectivity to streetlights, the network provider must be selected, either Sigfox or one of
the available cellular providers, considering both the service coverage and the yearly fees.

If, on the contrary, the deployment of a proprietary network is chosen, an in-field verification
phase is needed to check whether the locations chosen for the gateways, either LoRa, IEEE 802.15.4 or
BMN, actually provide the expected link quality. In the LoRa case this is a critical phase as, in principle,
one should first make tentative choices of gateways locations, prioritizing the highest sites, install them
and check whether all light fixtures experience good connectivity conditions. Clearly, when thousands
of smart fixtures are to be installed, only a subset of communication links can be checked, which means
that 100% coverage might not be reached when the network is fully deployed. The deployment of
IEEE802.15.4 and Bluetooth gateways is much less critical, as each of them needs to be connected only
to a few streetlights, which usually experience line-of-sight conditions. Based on the outcomes of the
verification phase, the gateways are finally installed.

Phase 2.2. Light fixtures upgrade. Upgrading each street light with a smart LC is not only a
matter of replacing the old hardware with the new one. A fundamental step of this phase is the
georeferentiation of each device, whose unique MAC address must be associated to a specific location.
As a matter of fact, the installation might well involve thousands of streetlights and in case a failure is
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reported to the Control Center by the LC, along with the its MAC address, the corresponding position
should be immediately known for a timely maintenance.

Usually, smart lighting devices come with a set of identical (for each device) barcode stickers,
which are attached to the fixture and to the installation sheet that has to be filled in by the installer.
Such sheets, that contains also the positions of devices, provide the link between the MAC address
of each device and its location. Clearly, this is an error prone procedure, with many weakness points
(transcription errors, stickers swapping, . . . ).

More advanced instruments are at disposal, such as portable devices that scan barcodes and
communicate the streetlight coordinates to the Control Center. The most straightforward solution is to
equip the LC with a GPS receiver, so that its position is automatically acquired and sent to the Control
Center each time a report is transmitted.

6.3. Step 3. Network Partitioning and Lighting Tasks Configuration

Phase 3.1. Network partitioning. Whenever gateways are needed, as in the cases of LoRa, Sigfox
or mesh networks, streetlights are grouped into clusters, each of which relies on its own gateway to
establish a communication link towards the Control Center. Such clusters are created by associating to
the designated gateway the MAC addresses of all LCs that logically belongs to the same group.

This phase might be highly or scarcely critical, depending on the adopted network topology.
In general, star networks are more vulnerable to local coverage gaps that, unfortunately, are discovered
only during the installation phase. In fact, when thousands of streetlights have to be upgraded, it
would be impossible to check in advance the gateway coverage for each of them. Should coverage gap
exist, additional gateways would have to be deployed, provided that this solution is both feasible and
affordable. If not, some streetlights will be unreachable. But still, the addition of one or more gateways
require a revision of the network partitioning, at least locally, with possibly the need to change the
reference gateway of already configured streetlights.

Mesh network are far less prone to such issue, as only one streetlight of the cluster must be
associated to the reference gateway (see Figure 4). The other streetlights need only to communicate
with their neighbors, which in most cases are in line of sight. Clearly, the shorter the installation time,
the lower the network deployment costs.

Phase 3.2: Configuration of dynamic dimming algorithms. If a network has been chosen that
allows the dynamic dimming, in this phase all profiles and behaviors will be defined according to
external events, to maximize energy saving and keep road safeness unaltered.

In particular, TAI/FAI algorithms are implemented only on specific streets selected by the light
engineer in charge of the light project deployment, who also defines the corresponding lighting
classes. Specific sensors (traffic, weather, . . . ), installed for each interested street or group of streets,
provide the information to dynamically select the dimming level. The LCs of streetlights that should
simultaneously dim the light are logically grouped at the Control Center, and controlled as a whole.

7. Future Services and Integration with 5G Networks

In Section 4, we discussed the saving that can be achieved turning a conventional public lighting
infrastructure into a smart infrastructure. However, the benefits of such technology are not limited
to economic aspects: Provided that the lighting infrastructure is designed with a far-looking view,
an important consequent effect is the availability of a capillary wireless network that reaches every
location where a smart streetlight is present. This enables the collection of data from nearby sensors
and the provision of new services, concerning, for instance [98]:

• smart parking: real-time monitoring of parking lots (vacant/occupied);
• waste management: detection of rubbish levels in containers to optimize the trash collection routes

and schedule;
• air quality: monitoring of the air pollution level;
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• structural health: monitoring of vibrations and material conditions in buildings, bridges and
historical monuments;

• vehicular traffic: detection of traffic jams and suggestion of alternative routes through variable
message signs.

Moreover, as smart public lighting infrastructures are being deployed, new opportunities are
emerging to fuse different smart technologies. In this regard, it is worth mentioning the emergence
of 5G, the next-generation cellular technology, that is expected to debut in 2019 with the release of
smartphones and network upgrades that will allow higher speeds and lower latency.

As pointed out in Section 1, in order to meet the impressive data rate requirements of this
technology, 5G cells will be limited in coverage, which means that many more base stations will
be required to ensure a seamless service experience. Network engineers are looking at lighting
infrastructures as the solution for the ultra-dense placement of 5G base stations across smart cities [3,99].
For cellular network providers, the advantages of equipping streetlights with 5G base stations include:

• the availability on the installation site of the power supply, which avoids separate cabling costs,
• a regular and effective deployment, as streetlights are typically tall and evenly spaced, which

eases the network planning phase and reduces the occurrence of coverage gaps,
• the availability of a single “counterpart” (the public light holder), who leases the sites for hundreds

(possibly, thousands) of base stations,
• given the location of streetlights along roads, the possibility to support location-based

roadside-to-vehicle communications for intelligent-transport services or autonomous driving.

Regarding the cost of integrated 5G/smart lighting infrastructure, one observes that modern light
fixtures are composed by separate modules (lamp+light controller, WiFi access point, photometrical
unit, IP camera, . . . ) connected each other atop the pole. The 5G transceiver will be simply an
additional, removable, module of the light fixture, whose cost would be in charge of cellular operators
(as it happens in the case of traditional base stations). Contrarily, the smart lighting operator would
have an income given by the site-rental fees paid by the cellular operator. Examples of initiatives
aimed at developing 5G-enabled smart lighting fixtures are provided in [99,100].

8. Conclusions

Public lighting is currently the core of many smart city initiatives around the world. By replacing
traditional street lights with LED-based lamps, utilities can cut energy and operations costs by 46%
or more. Further savings can be achieved introducing an adequate dimming control during offpeak
hours as well as by networking streetlights, also introducing the capability of sensing actual conditions
(traffic, weather, luminance conditions) and dimming lights accordingly. Enabling such functionalities,
thus turning the lighting infrastructure into a smart one, could lead to an overall saving of 80% or more.

Beyond energy savings, since each smart streetlight needs to be provided with bidirectional
communication capabilities, an ubiquitous city-wide communication network arises from the
lighting infrastructure. Streetlights are no longer isolated elements, but could establish a capillary,
multifunctional, city-wide communication network, capable of relaying information, gathering data
and delivering services to and from millions of IoT devices. Streetlights could thus support city-wide
IoT services, which will make them key enablers of the smart city revolution.

In this paper we provided a thorough discussion on network architectures and communication
technologies that could be adopted for this application, showing the benefits and downsides of each.
In particular, we argued that the realization of a private network with a mesh topology, although more
challenging for the infrastructure holder, is more suited to support both the smart lighting service and
additional IoT services. Moreover, we outlined the steps required for the deployment of a smart public
lighting infrastructure, each discussed in accordance with the network topology under consideration.
Again, we showed that mesh networks are less prone to coverage issues and more responsive when
real-time dimming is required.
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Finally, we introduced some of the additional services that a smart public lighting infrastructure
could support and we discussed the benefits that would arise from the integration with the upcoming
5G cellular network.
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LC ligh controller
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