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Featured Application: Exponential speedup with special-purpose computational tasks, similar
to quantum computing claims. Though the goals are similar to those of quantum computing,
the way of realization is substantially different and free of some of the negative effects such
as decoherence and errors. Most of the particular solutions described here are free from the
statistical nature and its related slowdown of quantum computing. This fact supports the
opinion that the claimed advantages of quantum computers come from the stochastic nature
of quantum measurements. It is well-known in the field of random algorithms that stochasticity
can offer exponential speedup for certain special-purpose operations. In the same way, classical
stochasticity via the instantaneous noise-based logic schemes may offer more than quantum
computers because of the lack of the fundamental disadvantages of quantum systems, which are
the decoherence, the statistical nature of quantum measurements, and the fact that measurements
destroy the state. Examples of this superiority are shown in the present paper where, once the
search has begun, the results come out deterministically without statistical errors, resulting in
exponential speedup compared to Grover’s quantum search algorithm.

Abstract: We explore the collapse of “wavefunction” and the measurement of entanglement in the
superpositions of hyperspace vectors in classical physical instantaneous-noise-based logic (INBL).
We find both similarities with and major differences from the related properties of quantum systems.
Two search algorithms utilizing the observed features are introduced. For the first one we assume an
unsorted names database set up by Alice that is a superposition (unknown by Bob) of up to n = 2N

strings; those we call names. Bob has access to the superposition wave and to the 2N reference
noises of the INBL system of N noise bits. For Bob, to decide if a given name x is included in
the superposition, once the search has begun, it takes N switching operations followed by a single
measurement of the superposition wave. Thus, the time and hardware complexity of the search
algorithm is O[log(n)], which indicates an exponential speedup compared to Grover’s quantum
algorithm in a corresponding setting. An extra advantage is that the error probability of the search is
zero. Moreover, the scheme can also check the existence of a fraction of a string, or several separate
string fractions embedded in an arbitrarily long, arbitrary string. In the second algorithm, we expand
the above scheme to a phonebook with n names and s phone numbers. When the names and numbers
have the same bit resolution, once the search has begun, the time and hardware complexity of this
search algorithm is O[log(n)]. In the case of one-to-one correspondence between names and phone
numbers (n = s), the algorithm offers inverse phonebook search too. The error probability of this
search algorithm is also zero.
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1. Introduction: On Noise-Based Logic

The Einstein–Podolsky–Rosen paradox [1] points to a deep feature of quantum physics leading
to the notion of entanglement. In this paper, we address a similar problem in noise-based logic
(NBL) [2–15], which is a classical physical scheme where noise-bits carry the same high-dimensional
Hilbert space as qubits in quantum computing. We explore some of the similarities and differences
between the entanglements and their measurements in these systems and propose relevant data search
applications for NBL.

Noise-based logic (NBL) [2–15] is a classical physical computation system using orthogonal
stochastic processes to carry and process the logic information. Even though the creation of NBL was
originally inspired by the stochastic nature of neural signals [2–5] and there are some brain-inspired NBL
schemes [6,7] that may help in understanding the functioning of the biological brain, the developed
NBL schemes and their methods reach far beyond the brain-mimicking efforts [8–15]. Similarly,
there is some resemblance between NBL and quantum computing including some exponentially large
superpositions that can be created by polynomial complexity [8–15]. However, the NBL schemes and
their modes of operations are substantially different, even if some of the computational goals may
be the same. While the explorations of NBL are still taking place, it is already clear that in certain
demonstrated cases, the robustness and controllability of classical physical systems and information
offer strong advantages [14,15] over quantum informatics. Some NBL schemes can offer solutions
that either reach beyond the abilities of quantum informatics or offer alternative means with identical
potential and less cost, similarly to recent achievements by Ewin Tang in classical computing [16,17].
The present paper is an additional new example of this fact.

Note that the exploration of classical physical stochastic processes for information technology
also yielded very similar positive surprises regarding quantum encryption. The classical statistical
physical key exchange scheme, the KLJN system [18], offers the same level of security and it is the only
currently known unconditionally secure communication scheme that can be integrated on a chip.

1.1. Instantaneous Noise-Based Logic

In this paper, we explore instantaneous noise-based logic (INBL) [4,5,8–15] for search algorithms
over unknown superpositions within the NBL framework.

A system of M noise-bits consists of 2M uncorrelated, statistically independent, true random noise
generators, with zero mean—the reference noise system—to supply stochastic signals (reference noises),

R10(t), R11(t), R20(t), R21(t), . . . , RM0(t), RM1(t) (1)

that represent the low (0) and high (1) values of each noise-bit. These signals are uncorrelated and have
zero mean value. The NBL gates and processors utilize these reference noises together with the input
data for algebraic operations to produce their output. Therefore, the reference noises are available for
each unit in the NBL processor and reference wires indicate their supply in the circuit drawings (see
Figure 1).

The reference noises (in the infinite-time limit) can also be viewed as orthogonal vectors; thus,
superpositions of these signals represent a 2M dimensional geometrical space. Nonlinear operations on
the reference noises and their superpositions (see Figure 2) lead out from this original space and form a
hyperspace with exponentially higher dimensions.
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1.2. Hyperspace (Hilbert Space) Vectors: Product-Strings

It is an important feature that the products of these noises form a hyperspace with 2M geometrical
dimensions that we describe below. This hyperspace forms the same Hilbert space that full-scale
quantum computing is utilizing.

Numbers in the NBL system are M-bit binary numbers represented by product-strings formed by
the noises of the corresponding bit values. For example, in the case of M = 4, the signal of the binary
number 1010 is carried by the noise product R11(t)R20(t)R31(t)R40(t).

Note that the above string corresponds to the vector |1010> in the quantum Hilbert space. This 4
noise-bit system can represent 24 different binary numbers similarly to classical logic circuitry of 4
bits bit resolution. However, the major difference is that, similarly to full-scale quantum computers,
the INBL system can carry simultaneously all these numbers in a parallel fashion, with a single signal
that is the superposition of all these product-strings. INBL operations on these superpositions act
simultaneously on each element in this superposition. This situation can lead to significant speedup.

Exponentially Large Superpositions with Polynomial Complexity

Many exponentially large superpositions can be treated by polynomial complexity in INBL, which
is also a core feature of full-scale quantum computing. For example, the Universe U(t), which is the
superposition of all the binary numbers, can be created by adding the signals of the low (0) and the
high (1) bit values of each noise-bit and then multiplying these sums:

U(t) = [R10(t) + R11(t)][R20(t) + R21(t)] . . . [RM0(t) + RM1(t)]. (2)
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Even though this quantity can be set up by M addition and M-1 multiplication, that is, by 2M-1
elementary algebraic operations, when Equation (2) is expanded, it forms the sum of all the 2M different
product-strings (all the binary numbers) this M noise-bit system can form. For practical solutions for
reducing the probability of zero amplitudes of the Universe, see Section 1.3.

It is important to note that although the same technique can be applied to deterministic signals,
such as with sinusoidal waves as reference signals, such exponentially large superpositions will require
exponential time complexity due to the frequency byproducts of multiplication, which results in an
exponential growth of the bandwidth. Even though the bandwidth with continuum noises would
increase due to the multiplication, linear frequency filters could limit the effect without losing the
distinguishability of logic states; thus the polynomial complexity can be kept by using stochastic
reference signals. More on this issue is in Section 1.3.

Another simple example is the superposition Yeven(t) of all the even numbers, which can be
obtained by skipping the term corresponding to the 1-bit value of the lowest bit:

Yeven(t) = R10(t)[R20(t) + R21(t)] . . . [RM0(t) + RM1(t)] (3)

and the superposition Yodd(t) of all the odd numbers is obviously just

Yodd(t) = U(t) −Yeven(t). (4)

Equation (4) represents an operation with an exponentially large, O(2M-1), input, and an
exponentially large, O(2M), output that does not overlap with the input. This requires only O(M)
complexity (see in Section 1.3) and it is carried out by a single algebraic operation: Subtraction.

Note, full-scale quantum computers provide similar features in their Hilbert space with their
unitary operators. The major difference between the quantum and the NBL schemes stems from
the accessibility and robustness of the classical physical information, which not only offers, but also
requires different approaches in the algorithms. Thus, we cannot say that noise-based logic and its
algorithms are quantum-inspired. Yet we can say that many of the problems that NBL can address are
quantum-inspired and both the quantum and the NBL schemes have the same limitations: Small input
and small output.

1.3. Random Telegraph Waves as a Reference System

Theoretically speaking, reference signals can be arbitrary types of stochastic processes, provided
they are statistically independent and have zero mean.

For practical purposes, simple two-state binary noises—called random telegraph waves
(RTW)—have been proposed as reference signals, including standard ones with ±1 values; RTWs with
different amplitudes, such as, ±1 for the high (1) bit values and ±0.5 for the low (0) bit values (see
Figures 3–6) to avoid dominant zeros in the amplitude of the Universe; or with complex values [10];
and time-shifted [9] versions that can additionally combine all the above ones. When the reference
signals are independent RTWs, the products strings will also be RTWs with zero cross-correlation
between different strings (see Figure 5). These schemes have the advantage that binary multiplications
and additions can be done accurately and economically by a digital computer while the bandwidth will
remain the same order. Moreover, even though the amplitude values in a superposition can fluctuate
over an exponentially large range, due to the binary handling of data, this exponential feature requires
only a polynomial number of bits of resolution.
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For example, in an RTW-based, M noise-bit INBL system with amplitudes ±1 for the high (1) bit
values and ±0.5 for the how (0) bit values, the R10(t)R20(t) . . .RM0(t) string (corresponding to the |00
. . . 0> quantum state vector) has amplitude 2−M and the amplitude of the Universe is bounded by ±2M

(see Figures 3–6). For the schemes in the present paper, without giving up generality, we visualize this
RTW system. A digital computer with 2M-bit resolution, which easily can be satisfied with proper
software, can accurately handle this system. M in the range of thousands implies some slowdown;
however, that slowdown is only polynomial in M.
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In conclusion, an INBL processor is envisioned as a classical PC computer with proper software
to handle 2M-bit resolution and the four basic arithmetic calculations, and a physical true random
number generator (TRNG).Appl. Sci. 2019, 9, x 6 of 12 
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Note: For a classical physical TRNG, the thermal noise of resistors offers the best choice due to the
quantum randomness of the phonon scattering of electrons and holes and the extraordinarily large
degrees of freedom of these scattered charge carriers resulting in a classical physical enhancement of
quantum randomness. Known quantum random generators lack the second feature and they are prone
to bias due to various fluctuations in their control degree of freedoms, such as polarizer/beamsplitter
angle vibrations, polarization noise of lasers, 1/f noise, etc. Thus, classical physics offers advantageous
potential for TRNG, yet their design still requires special attention and possibly hashing.

2. New Measurement Tools Involving the Reference Wires

It has been recognized earlier in the context of “ghost states” [10] and CNOT gates [15] acting
on superpositions that the manipulation of the reference system is a powerful computational tool.
The new results in this paper also utilize this technique in a different fashion. We suppose that in
the M-bit INBL system, the unknown and unsorted superposition consists of an arbitrary sum of
distinguishable M-noise-bit product-strings (see Sections 1.2 and 1.3).

2.1. “Quantum” Measurement of a Given String within a Superposition: “Collapse of the
System Wavefunction”

Any of the M-long strings X(1), X(2) . . .X(M) in an M-noise-bit INBL system is using half of the
reference wires to form its signal:

R1X(1)(t)R2X(2)(t) . . .RMX(M)(t). (5)

We can reduce an arbitrary superposition to any of its product-string elements by “grounding”
(forcing a zero signal amplitude onto) the inverse (that is, other half) of the reference wires, namely,
the reference wires of the bit values X(1), X(2) . . .X(M), while keeping the rest of the reference wires,
the X(1), X(2) . . .X(M) wires, at their reference sources. For the required hardware, see Figure 7,
and for a practical example, see Figure 8. Any other string in the arbitrary superposition uses at least
one of the grounded bit values, thus the signal components all these product-strings become zero
in the superposition. This situation corresponds to the “collapse of the system wavefunction” in a
quantum system. If the superposition signal amplitude is not zero during the clock period when the
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measurement is carried out, and after the grounding the signal becomes zero, that is a proof that
the product-string was not in the superposition. Otherwise, the new signal will be a non-zero signal
R1X(1)(t)R2X(2)(t) . . .RMX(M)(t) of the product-string.

Appl. Sci. 2019, 9, x 7 of 12 

Therefore, grounding the inverse reference wires of a string and observing the remaining signal 
of the superposition represents the quantum-type measurement in instantaneous noise-based logic. 
Note, there are other types of measurements, too, but they are of statistical nature, while grounding 
the reference wires yields a deterministic measuremen, provided the instantaneous amplitude of the 
original superposition is non-zero at that time, that is, during the clock-period of the measurement.  

 
Figure 7. INBL generic hardware scheme with two-state switches in the reference wires to provide 
the opportunity of grounding (that is, forcing zero onto) selected reference wires. 

 
Figure 8. Switch arrangement for the instantaneous search of the 1(1),0(2),1(3),0(4) string in the 
superposition. The reference wires of the 1(1)-, 0(2)-, 1(3)-, and 0(4)-bit values are kept at their 
reference sources while the inverse bit values are grounded. If that string is not in the superposition, 
the superposition signal output S(t) will become zero. 

It is important to note that, even though this measurement looks similar to quantum 
measurements, it is very different from quantum measurements. Quantum measurements are statistical, 
which means that they contain errors, and furthermore they also require an exponential complexity when 
the task is to measure a string in an exponentially large superposition. For example, in a photonic 
quantum system with M qubits, the Universe consists of the superposition of 2M different strings. If 
in this uniform (flat) superposition, we want to detect a single string with acceptable error 
probability, the number P of available photons in the system must satisfy: 

2MP M>>  (6) 

Figure 7. INBL generic hardware scheme with two-state switches in the reference wires to provide the
opportunity of grounding (that is, forcing zero onto) selected reference wires.

Appl. Sci. 2019, 9, x 7 of 12 

Therefore, grounding the inverse reference wires of a string and observing the remaining signal 
of the superposition represents the quantum-type measurement in instantaneous noise-based logic. 
Note, there are other types of measurements, too, but they are of statistical nature, while grounding 
the reference wires yields a deterministic measuremen, provided the instantaneous amplitude of the 
original superposition is non-zero at that time, that is, during the clock-period of the measurement.  

 
Figure 7. INBL generic hardware scheme with two-state switches in the reference wires to provide 
the opportunity of grounding (that is, forcing zero onto) selected reference wires. 

 
Figure 8. Switch arrangement for the instantaneous search of the 1(1),0(2),1(3),0(4) string in the 
superposition. The reference wires of the 1(1)-, 0(2)-, 1(3)-, and 0(4)-bit values are kept at their 
reference sources while the inverse bit values are grounded. If that string is not in the superposition, 
the superposition signal output S(t) will become zero. 

It is important to note that, even though this measurement looks similar to quantum 
measurements, it is very different from quantum measurements. Quantum measurements are statistical, 
which means that they contain errors, and furthermore they also require an exponential complexity when 
the task is to measure a string in an exponentially large superposition. For example, in a photonic 
quantum system with M qubits, the Universe consists of the superposition of 2M different strings. If 
in this uniform (flat) superposition, we want to detect a single string with acceptable error 
probability, the number P of available photons in the system must satisfy: 

2MP M>>  (6) 

Figure 8. Switch arrangement for the instantaneous search of the 1(1),0(2),1(3),0(4) string in the
superposition. The reference wires of the 1(1)-, 0(2)-, 1(3)-, and 0(4)-bit values are kept at their reference
sources while the inverse bit values are grounded. If that string is not in the superposition, the
superposition signal output S(t) will become zero.

Therefore, grounding the inverse reference wires of a string and observing the remaining signal of
the superposition represents the quantum-type measurement in instantaneous noise-based logic. Note,
there are other types of measurements, too, but they are of statistical nature, while grounding the
reference wires yields a deterministic measuremen, provided the instantaneous amplitude of the original
superposition is non-zero at that time, that is, during the clock-period of the measurement.

It is important to note that, even though this measurement looks similar to quantum measurements,
it is very different from quantum measurements. Quantum measurements are statistical, which means that
they contain errors, and furthermore they also require an exponential complexity when the task is to
measure a string in an exponentially large superposition. For example, in a photonic quantum system
with M qubits, the Universe consists of the superposition of 2M different strings. If in this uniform (flat)
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superposition, we want to detect a single string with acceptable error probability, the number P of
available photons in the system must satisfy:

P >> M2M (6)

implying an exponential time complexity in the measurement system of filters/beamsplitters and coincidence
detectors with finite time-resolution. On the other hand, in INBL, the same measurement takes just a
single time step.

2.2. Deterministic Measurement and Evaluation of Entangled States and Their Superposition in INBL

Suppose Alice sets up a two-noise-bit system (M = 2) with a superposition signal S(t) containing
entanglement (similar to the Einstein–Rosen–Podolsky [1] problem’s superposition and the related
Bell states):

S(t) = R10(t)R21 + R11(t)R20(t). (7)

This 0(1),1(2) + 1(1),0(2) superposition is unknown by Bob except in the conditions that it consists of
the sum of any of the possible Ri j(t)Rpq(t) two-bit strings i, p ∈ {1, 2}; j, q ∈ {0, 1}, with the restriction that
a given value of a given bit can exist at most in a single string. For example, alternative superpositions
could be 0(1),0(2) + 1(1),1(2), that is, R10(t)R20(t) + R11(t)R21(t); or single strings such as 0(1),1(2),
that is, R10(t)R21(t); 1(1),0(2), that is, R11(t)R20(t); 0(1),0(2), that is, R10(t)R20(t); or 1(1),1(2), that is,
R11(t)R21(t).

Bob’s job is to measure S(t) and decide which is the actual superposition from these different
possibilities. To identify strings, statistical methods exist, e.g., [9,11,12,14] and some of them, like
the time-shifted RTW scheme [9] and the Stacho [11] method, require only polynomial computation
complexity versus the number of noise-bits. However, these methods used on superposition would
require exponential complexity with expanding M (except when the job is to identify a single string and
the rest of the superposition is known [14]).

Here we show that, by utilizing operations on the reference wires, the measurement and analysis
can be done in a fast way, which is deterministic, with polynomial complexity. The procedure takes
place during a clock time t when the superposition signal amplitude is non-zero, that is, S(t) , 0:

(i) Bob first checks the existence of the reference signal R10(t) in the superposition S(t) , 0
by grounding (forcing zero on) the reference wire of the inverse bit value of R10(t), that is, forcing
R11(t) = 0, and then checking if the resulting superposition signal S2(t) is zero. In the above example,
see Equation (7), the superposition gets reduced to:

S2(t) = R10(t)R21(t) (8)

which means S2(t) , 0.
In alternative cases, when the grounding causes S2(t) = 0, Bob jumps to step (iii) below. In the

present situation, S2(t) , 0 (see Equations (7) and (8)), Bob needs to evaluate which value of the second
bit is entangled with the 0 value of the first bit. This string can be evaluated in various known statistical
ways, e.g., [9,11,14] but here we again propose a deterministic tool by utilizing the reference wires:

(ii) While still being in the same clock period t and keeping R11(t) = 0, Bob also grounds the
0 value of the second bit, R20(t) = 0, and gets the superposition S3(t). If S3(t) = 0, then R20(t) is
the entangled bit signal. If S3(t) , 0, then R21(t) is the bit value in question, which is the case in the
present example.

Note, Bob can proceed in an alternative way: He grounds the reference R21(t), R21(t) = 0,
while keeping the grounding R11(t) = 0. If S3(t) = 0, then R21(t) represents the entangled bit value.

(iii) Now, Bob repeats the above procedures (i–ii) with swapped bit values. He first checks the
existence of the reference signal R11(t) in the superposition by grounding the reference wire of the
inverse bit value (forcing R10(t) = 0). If the reference signal R11(t) is not in the original superposition
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(Equation (7)), then S2(t) = 0 and Bob has completed the evaluation. Otherwise, he proceeds with the
swapped bit values as described in the above procedure (i–ii).

2.3. Essential Differences between Measuring Entanglement in INBL and Quantum Systems

The above measurement schemes can be expanded and generalized for combined superpositions
that entangle different superpositions into a jointly entangled one; see the search algorithms presented
in Section 3. The particular differences from measurement of quantum entanglement are the deterministic
nature of the INBL schemes in a similar fashion as it is described above in Section 2.1.

In the case of the quantum measurement of the entangled bit-1 in the superposition described by
Equation (7), the measurement would detect the 0 and 1 values of bit-1 with 0.5 probability. On the
other hand, in INBL we choose which value of bit-1 we want to check, the 0 or the 1 value. This is a
major difference because, in an exponentially large superposition (see Section 3), the quantum scheme
would require an exponentially large number of measurements in the case of a uniform distribution
such as the one in Equation (7). This is the reason that Grover’s quantum search algorithm transforms
the originally uniform distribution to a new superposition where the amplitude of the searched term
is enhanced. In this way, a minor N0.5 speedup is reached but that still keeps an exponential time
requirement on an exponential superposition. Section 3 shows measurements that offer exponential
speedup with instantaneous noise-based logic.

3. The Two Search Algorithms

The two search algorithms presented below are based on the application and generalization of the
measurements described in Sections 2.1 and 2.2, respectively.

3.1. Search for the Existence of a String or String-Fragment in an Unknown, Unsorted Superposition

Here, we again suppose that in the M-bit INBL system, the unknown and unsorted superposition
consists of an arbitrary sum of M-long product-strings. This method is the generalization of the scheme
described in Section 2.1. It is exponentially, 2M

M , faster than known classical alternatives, and 2M

M1.5 faster
than Grover’s for the problems in this section. We note that with a suitably complex oracle, Grover’s
algorithm can be applied to other problems outside the scope of the method presented here.

Method:
The whole search process is carried out during a clock period t when the original superposition is

non-zero, S(t) , 0.
(I) Ground the reference wires of the inverse bit values of the search term;
(II) Check if the remaining superposition is non-zero. If it is nonzero, the search string or string

fractions exist in the superposition.
Example-1, full string search: Suppose that M = 4 and the job is to find out if the 1(1), 0(2), 1(3), 0(4)

string (represented by the R11(t)R20(t)R31(t)R40(t) product) is an element of the otherwise unknown
superposition S(t). Let us assume that the superposition is

S(t) = R11(t)R20(t)R31(t)R40(t) + R10(t)R20(t)R31(t)R40(t) + R10(t)R21(t)R31(t)R40(t). (9)

The inverse of the 1(1), 0(2), 1(3), 0(4) string is 0(1), 1(2), 0(3), 1(4); therefore, we ground the
corresponding reference wires, see Figure 8:

R10(t) = 0; R21(t) = 0; R30(t) = 0; R41(t) = 0. (10)

In any of the other possible M-long strings in the M-bit system, at least one of the reference
noises listed in Equation (10) will be present. That means that only the search string is non-zero,
and if the remaining superposition is non-zero, such as in this case, the search string is present in
the superposition.
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The operation requires M = 4 switching operations; thus, the time complexity is O(M) = 4.
The maximum size of the superposition is 2M = 16. The speedup is 2M/M = 4.

Example-2, string fragment search with single string result: Search for the 0(1), 0(2), AND 0(4) string
fragments in the superposition. The inverse bit values are 1(1), 1(2), 1(4); therefore we ground the
corresponding reference wires:

R11(t) = 0; R21(t) = 0; R41(t) = 0 (11)

The superposition in Equation (9) will be non-zero (because of the second term) indicating the
simultaneous existence of the searched string fragments within at least one of the strings.

Example-3, string fragment search with superposition result: Search for the same, 0(1), 0(2), AND 0(4),
string fragments in this modified superposition:

S′(t) = R11(t)R20(t)R31(t)R40(t) + R10(t)R20(t)R31(t)R40(t)+
+R10(t)R20(t)R30(t)R40(t) + R10(t)R21(t)R31(t)R40(t)

(12)

We do the same reference wire grounding as in Equation (11) above, this time of bit values
1(1), 1(2), 1(4). In this case, both the second and the third terms in Equation (12) will be non-zero and
the remaining superposition will be:

S′2(t) = R10(t)R20(t)R31(t)R40(t) + R10(t)R20(t)R30(t)R40(t). (13)

In similar cases, depending of the type of reference noises, there may be clock periods when
the absolute values of the remaining product strings form S′2(t) = 0. In such cases, this method
becomes statistical. With (asymmetric) random-telegraph waves, the worst-case error probability
scales as ε ∝ 2−τ where τ is the number of observational clock steps, because the probability that two
independent RTW’s have the same absolute value, and opposite signs, over τ steps is 2−τ (see string
verification in [12]). As soon as the S′2(t) signal becomes non-zero, it is proven that the searched string
fragments are present, and the error probability of this decision is zero.

3.2. Phonebook Search

Suppose we have a phonebook with n names of N-bit resolution and s different phone numbers
with S-bit resolution. If inverse lookup is not needed, the same phone number may belong to several
names, thus s ≤ n. Note, n = 2N but S is arbitrary with the obvious restriction S ≥ log2 s.

In this system, there are two related and independent INBL reference systems with N and S
noise-bits, respectively, that is, 2N + 2S independent noise sources with zero mean. The product
strings of the name database are entangled with the product strings of the phone number database.
The phonebook superposition is then:

SPB(t) =
n∑
1

Ni(t)Si(t) =
n∑
1

Bi(t) (14)

where Ni(t) is the i-th name string and Si(t) is the corresponding entangled phone number component;
Ni(t) , N j(t) for i , j but Si(t) and Si(t) may be identical for i , j (when inverse lookup is not needed).
The phonebook string Bi(t) is the product of the corresponding name and phone number strings:

Bi(t) = Ni(t)Si(t). (15)

After these preparations, the phonebook search algorithm is obvious and it is equivalent with
Example 2, the string fragment search with single string result, shown in Section 3.1.
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â Search for the existence of the string-fragment that is identical to Ni(t), that is, ground the reference
wires of the inverse bit values of Ni(t). Then the SPB(t) original superposition wave collapses into
the single string, the Bi(t) = Ni(t)Si(t) product. This operation requires N switching operations
(N groundings).

â Then, while keeping those N references wires grounded, ground one by one the 2S reference wires
of the phone number database and record which bit value groundings result in Bi(t) = 0. These
bit values constitute the phone number string Si(t).

The time and hardware complexity of this search algorithm is O
[
log2 n + 2S

]
in general, where n

is the size of the database and S is the bit resolution of the phone numbers and it is O
[
3 log2 n

]
when

S = log2 s.
In the case of one-to-one correspondence between the names and phone numbers (n = s),

the algorithm obviously offers inverse phonebook search, too. To do that search, the name and phone
number strings in the above description must be swapped.

4. Discussion and Conclusions

Classical stochasticity via the instantaneous noise-based logic schemes may offer more than
quantum computers because of the lack of the fundamental disadvantages of quantum systems [19]
which are the decoherence, the statistical nature of quantum measurements, and the fact that
measurements destroy the state. Examples of this superiority are shown in the present paper
where, once the search has begun, the results come out deterministically without statistical errors,
resulting in exponential speedup compared to Grover’s quantum search algorithm.

To begin the search, a single clock period with non-zero superposition amplitude is required.
The whole search is done during this single period. Thus, a new research problem has emerged: Finding
optimal reference signal systems where the superposition signals are zero with very low probability
and, if they take the zero value, this value quickly changes to non-zero during the subsequent clock
periods. Tested superposition amplitudes spend very short times at zero (see Figure 6) however a
careful study of this issue is warranted. Zero superposition amplitude may introduce a random waiting
time (typically with exponentially decaying probability to remain at zero, see [12]) before the search
can begin; however, that does not change the fact that the search result is error-free and deterministic.

The present paper is another demonstration that, despite the resemblance between instantaneous
noise-based logic and quantum computing, the NBL schemes and their modes of operations are
substantially different even if the achieved goals can be the same. While explorations of NBL are still
taking place, it is already clear that the robustness and controllability of classical physical systems and
information may sometimes offer competitive advantages over quantum informatics. The results in
this paper show examples where NBL schemes not only outperform a known corresponding quantum
algorithm, but can also achieve the goal with fewer resources. It is important to emphasize that the
schemes shown in this paper are not quantum-inspired and they utilize classical physical stochasticity.
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