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Abstract: Using satellite remote sensing has become a mainstream approach for extracting crop
spatial distribution. Making edges finer is a challenge, while simultaneously extracting crop spatial
distribution information from high-resolution remote sensing images using a convolutional neural
network (CNN). Based on the characteristics of the crop area in the Gaofen 2 (GF-2) images, this
paper proposes an improved CNN to extract fine crop areas. The CNN comprises a feature extractor
and a classifier. The feature extractor employs a spectral feature extraction unit to generate spectral
features, and five coding-decoding-pair units to generate five level features. A linear model is used
to fuse features of different levels, and the fusion results are up-sampled to obtain a feature map
consistent with the structure of the input image. This feature map is used by the classifier to perform
pixel-by-pixel classification. In this study, the SegNet and RefineNet models and 21 GF-2 images of
Feicheng County, Shandong Province, China, were chosen for comparison experiment. Our approach
had an accuracy of 93.26%, which is higher than those of the existing SegNet (78.12%) and RefineNet
(86.54%) models. This demonstrates the superiority of the proposed method in extracting crop spatial
distribution information from GF-2 remote sensing images.

Keywords: convolutional neural network; high-resolution remote sensing imagery; Gaofen 2 imagery;
crops; winter wheat; spatial distribution information; Feicheng county

1. Introduction

The availability of timely and accurate crop spatial distribution information for large areas is very
important for scientific research and agricultural management [1,2]. Traditionally, this information has
been obtained through large-scale field surveys. Although this method yields high-precision results, it
is time-consuming and labor-intensive [3,4]. Remote sensing technology quickly provides land surface
information covering large areas. The pixel-by-pixel classification of remote sensing images is an
effective approach to obtain crop spatial distribution information for large areas [5,6]. The technique
for extraction of more effective pixel features from remote sensing images is key for improving the
accuracy of pixel-based classification [7–9].

Statistically significant spectral and textural features have previously aided in remote sensing
image classification problems [10–12]. A remote sensing index is a formulated spectral feature obtained
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from mathematical operations on spectral bands, reflecting the information in pixels. The purpose of a
remote sensing index is to highlight the information of certain land use types in the image. Frequently
employed remote sensing indices include vegetation [13–23], water [24], building [25], and ecology [26].
Better commonly utilized indices include environmental vegetation [13,14], ratio vegetation [15],
difference vegetation [16,19], greenness vegetation [17], perpendicular vegetation [18,23], soil adjusted
vegetation [20], and normalized difference vegetation [21,22].

The operation rules of the formulated spectral feature are relatively simple and reflect simple
statistical information. Consequently, researchers have developed a series of methods for automatically
extracting spectral features using computers, including supervised classification methods such as
the parallelepiped [27], the minimum distance [27], the Markov distance [28], and the maximum
likelihood [29], and non-supervised classification methods, such as the k-means [30].

Textural features describe local patterns and rules on their arrangement in an image, that better
describe the spatial correlation of adjacent pixels. Techniques for the extraction of textural information
include the Gabor [31], the Gray-Level Co-Occurrence Matrix [32], the Markov random field [33],
and the Gibbs random field [34] models, and wavelet transforms [35,36]. The spectral and the
textural features are often combined in practical classification because each provides limited image
feature information.

The use of high-resolution remote sensing imagery significantly improves the precision and spatial
resolution of the extraction results. As traditional feature extraction methods have difficulty extracting
effective pixel features from high-resolution remote sensing imagery, researchers have begun using
machine learning technology, such as neural networks (NN) [37,38] and support vector machines
(SVM) to extract effective pixel features [39,40]. As both NN and SVM are shallow-learning algorithms,
they also have difficulty extracting high-level semantic features.

Compared with NN and SVM, the convolutional neural network (CNN) has the ability to extract
high-level semantic features. Standard CNNs work in an “image-label” manner, and they output the
classes of every image. AlexNet [41], GoogLeNet [42], the Visual Geometry Group (VGG) Network [43],
and ResNet [44] are typical standard CNNs. All these models exhibit state-of-the-art image classification
performance [45,46]. A “per-pixel-label” model, named the Fully Convolutional Network (FCN),
was proposed in 2015 [47]. The FCN utilizes convolutional layers to extract features and employs
deconvolutional layers to decode the feature map and restore it to the size of the input image. After FCN
was developed, researchers designed a series of convolution-based models to perform pixel-by-pixel
classification, such as SegNet [48], DeepLab [49], UNet [50], and RefineNet [51]. SegNet and UNet are
clearly structured and are easy to understand. DeepLab employs “Atrous Convolution” to process
more detailed images. RefineNet employs a structure termed multi-path refinement to combine
coarse high-level features with fine low-level features in order to produce high-resolution semantic
segmentation images.

Per-pixel-label models based on CNN have yielded remarkable results in the field of remote
sensing image segmentation, and conditional random fields have often been used to further refine
the segmentation results [52–55]. Researchers have also established a number of new per-pixel-label
models based on CNN, such as the Multi-Scale FCN [56], patch-based CNN [57], Two-Branch CNN [58],
CloudNet [59], DCNNGF [60], Multilayer Prediction-CNN [61], patch-wise CNN [62], Cascade
CNN [63], and ResFCN [64], to adapt the characteristics of remote sensing images. Convolution-based
per-pixel-label models have also enabled the effective extraction of agricultural information from remote
sensing images including the extraction of crop plant information [65,66], land-use [67], roads [68],
and water [69]. These models have also served in the targeted detection of vehicles [70], ships [56],
buildings [71], trees [72,73], weeds [74], and diseases [75].

The remote sensing index method and the SVM method focus on extracting features from the
spectral information of pixels themselves, but cannot express the spatial relationship between pixels.
Texture features have the ability to express spatial relationships between pixels that are statistically
significant. The advantage of CNN is that it can extract the spatial correlation between pixels; however,
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the features showing this spatial correlation are obtained through training, and the extraction quality
of the features greatly varies by sample. In addition, differences exist between the feature values of the
inner pixel and those of the edge pixel for the same object; the edges obtained using CNN are often
coarse. The fusion of low-level fine features and high-level rough features to form new features is
effective technology for refining these edges.

In crop planting areas in Gaofen 2 (GF-2) images, a pixel covers areas containing dozens of crops,
pixel contents are often similar, and image texture is relatively smooth. Based on these characteristics,
this paper proposes an improved CNN structure, which we call the crop extraction model (CEM). We
used this CEM to extract crop spatial distribution information from GF-2 remote sensing imagery and
compared the results with those from the comparison models.

2. Study Area and Data

2.1. Study Area

Feicheng county is located in central Shandong Province, China (35◦53′–36◦19′ N; 116◦28′–116◦59′

E; Figure 1). The plain is the most important terrain of the county, accounting for 44.9% of the total area,
followed by mountain, accounting for 33.6%, then hilly area, accounting for 19.9%, lowland regions
only accounting for 1.6%. The main food crops are winter wheat and corn. Because the county’s
geographical and agricultural situation are representative of China, we selected it as our study area to
perform the comparison experiments.
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Figure 1. The spatial location of Feicheng county and remote sensing images of the study area.

2.2. Remote Sensing Imagery

We used 21 GF-2 images covering Feicheng County, including six obtained on 20 February 2017,
seven on 8 December 2017, three on 15 February 2018, and five on 16 March 2018. Each GF-2 image
comprised a multispectral image and a panchromatic image. Each GF-2 image is divided into a
multispectral and panchromatic image. The former is composed of four spectral bands (blue, green,
red, and near-infrared), and the spatial resolution of each multispectral image is 4 m, whereas that of
the panchromatic image is 1 m.

We designed a program using Python to perform geometric correction. The control points used
during this stage were obtained from worldview-4 images that had undergone correction and which
had a spatial resolution of 0.3 m. We used the Environment for Visualizing Images (ENVI) software
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(Harris Geospatial Solutions, Broomfield, CO, USA) to perform radiometric calibration, atmospheric
correction, and image fusion. The parameter used in radiometric calibration stage is published in
CRESDA [76]. The Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model
in ENVI was used to conduct atmospheric correction with the Interactive Data Language, which can
co-optation better with ENVI. Finally, the pan-sharpening method was used to fuse the multispectral
and the panchromatic images. After preprocessing, the spatial resolution of the fused images was 1 m.
The fused images were comprised of four bands, namely the blue, green, red, and near-infrared bands.

2.3. Establishment of Image-Label Dataset

There are eight main land cover types in the images described in Section 2.2: developed land, bare
fields, farmland, agricultural buildings, roads, water bodies, winter wheat, and woodland. Of these,
developed land, bare fields, farmland, agricultural buildings, roads, and water bodies can be directly
distinguished by visual interpretation in the ENVI software. In order to accurately distinguish between
winter wheat and woodland, 391 sample points were located on the images, as shown in Figure 2.
Of these, 135 sample points were from woodland areas and 256 were from winter wheat areas. As can
be seen in Figure 2, the texture of the woodland area is coarse, the color changes greatly, and the shape
is irregular. The texture of the winter wheat area is fine, relatively smooth, and the shape is generally
regular. Awareness of these characteristics can help improve the accuracy of visual interpretation.
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Figure 2. The distribution of sampling points acquired via ground investigation.

In total, 537 non-overlapping sub-images were selected from the fused GF-2 remote sensing
images described in Section 2.2 to establish the image-label dataset to train the CEM model and test
it. The size of each image was 960 × 720 pixels. The dataset covered all land cover types in Feicheng
county during the period corresponding to the GF-2 remote sensing images we selected.

We created a label file for each image to record its category number. Each pixel was assigned a
code value in the label file. Codes 1–8 were used to represent each land type in the label files. The task
of labeling each pixel was performed using the visual interpretation function of ENVI. Figure 3 shows
an image and its corresponding label.
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3. Methodology

3.1. Structure of the Proposed CEM

The CEM model consists of a feature extractor and classifier; the feature extractor comprises an
encoder and decoder (Figure 4), the fused GF-2 image and the corresponding label file were used as
input. The band order of the image is red, blue, green, and near-infrared.
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Decoder; E: Encoder.

The encoder is composed of a spectral feature extraction unit and five semantic feature extraction
units. In Figure 4, E0 represents the spectral feature extraction unit, and E1, E2, E3, E4, and E5
represent semantic feature extraction units, respectively. The word semantic means “similar category
information”; in other words, the feature extraction unit extracts similar feature values from pixels
belonging to the same category.

The spectral feature extraction unit uses 16 1 × 1-type convolution kernels, including a fixed
convolution kernel and 15 ordinary convolution kernels, capable of extracting 16 features from the
spectral information of a pixel. The value of the fixed convolution kernel is represented by the vector
[0, 0, 0, x], and only the last component is adjusted during the training process. The purpose of the
design is to fully exploit the sensitivity of the near-infrared band to vegetation. The image row and
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the column structure are unaltered by the spectral feature extraction unit. Therefore, we used this
structure as the basic feature for the fusion of each feature level.

Each semantic feature extraction unit includes three feature extraction layers and one pooling
layer. Each feature extraction layer has a convolutional layer, a batch normalization layer, and an
activation layer for extracting semantic features. The convolutional layers are comprised of 3 × 3-type
convolution kernels. Table 1 presents the number of convolution kernels for each convolutional layer.
The activation layer uses the rectified linear unit function as the activation function.

Table 1. Number of convolution kernels for each convolutional layer.

Layer Number of Kernels

1,2,3 64
4,5,6, 128
7,8,9 256

10,11,12,13,14,15 512

The pooling layer was used to optimize the features, but because the ordinary 2 × 2 pooling kernel
reduces the resolution of the image, we adopted a new pooling strategy. As there are a greater number
of pixels for the same land use type in the early feature extraction stages, we used a 2 × 2 type pooling
kernel in the 1st, 2nd, and 3rd feature extraction units. The use of the 2 × 2 type pooling kernel potentially
accelerates feature aggregation. In the later stages of feature extraction, the resolution differs significantly
from that of the original image, so we adjusted the step size to 1 in the 4th and 5th units. In the 4th and
5th feature extraction units, the size of the pooling kernel is still 2 × 2, but when the size of the feature
block participating in the pooling operation is smaller than the size of the pooling kernel, the size of the
pooling kernel is adjusted to match the feature block; this ensures that valid pooling values are obtained.
Therefore, the 4th and 5th feature extraction units do not change the size of the feature map.

The decoder is also composed of five units, as shown by D1, D2, D3, D4, and D5 in Figure 5.
The decoder up-samples the feature map to gradually restore the feature image to the size of the
original image. The decoder generates feature vectors with the same structure for each pixel.
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The D5 and D4 units are composed of convolution layers. The convolution layer, which works
in the ‘same’ mode in Tensonflow, is used to adjust feature values without changing the size of the
feature map. The D5 unit directly uses the output of the E5 unit as input. The input of the D4 unit is
the output of the D5 unit and the output of the E4 unit. The inputs are first fused using Equation (1)
and then adjusted using the convolution layer.

f = a ∗ d5 + b ∗ e4 (1)
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In Equation (1), f denotes the fused feature map, d5 denotes the output of the D5 unit, and
e4 denotes the output of the E4 unit; a and b are fusion coefficients, and the values of a and b are
determined after training.

The convolution layer of D4 adjusts the depth of the fused feature map to 256. The D3 unit
is composed of an up-sampling layer and a convolutional layer. The up-sampling layer is used to
up-sample the output of the D4 unit to match the size of output of the E3 unit; Equation (1) is then
used for fusion, but the fusion coefficients are different from those used in D4. The fused features are
also adjusted through the convolutional layer. The structures of the D2 and D1 units are the same as
that of the D3 unit, and the same working mode is adopted. Table 2 presents the depth of the feature
map generated by each decoder unit.

Table 2. Depth of feature map generated by each decoder unit.

Decoder Unit Depth of Feature Map

D5 512
D4 512
D3 256
D2 128
D1 64

Finally, the semantic features generated by the D1 unit are concatenated with the spectral features
outputted by E0 to form a feature map.

The CEM model uses the SoftMax model as a classifier. The SoftMax model exploits the fused feature
map generated by the feature extractor to produce the category probability vector for each pixel, and then
uses the category corresponding to the maximum value of the probability vector as the category of the pixel.

3.2. Training the CEM Model

We employed cross entropy [48–51,77] to define the loss function of the CEM model. Equation (2)
illustrates the definition of the cross entropy of a sample:

H(p, q) = −
8∑

i=1

qi log(pi) (2)

where p denotes the category probability distribution predicted by the CEM model, q denotes the
actual distribution, and i presents the index of an element in a category probability distribution.

On this basis, we defined the loss function of the CEM model as Equation (3):

loss = −
1
ts

∑
ts

8∑
i=1

qi log(pi) (3)

where ts is the number of samples used to train the CEM model.
The CEM model was trained in an end-to-end manner, using six steps, as follows:

1. The parameters of the CEM model were initialized.
2. The selected image-label pairs, which act as the training dataset, were input into the CEM model.
3. Forward propagation of sample images was performed.
4. Loss was calculated and then back-propagation to the CEM model was performed.
5. The stochastic gradient descent was employed to update the network parameters.
6. Re-iteration of steps 3–5 was done until the loss was below the predetermined threshold values.
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4. Experimental Results and Evaluation

4.1. Experimental Setup

The Python 3.6 and the TensorFlow framework were employed on a Linux Ubuntu 16.04 operating
system to implement the proposed CEM model. A workstation equipped with a 12 GB NVIDIA
Graphics card was used to perform the comparison experiments.

SegNet [48] and RefineNet [51] are state-of-the-art classic pixel-by-pixel semantic image
segmentation models for camera images. As the working principles of SegNet and RefineNet
are similar to that of the CEM model, we employed these as comparison models to better reflect the
superiority of feature extraction and classification of our model.

Since the main crop in Feicheng County during winter is winter wheat, we selected the winter
wheat area as the target for experiments.

Total 375 sub-images were selected from the 537 images described in Section 2.3 to compose the
training data set, 106 as validation data set, and the remaining 56 as test data set. The training data set,
validation set, and test set include all land use types, respectively. Every image in the training data set
was processed with color adjustment, horizontal flip, and vertical flip amongst others, to increase the
number and diversity of the samples. The color adjustment factors included brightness, saturation,
hue, and contrast. After this preprocessing, the final training dataset comprised 4125 images. Table 3
shows the number of samples used in the experiment.

Table 3. Number of samples used in the experiment.

Category Number of Samples in
Training Data Set (Million)

Number of Samples in
Validation Data Set (Million)

Number of Samples in
Test Data Set (Million)

Winter wheat 710 18 9
Agricultural buildings 2 0.1 0.07

Woodland 256 6 3
Developed land 542 13 7

Roads 23 0.6 0.3
Water bodies 25 0.7 0.3

Farmland 687 17 9
Bare fields 602 15 8

4.2. Results of Comparison Experiments

Figure 5 presents the CEM loss rate curve for training. As can be seen from the figure, as the
number of iterations increases, the loss value decreases and it eventually tends to stabilize. The loss
value decreases rapidly during the first 5000 iterations. From iteration 5000 to 15,000, the loss value
fluctuates. After 15,000 iterations, the loss value tends to become stable. The initial learning rate
set in the training phase is 0.0001, and the learning rate is reduced to half the existing value every
5000 iterations. It can be seen that as the learning rate decreases, the training loss value also slightly
decreases within a certain range. This proves that the learning rate gradient has a beneficial effect on
the training network.

In the experiment of this study, it took 37 h to complete the training and 0.02 s to test an image.
Figure 6 presents the extraction results of our model and those of two other models used for

comparison with ours. Considering that the goal of this study was to extract crop planting areas, we
use Figure 7 to show the results in which the other seven land use types are combined. We use code
9 to present the non-winter wheat. In Figures 6 and 7, a total of 10 sub-images and their extraction
results are shown. When selecting these 10 images, we ensured that each image contains winter wheat
planting areas and that the other seven land use types appear at least once in an image. This is to
enable us to visually compare the algorithms with these results. The first five images are dated 20
February 2017 and the other five are dated 16 March 2018.



Appl. Sci. 2019, 9, 2917 9 of 19
Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 20 

 
Figure 6. Comparison of segmentation results for Gaofen 2 imagery: (a) original images, (b) ground 
truth, (c) SegNet results, (d) RefineNet results, and (e) CEM results. 
Figure 6. Comparison of segmentation results for Gaofen 2 imagery: (a) original images, (b) ground
truth, (c) SegNet results, (d) RefineNet results, and (e) CEM results.



Appl. Sci. 2019, 9, 2917 10 of 19
Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 20 

 
Figure 7. Comparison of segmentation results for Gaofen 2 imagery: (a) original images, (b) ground 
truth, (c) SegNet results, (d) RefineNet results, and (e) CEM results. 
Figure 7. Comparison of segmentation results for Gaofen 2 imagery: (a) original images, (b) ground
truth, (c) SegNet results, (d) RefineNet results, and (e) CEM results.



Appl. Sci. 2019, 9, 2917 11 of 19

Overall, our algorithm shows better performance with the 10 images than that of the other
algorithms. Our algorithm can extract winter wheat planting areas of different scales and shapes, and
the extracted crop areas are complete and continuous under complex image environments (Figures 6
and 7). In particular, it can be seen from Figures 6 and 7 that in the region where a larger amount of
winter wheat grows, the shape extracted by the proposed algorithm agrees well with the actual region;
in contrast, other algorithms have more errors at the edges (red areas in the three columns c, d, e).
Because our algorithm uses a combination of semantic and spectral features, there is almost no speckle
and noise in the extraction results for the crop planting area, and the edge area extraction improvement
over other algorithms is also notable. However, in the edge regions, some errors have still appeared,
implying that it is necessary to introduce more information to further improve the extraction results.

Tables 4–6 present confusion matrices for the segmentation results from the three models. Each
row of the confusion matrix represents the proportion of the actual category, while each column
represents the proportion of the predicted category. As can be seen from Tables 4–6, the proposed
CEM model achieved better extraction results. On average, only 1.76% of “winter wheat” pixels were
wrongly classified as “non-winter wheat”, and 0.89% of “non-winter wheat” pixels were wrongly
classified as “winter wheat”. Compared with the RefineNet model, this is a reduction of 0.3% and 2.36%,
respectively. Compared with the SegNet model, this is a reduction by 2.33% and 2.57%, respectively.

Table 4. Confusion matrix for the CEM models.

Predicted Winter
Wheat

Agricultural
Buildings Woodland Developed

Land Roads Water
Bodies Farmland Bare

Fields

Winter wheat 23.15% 0.00% 0.16% 0.03% 0.01% 0.08% 0.97% 0.51%
Agricultural

buildings 0.00% 0.08% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

Woodland 0.05% 0.00% 8.87% 0.03% 0.01% 0.01% 0.03% 0.03%
Developed land 0.02% 0.01% 0.00% 17.37% 0.02% 0.00% 0.53% 0.41%

Roads 0.02% 0.00% 0.00% 0.04% 0.72% 0.00% 0.02% 0.03%
Water bodies 0.09% 0.00% 0.01% 0.00% 0.00% 0.83% 0.01% 0.00%

Farmland 0.38% 0.00% 0.15% 0.38% 0.02% 0.00% 22.18% 0.90%
Bare fields 0.33% 0.00% 0.36% 0.19% 0.02% 0.00% 0.87% 20.06%

Table 5. Confusion matrix for the Segnet models.

Predicted Winter
Wheat

Agricultural
Buildings Woodland Developed

Land Roads Water
Bodies Farmland Bare

Fields

Winter wheat 20.82% 0.00% 1.13% 1.80% 0.06% 0.06% 0.77% 0.27%
Agricultural

buildings 0.01% 0.05% 0.00% 0.01% 0.01% 0.00% 0.00% 0.01%

Woodland 0.85% 0.00% 6.25% 0.00% 0.00% 0.01% 0.91% 1.01%
Developed land 0.73% 0.04% 0.00% 14.47% 0.11% 0.00% 1.15% 1.86%

Roads 0.03% 0.00% 0.00% 0.01% 0.69% 0.00% 0.09% 0.01%
Water bodies 0.09% 0.00% 0.05% 0.03% 0.00% 0.67% 0.08% 0.02%

Farmland 0.56% 0.00% 0.01% 0.01% 0.12% 0.00% 18.34% 4.97%
Bare fields 1.19% 0.00% 0.00% 0.02% 0.02% 0.00% 3.77% 16.83%

Table 6. Confusion matrix for the RefineNet models.

Predicted Winter
Wheat

Agricultural
Buildings Woodland Developed

Land Roads Water
Bodies Farmland Bare

Fields

Winter wheat 22.95% 0.00% 0.68% 0.01% 0.06% 0.08% 0.84% 0.29%
Agricultural

buildings 0.00% 0.07% 0.00% 0.01% 0.01% 0.00% 0.00% 0.00%

Woodland 0.43% 0.00% 6.59% 0.05% 0.00% 0.00% 0.07% 1.89%
Developed land 0.00% 0.03% 0.31% 16.76% 0.02% 0.00% 1.03% 0.21%

Roads 0.01% 0.01% 0.00% 0.12% 0.61% 0.00% 0.02% 0.06%
Water bodies 0.21% 0.00% 0.04% 0.00% 0.00% 0.65% 0.00% 0.04%

Farmland 2.25% 0.01% 0.03% 0.01% 0.12% 0.00% 19.53% 2.06%
Bare fields 0.35% 0.00% 0.03% 0.39% 0.01% 0.00% 1.67% 19.38%
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In this study, we employed several criteria, including accuracy, precision, recall, and the Kappa
coefficient, to evaluate the performance of the proposed model [52]. Table 7 shows data from the
evaluation criteria of the three models, with the accuracy of the CEM model being 15.14% and 6.72%
above those of SegNet and RefineNet, respectively.

Table 7. Comparison of the performance of the three models.

Index CEM SegNet RefineNet

Accuracy 93.26% 78.12% 86.54%
Precision 91.75% 74.38% 80.87%

Recall 92.01% 76.64% 82.02%
Kappa 91.64% 69.53% 80.54%

5. Discussion

5.1. Tuning of the Parameter Settings of the Proposed CEM

When constructing the structure of the CEM model, we borrowed from the classical RefineNet
model and the structure of the VGG model. The multipath structure of the RefineNet model can
effectively integrate high-and low-level features and improve the feature extraction ability of the
model. We implemented the multipath structure as the basic structure of the CEM model. Considering
the characteristics of GF-2 remote sensing images, we set up a feature extraction unit using three
downscaling and two feature extraction units that do not change scale. This design could ensure that
the CEM model extracts enough features.

When designing the structure of the feature extraction unit, we borrowed the structure of the
VGG model and adopted three convolution layer superposition strategies. The advantage of this
design is it makes it possible to ensure that feature extraction has sufficient receptive domains and can
reduce parameters.

Considering that there are a large number of mixed pixels in the GF-2 images, the use of spectral
features is beneficial to improve classification accuracy. Two convolution kernels were set for each class
to extract spectral features, and a total of 16 convolution kernels were set. Among them, considering
that the infrared band in the GF-2 image is sensitive to vegetation, a fixed convolution kernel was set
to map the infrared band’s ability to respond to vegetation.

The above strategy effectively improved the generalization ability of the model.

5.2. The Advantages of CEM

We first analyzed the characteristics of the crop planting area in the GF-2 images and designed the
structure of the CEM model based on those characteristics. By adopting two convolution kernels and
utilizing the multi-path refinement structure, the network structure of the CEM model is well adapted
to the characteristics of GF-2 images. This explains the higher precision obtained from the CEM model.

The field surveys revealed that in the crop planting area, a GF-2 pixel covers an area containing
about 350–450 winter wheat or rice plants and approximately 180 maize plants. Since the content of
each pixel area showed no significant difference and the texture is relatively smooth, the multi-layer
convolution hardly generated more effective features. It even introduces noise, resulting in poor
segmentation effects, as presented in Tables 3 and 4, and Figures 6 and 7.

Considering the similarity in the structures of SegNet, RefineNet, and CEM, we introduced the
difference between the maximum value of the category probability vector generated by the classifier
and the next maximum value as an indicator to further illustrate the advantages of the CEM model
structure. This indicator was termed category confidence. Figure 8 illustrates the category confidence
distribution for the results of the experiment. The ratios of pixels at a lower confidence level of the
comparison models are greater than those of the CEM model. This demonstrates that the feature value
composition of the CEM model is superior to those of the SegNet and RefineNet models.
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5.3. SegNet versus CEM

The SegNet model extracts high-level semantic features from rich image details through deep
convolution. It demonstrates advantages when extracting objects that cover a large number of pixels.
However, if the number of pixels covered by the object is small, or a pixel contains several target
objects, this structure not only fails to extract detailed features, but may introduce additional noise due
to the expansion of the field of view. This reduces the accuracy of the classification results from the
model. When extracting crop spatial distributions from a GF-2 image, although the number of pixels
occupied by a farmland is large, the difference between pixels remains small because the area covered
by a plant is small, and this obscures the advantages of SegNet.

Contrary to the SegNet model, which extracts 64 high-level semantic features by deepening the
hierarchy, the CEM model extracts 80 features by combining spectral features, high-level semantic
features, and low-level semantic features. Because CEM fully considers the natural features of crops
and the distribution characteristics of farmlands, it is advantageous for identifying pixels at the edges
and corners of crop planting areas.

In summary, there are the following differences between CEM and SegNet model.
(1) The SegNet model transforms the highest-level semantic features into pixel feature vectors by

step-by-step sampling. Therefore, pixel feature vectors only contain abstract semantic information.
The CEM model adopts feature fusion to fuse low-level semantic feature information and high-level
semantic information, so the information contained in feature vectors of pixels is more abundant than
that of SegNet.

(2) The feature vector generated by the SegNet model has only semantic information. The feature
vector generated by the CEM model not only has semantic information, but also statistical information
of the spectral values of the pixels themselves.

(3) Although the pooling method adopted by SegNet has the effect of aggregating feature values,
but each pooling reduces the size of feature map to 1/4 of the original size, which is not conducive to
the generation of pixel feature vectors. The pooling method adopted by CEM not only achieves the
purpose of aggregation of feature values, but also reduces the degree of feature map size reduction,
which can help to obtain feature vectors with good discrimination.

Figure 9 shows a comparison of the results of the two models. The images in Figure 9 are dated
20 February 2017. As can be seen from Figure 9, only a few pixels are misclassified at the corners in
case of the CEM results, while a significantly higher number of pixels are misclassified in the SegNet
results, both at the corners and edges, and even within the planting area. In Regions 1 and 2, SegNet’s
results show more severe jaggedness, and our model has almost no jaggedness. In Regions 3, 4, 5, and
6, SegNet does not make a recognition at all, and our model’s recognition effect is very consistent with
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the actual regions, indicating that our model overcomes the defects of the SegNet model. Further, the
use of only high-level semantic features is an important cause of edge roughness. The use of low-level
semantic features and high-level features through fusion is an important way to improve the edge.
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5.4. RefineNet versus CEM

The RefineNet model also extracts high-level semantic features by deepening the hierarchy.
It employs a multi-path refinement structure to fuse low-and high-level semantic features, compensating
for missing information in down-sampling. The accuracy of its extraction results is therefore significantly
better than that of the SegNet model. However, due to the noise introduced by the deep convolution
structure, the edges of the crop planting area in the extraction result remain coarse.

Compared to camera images, remote sensing images reveal fewer details, but with a higher
number of channels. Therefore, the structure of the CEM induces advantages including the division of
the convolutional layer into five coding units and decoding them separately. The CEM model obtains
sufficient information for classification processing while reducing the depth of the convolutional
network, by using the convolution kernels of 1 × 1 and 3 × 3 together. In addition to extracting different
level semantic features of a pixel, the CEM model also extracts spectral features. These techniques
ensure that the model produces high-precision results.

Figure 10 shows a comparison between the results of the two models. The images in Figure 9
are dated 16 March 2018. As can be seen from Figure 10, only a few pixels are misclassified at the
corners of the CEM results, while the RefineNet results show misclassified pixels at the corners and
edges of planting areas. Although the number of misclassified pixels in the case of RefineNet is
below that for SegNet, it is still significantly higher than that for CEM. In Regions 1, 2, and 4, the
RefineNet model classification has many errors, resulting in rough edges, and in the CEM, results show
areas in more accurate detail. In Regions 3, 5, and 6, the RefineNet results contain more recognition
errors and a considerable amount of winter wheat is not recognized. For the CEM results, the shape
obtained is consistent with the actual shapes of areas. Considering the difference in the fusion of
high-and low-level semantic features, the strategy adopted in this study is more reasonable than that
of RefineNet.
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6. Conclusions

Using satellite remote sensing has become a mainstream approach for extracting crop spatial
distribution, but field edge results are usually rough, resulting in lowered overall accuracy. In this
paper, we proposed a new approach for extracting fine crop spatial distribution information. As can be
seen from the comparison experiment, our approach had an accuracy of 93.26%, which is higher than
those of the existing SegNet (78.12%) and RefineNet (86.54%) models. The structure of the proposed
model can adapt to the characteristics of the crop area in the GF-2 images, which is the key to the
success of our model.

The main contributions of this study are as follows: (1) the convolutional network structure
designed in this study fully considers the proportional relationship between the area occupied by the
target object and that of a pixel in the image. Experiments proved that the proportional relationship and
the network structure affect the accuracy of the extraction results, and provide a reference for designing
other land use type extraction models. (2) The model uses both 1 × 1 type and 3 × 3 type convolution
kernels to extract pixel features. This reveals the semantic features of the pixels and extracts the spectral
features of the pixels. Thus, the advantage of the numerous channels in a remote sensing image fully
emerges and compensates for the limitation of fewer details in a remote sensing image.

The main disadvantage of our approach is that it requires more pre-pixel label files. Future
research should test the use of semi-supervised classification to reduce the dependence on pre-pixel
label files.
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