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Abstract: The automatic modeling of as-built building interiors, known as indoor building
reconstruction, is gaining increasing attention because of its widespread applications. With the
development of sensors to acquire high-quality point clouds, a new modeling scheme called
scan-to-BIM (building information modeling) emerged as well. However, the traditional scan-to-BIM
process is time-tedious and labor-intensive. Most existing automatic indoor building reconstruction
solutions can only fit the specific data or lack of detailed model representation. In this paper, we
propose a layer-wise method, on the basis of 3D planar primitives, to create 2D floor plans and 3D
building models. It can deal with different types of point clouds and retain many structural details
with respect to protruding structures, complicated ceilings, and fine corners. The experimental results
indicate the effectiveness of the proposed method and the robustness against noises and sparse data.

Keywords: indoor modeling; layer-wise strategy; point clouds; 3D primitives; as-built BIM

1. Introduction

Building information modelings (BIMs) of as-built constructions which contain both geometric
and semantic information are capable of assisting the facility management, reducing the operation
cost, inspecting the construction quality etc. Therefore, it is highly required in communities such
as Architecture, Engineering, Construction, and Facility Management (AEC/FM) [1]. Compared
with BIMs generated from outdoors, the indoor perspective provides structural elements (e.g., floors,
ceilings, windows, doors) as well as indoor belongings (e.g., furniture, appliances). This richer semantic
information from the inner building perspective extends to indoor BIMs applied in fields such as
indoor navigation, virtual reality, and interior design [1,2].

In recent years, the development of 3D spatial data acquisition technology experienced a large
progress, which makes affordable scanning systems available on the market. Various kinds of
integrating solutions emerged; these solutions can be categorized from the aspects of data acquisition
methods: Terrestrial mapping and mobile mapping [3,4]. In particular, indoor mobile mapping systems
(IMMSs) can be classified into three categories on the basis of sensor carriers: (1) The trolley-based
system, (2) backpack-based system, and (3) handheld-based system [5,6]. The point clouds acquired
from the state-of-the-art indoor mapping systems possess high precision, while providing a complete
coverage of indoor scenes with low costs. In light of this, scanning point clouds are gaining increasing
attention as the major metadata of indoor building modeling.

In this paper, we propose a new method for automatic indoor as-built modeling for both
mobile and terrestrial point clouds. The contributions of this method are three-fold: (1) An effective
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layer-wise strategy based on 3D planar primitives, (2) a novel contour refinement method achieved by
a shrink-wrapping method, and (3) a generic method fitting to different kinds of point clouds.

The remainder of this paper is organized as follows: We first review the current solutions with
a conclusion of the existing limitations in Section 2. The proposed layer-wise-based method, with
four different parts, is described in detail in Section 3. We evaluate the effectiveness of the proposed
method on different types of point clouds, and the assessment is conducted with comparisons to other
state-of-the-art methods in Section 4. Finally, Section 5 gives the conclusion of this work.

2. Related Work

In this section, we organize a review of the state-of-the-art approaches with a conclusion of
existing limitations.

2.1. Limitations in Detailed Model Reconstruction

Let us assume the Manhattan-World is a common practice in the indoor modeling. Because
the Manhattan-World assumption assumes that the planes of buildings are perpendicular to each
other, it simplifies the processing of building reconstruction. Thus, some researches are based on this
assumption to reduce the complexity of modeling [7–10]. However, this is often too restrictive for
indoor scenes. Non-Manhattan structures are not uncommon in the indoor environment. Due to space
simplification, some existing methods lack the capability for accurate model representation. Some
work can merely process single rooms [11] or cannot deal with rooms that have different heights [9].
Some approaches consider the contours of buildings rather than the completed buildings’ layouts,
which cast away the advantage of interior perspective and make it similar to the outdoor building
modeling. Therefore, they only provide the outer walls [12] or use closed boxes to represent interior
spaces [10]. Some approaches cannot provide water-tight models because they use overlapping or
segmented planar primitives to represent indoor models [13,14].

2.2. Specific Input Data

Most of the existing methods are data-driven methods, which are designed for one kind of specific
input data. Although most of them obtain the goal of automation, they are highly dependent on the
source data [15]. They can seldom be fitted to different types of point clouds (i.e., terrestrial and mobile
scanning point clouds). In general, they leverage timestamps or the trajectory of scanners to create
a relationship between the scanners and points. From the recovery of the line-of-sight information,
the ray-tracing method can be applied to labeling of the different spaces. For instance, Previtali et
al. use line-of-sight information to test the visibility and label the interior spaces as occupied and
opening regions [11]. Some work use this line-of-sight information to distinguish the interior and outer
spaces [12,16,17]. Despite line-of-sight information, some methods use the number of rooms as prior
information for setting the seed points in reconstruction [18,19]. To our knowledge, there has been
very few approaches that can generate the indoor building models from both mobile and terrestrial
point clouds [10].

3. Methodology

3.1. Overview of the Approach

In this section, we illustrate the overview of proposed method to retrieve the vertical structural
variations through the layer-wise strategy while keeping the detailed information from 3D planar
primitives. Since the man-made environment is ubiquitous with planar structures, it is reasonable to
consider planar primitives as the starting point of building reconstruction.

Our major motivation of this layer-wise method using 3D planar primitives is behind Figure 1.
Figure 1a shows the filtered point clouds using the 2D projection approach and Figure 1c indicates
the 2D projection from vertical structures. If we only observe the top-down view of point clouds, it
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seems like a correct 2D projection from 3D points. However, some problems emerge when we check
the point clouds in a side-view. Specifically, some structures that are not connected to the floor are
considered as walls or are even discarded. As Figure 1b shows, the red and blue rectangles denote
the bay windows which are not connected to the floor. The orange rectangle is an irregular structure
containing a vertical gap instead of a flat ceiling. Therefore, we develop a reconstruction method to
keep such types of vertical information through 3D planar primitives. Despite maintaining the vertical
structures such as bay windows and irregular ceilings, this method can be applied to both mobile and
terrestrial point clouds.

As shown in Figure 2, this approach contains four primary steps. To reconstruct the indoor space,
we employ a multi-label method to detect the planar primitives through a global optimization based
on the region-growing and random sample consensus (RANSAC) algorithms. Subsequently, the point
clouds are sliced into several pieces along the vertical direction. Given the representative slices of
the points, the contours of these slices can be extracted by a shrink-wrapping method. Finally, we
assemble these 2D contours to constitute 3D building models.

Figure 1. Multiple views of point clouds: (a) Top-down view of filtered point clouds. (b) Side-view of
filtered point clouds. (c) The 2D projection of point clouds (the rectangles with different colors denote
the corresponding structures in multi-view figures).
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Figure 2. The flowchart of the proposed approach involving four major steps. (a) Planar primitive
detection; (b) point clouds partition using boundary points; (c) layer contour extraction in the 2D space;
(d) building assembly.

3.2. Planar Primitive Detection

In this section, we detect the planar primitive to extract the planar features for further processing.
The detection of planar primitives can be summarized as fitting the mathematical model to the data.
The solutions to this problem can be classified into three types: A RANSAC-based algorithm, a
region-growing-based algorithm, and a parameter space-based algorithm.

We first use the region-growing algorithm to gain the initial planar primitives. To refine these
initial labels of planar primitives, a multi-label graph cuts optimization method is utilized. Through
this label optimization step, most of the erroneously labeled primitives can be revised. Compared with
other detection methods, this approach can segment the point clouds in a suitable scale.

3.2.1. Initial Planar Primitive Extraction

First, we perform the region-growing method to obtain the initial planar primitives from the
filtered point clouds. The region-growing technique aims at finding a maximum set of points in the
neighborhood. There are two key conditions of region-growing: (1) Propagation criterion denoting
that the growing process is supposed to satisfy a criterion according to the features such as the normal,
curvature, and point distributions, and (2) termination criterion, which is the ending condition of the
propagation. This technique is widely used in point clouds segmentation by testing every neighboring
point for the angle difference between the normals of the seed points and neighboring points.

In our case, we set up the growing criterion as the following equation:

cos−1(|(NSc , NPc)|) < θth, (1)

where NSc represents the normal of the current seed point, and NPc denotes the points’ normals in the
neighborhood. θth is the threshold to determine whether two points belong to the same plane (e.g., 10◦).
In practice, we use the Fast Library for Approximate Nearest Neighbors (FLANN) [20] to speed up the
neighboring points search (e.g., 20 nearest points). Since the selection of seed points affects the quality
and the speed of detection, we choose the points with minimal curvature in the unassigned point set.

Figure 3 shows the result of the region-growing. Although the region-growing method can obtain
most of the correct planar primitives, some points belonging to the same wall are assigned to different
labels. As shown in Figure 3, there are two situations of wrong segmentation: Overlapping and
separating. The left section in Figure 3 illustrates points belonging to the same wall separated into
several overlapping pieces. This is mainly caused from by scanning and registration errors. Another
situation of the erroneous detection is that the single wall is divided into several non-overlapping
parts. As shown in the right of Figure 3, the interested plane has been divided into three parts (i.e.,
blue, red, and green). This is because the indoor walls are not absolutely smooth, which gives rise
to the normal inconsistency. Therefore, we merely utilize the result of region-growing as the initial
assignment of point clouds and apply a refinement process to solve aforementioned problems.
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Figure 3. The result of region-growing: enlarged drawings show that the co-planar walls have been
separated into several parts.

3.2.2. Planar Primitive Optimization

Given the initial planar primitives, we apply an optimization method to solve the
above-mentioned overlapping and separating problems. This process can be concluded as a label
merging procedure which combines the erroneously segmented primitives to correct labels.

Starting from the initial segmentation, we can utilize the RANSAC plane fitting method to gain the
initial parameters of planes. The merging process can be implemented in consideration of the planes’
normals and the mass centers of the planes. For instance, if a pair of planes satisfies the following
conditions, we prefer to merge them to the identical plane: (1) The inconsistency of plane normals is
smaller than a threshold (e.g., 10◦), and (2) the distance between the mass centers of these two planes
are smaller than a certain Euclidean distance (e.g., 0.5 m). If we consider these two conditions, we can
improve the initial detection to some extent. Figure 4c indicates that these four planes (D, E, F, and G)
are merged to the same plane. While the planes D, E, and F belong to the identical wall, plane G is
not on the plane consisted by the other three primitives. Since these two planes are parallel and close
to each other, it is difficult to find appropriate thresholds to guarantee that the wall segments on the
identical wall can be merged while the nearby parallel walls can be separated. Figure 4b is another
instance indicating that the parallel wall structures cannot be recognized.

Because the approach considering plane directions and mass centers cannot take nearby parallel
walls into account, we apply a global optimization method to refine these two conditions. Through
this optimization, the parallel planes tend to be separated while the co-planar planes are expected to
be merged. Thus, we convert the merging problem to a labeling problem and solve it by minimizing
the multi-label energy via graph cuts [21]. The combined energy function is as follows:

E(l) = ∑
p∈P

Dp(lp) + ∑
p,q∈N

wpq · δ(lp 6= lq) + ∑
l∈L

hlδl , (2)

where the three terms are data term, smoothness term and label term, respectively. The first term
∑p∈P Dp(lp) is the data term representing the penalty of assigning a point to a particular label. The data
term is calculated using Equation (3). As illustrated in Figure 5, dist(p, lp) is the perpendicular distance
from a point to its fitting plane.

Dp(lp) = exp(−dist(p, lp)
2). (3)
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The second term is the smoothness term which is used to guarantee the smoothness in the
neighborhood. We define the neighborhood of points as the k-nearest neighbors (e.g., k = 20).
The point p2 in Figure 5 shows an instance where the points in the circle are its neighboring points.
The points q1 and q2 are assigned to the same label as p2. In this case, the smoothness costs are equal
to 0. The points q3 and q4 are assigned to the different labels, hence the smoothness cost wpq can be
calculated by the following equation:

wpq = exp(
−‖p− q‖

ς2 ), (4)

where ‖p− q‖ is the pairwise distance. We set ς = 0.01 m according to the common spacing of points.
The δ(lp 6= lq) is an indicator function for all the same label points in the k-nearest neighbor. Because
our objective is to minimize the energy function, it tends to change the labels in the neighborhood
if the cost of smoothness term can be decreased by adjusting the current label of point p to its
neighboring label.

Figure 4. The results of plane refinement: (a) The point clouds before refinement, (b) plane A and plane
B have been merged to plane C, and (c) planes D, E, F, and G have been combined into plane H. They
are actually parallel planes (not belonging to the same plane).

Since our goal is to merge the co-planar planes and retain the parallel planes, we utilized the third
label term to penalize a large number of labels. We favored the fewer number of labels and encouraged
the reduction of the redundant planes. Therefore, when the plane’s label cost was large, we prefered to
merge this plane to the neighboring plane or discard this plane rather than retain it. The label term is
defined as

hl = 0.001× n× (
nmax − nl

nmax − nmin
), (5)

where n is the number of labels and nl , nmax, nmin are the point number of current label, the maximum
and minimum point number in all labels, respectively. Combining with δl , an indicator function in
Equation (2), we can determine whether the label l will be retained or discarded.
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Figure 5. An illustration of labeling points and their fitting planes. The white dots and red dots
represent the points with different labels assigned to plane A and plane B, respectively. The distances
between points and planes are perpendicular distances. The points in the red circle illustrate the
neighboring points of p2 and the smoothness cost to the different points.

To minimize the aforementioned energy function, we utilized the extended α-expansion method
developed by Delong et al. [21]. The algorithm converts the multi-label problem to a set of binary
labeling problems and utilizes graph-cuts to minimize it. The minimization process is an iterative way
to find the optimal labels for the data points until the energy function cannot be decreased [22]. After
each iteration, if the value of energy function was decreased, we updated the current labels. The result
of primitive detection method can be seen in Figure 6, where the co-planar primitives and parallel
primitives are recognized correctly.

Figure 6. The top-down view and side view results of planar primitive detection (rendered in
different colors).

3.3. Point Cloud Partition

Given the planar primitives, a point cloud partition algorithm was employed to slice the vertical
primitives into several layers. Since these layers always share repetitive structures on the upward
direction, we utilized the histogram of boundary points to eliminate the redundant layers. Finally, we
selected the representative layers to facilitate the contour extraction.
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Figure 7a illustrates the vertical planar primitives extracted by normals. We sliced the point clouds
to several consecutive blocks along the upward direction. Several 2D layers could be obtained through
2D projections as shown in Figure 7b. Subsequently, a least square linear fitting could be applied to
extract linear primitives based on labels and orientations on each 2D layer. However, these 2D layers
possessed considerable redundancy which decreasedd the efficiency of post-processing. For instance,
the layers with elevations from 40 cm to 55 cm in Figure 8 shared almost the same structures which
were supposed to be merged to one representative layer.

Figure 7. Point cloud partition and linear fitting: (a) The planar primitives from vertical structures,
(b) the 2D projections of consecutive blocks (each color represents ten layers), (c) the result of the linear
fitting (Red lines: Vertical primitives; Green lines: Horizontal primitives).

Figure 8. The instance of repetitive layers sharing the same geometry on the vertical direction (truncated
elevation from 40 cm to 55 cm).
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3.3.1. Boundary Point Extraction

In this section, we extract the feature points to facilitate the representative layers selection. We
utilize the 3D boundary as feature points because of the following reasons: (1) The boundary of planar
primitives retains most wall information (i.e., position, orientation, and height), (2) the boundary
points can avoid the repetitive structures which share the same geometry on the vertical direction
(e.g., as shown in Figure 8, the bottom three layers share the same geometry on the vertical direction).
A convex hull-based method [23] has been employed to extract boundaries from detected planar
primitives. To be specific, the points on planar primitives can be projected onto the RANSAC fitted
planes and the convex hull (see Figure 9a) can be determined by these projected points. Subsequently,
we determined the boundary points as when the distances from the projected points to the key points
on convex polygons (see Figure 9b) are less than a given threshold db (e.g., 0.05 m).

Figure 9. The process of boundary points extraction: (a) Convex hull, (b) key points on the convex
polygon, (c) boundary points.

3.3.2. Representative Layer Selection

Although the vast majority of buildings share the same geometry, the number of boundary points
varies in different layers. The changing number of boundary points reflects the changes of structures
(see Figure 9c). Therefore, we constructed a histogram from the boundary points along the upward
direction to select representative layers. In practice, starting from the floor to the ceiling level, we
set a given bin size bh (e.g., 0.05 m) for the voting process and identified the local maximum from
the histogram. Figure 10 shows the histogram of boundary points. The point clouds are partitioned
into 67 blocks with the bin size of 0.05 m. Through identifying the peaks of histogram, we can extract
nine layers to represent the whole building.
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Figure 10. The histogram of boundary points along the upward direction: The selected local maximum
layers are bounded by the red rectangles (Figure 7b shows the total 67 layers).

Given the peaking elevations of the histogram, a set of representative layers can be determined
as depicted in Figure 11. The enlarged view of Figure 11a indicates that these selected layers could
retain the structural changes along the vertical direction. As a consequence, the shapes of the bay
windows could be kept. By means of representative layers selection, the large number of layers
could be consolidated without dropping out structural information. Moreover, we converted the
3D reconstruction problem to several 2D layer reconstruction problem which was more feasible for
further processing.

Figure 11. The multi-view of representative layers (top-down view and side-view): (a) Enlarged bay
window structure, and (b) selected layers retain different building structures.

3.4. Layer Contour Extraction

After the representative layers were determined, we employed a “divide-and-merge” strategy to
extract the contour of each layer. We first segmented the 2D layers into several parts for simplifying
the shapes of contours. Subsequently, a shrink-wrapping-based approach was utilized to extract each
piece of the contour. Finally, we integrated these parts into a complete contour. To this end, the wall
elements could be retrieved from the contours of the representative layers.
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3.4.1. 2D Layer Division

With the observation of indoor point clouds, there are two types of point distributions among wall
elements: inner walls and outer walls [17]. Accordingly, we segmented the point clouds in these layers
on the basis of inner wall point distribution. In practice, the first step is to determine the positions
of inner walls, and then the segmentation can be completed by extending centre lines of inner wall
structures. Actually, the localization of inner walls could be implemented by searching for parallel
structures in a given distance. In our experiment, we set up the searching range sr as 0.5–0.9 m along
the perpendicular direction of each linear primitive. Thus, the division line could be extracted from
the bisector of two parallel linear primitives. However, sometimes the inner wall was labeled with
different classes as indicated by the blue circle in Figure 12a. A mergence of adjacent division lines was
required. By introducing division lines, we partitioned point clouds into several parts which could
effectively convert a complicated floor plan to several simple sub-floorplans. As shown in Figure 12b,
the representative layer extracted previously was divided into six parts. Note that some parts only
contain one individual room while others involve parts of rooms or more than one room. As our
reconstruction method was not based on the room, it did not affect the result of reconstruction. Our
goal was only to obtain simple sub-floorplans here, not the room segmentation.

Figure 12. The division process of 2D layer: (a) The localization of inner walls (blue circle: wall in
multiple labels; red circle: Wall in the individual label), and (b) the layer division according to the inner
wall positions.

3.4.2. Contour Extraction

Inspired by the shrink-wrapping method from mesh reconstruction [24], we utilized a shrinkage
process to obtain the regularized sub-contours. After that, we merged them along with the localizations
of inner walls to complete the extraction of the contours. By this means, the boundary of each contour
could represent the outer wall elements, and the inner wall elements could be recovered simultaneously.

The shrink-wrapping method is a classical geometry-processing algorithm which has been widely
utilized in mesh reconstruction, simplification, and remeshing [25,26]. The basic principle behind
shrink-wrapping is in its simulating process that a membrane is shrinking and finally wrapping onto
an object. Therefore, the iso-surface of the reconstructed mesh is the wrapping membrane. Using
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point clouds as input, a convex hull is constructed as the initial approximation (“the membrane”).
Consequently, the shrinkage is completed by incrementally deleting triangles until all points lie on
the reconstructed surface (“wrapping on the object”). The advantages of shrinking-wrapping are the
robustness and toleration of most point clouds. Despite these two advantages, our implementation
could produce water-tight and regularized contours. The main differences between our case and the
traditional shrink-wrapping approach are three-fold: (1) The 2D application scenario, (2) the object of
shrinkage, and (3) the strategy of the shrinking process. The detailed descriptions of (2) and (3) are in
the following.

(1) Sub-Contour Extraction

The object of shrinkage: Compared with the conventional shrinking method, the object of our
approach is linear primitive. Most of the wall elements are perpendicular to each other in the indoor
environment, which means that there are two principle directions of each contour. As shown in
Figure 13, the red lines denote the vertical primitives (type I), and the green lines indicate the horizontal
primitives (type II). These two types of primitives are the dominant directions of the building. We can
build a boundary box from the dominant directions as an initial approximation for the shrinkage.
Although most of buildings are conforming to two dominant directions or the Manhattan-World
assumption, there are not uncommon for the non-perpendicular wall elements in the real world.
Accordingly, we introduce the arbitrary primitive as the type (type III) of linear primitive. Part 1 of
Figure 13 shows an instance for the arbitrary primitive (depicted in blue color).

Figure 13. The types of linear primitives in sub-contours: vertical primitives (red), horizontal primitives
(green), and arbitrary primitives (blue). 1–6 indicate the sub-floorplans in the 2D layer.
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The strategy of Shrinkage: Taking the linear primitives of sub-contours as input, we classified
these primitives into two sets as La and Lb. La contained the type I and II primitives which were
the dominant directions of the sub-contours. Lb was the set of arbitrary primitives (type III) which
would be considered in the later step of sub-contour extraction. We built a rectangular bounding
box B = {{B1}, {B2}, {B3}, {B4}} based on the two dominant directions as the initial approximation
(see Figure 14). To initialize the elements in set B, we assigned the linear primitives in La according to
the directions and distances. The rectangles with dash lines in Figure 14 are the illustrations of the
bounding box. Accordingly, we assigned the primitives to nearest edges of bounding box as shown in
the right of Figure 14.

Figure 14. Initialization of the bounding box: Assigning linear primitives to the edges of bounding box
(the arrows indicate the assigning directions): (a) illustrations of the bounding box, (b) the primitives
assigned to the nearest edges of bounding box.

After initialization, the shrinkage was completed primitive-by-primitive. Selecting a primitive
lcurr in the set Bj, we extended the current boundary ecurr at first. Subsequently, shrinking was stopped
when the extended boundary encountered other primitives (see Figure 15d–f). It is noted that the parts
fitting to the real primitive would be considered as the determined contour (blue lines). Other parts
will be the pending contour (orange dash lines) which might be changed subsequently. Despite the
aforementioned situation, there are two extra situations to be checked:

(1) As depicted in Figure 15c, the projection of `2 on current boundary ecurr was fully included,
and `2 possessed a longer distance to ecurr than `1. Therefore, considering the projecting inclusion,
we shrunk the current edge (depicted in blue) to `2. To sum up, if the projection of farther primitive
was fully included into the current extending edge, we shrunk the corresponding part to this farther
primitive as a new determined edge.

(2) We needed to consider the situation where the shrinking edge would intersect with
perpendicular primitives. As shown in Figure 15i, the operating edge ecurr would encounter
perpendicular primitives at the red points before arriving the target primitive lcurr. To this end,
we only adjusted the overlapping parts as shown in the red circle of Figure 15j. The remaining parts
would only be shrunk to the intersected points (denoted as red points in Figure 15i). The adjusting
result is depicted in Figure 15k.

When all primitives in La assigned to set B were processed, we were supposed to obtain a
contour consisting of determined edges and pending edges (see Figure 15n,o). According to the
previous discussion, most of the sub-contours did not contain the arbitrary linear primitive meaning
that the Lb = ∅. However, in part 1 of Figure 13, the type III primitive did exist. Consequently, a
post-processing step was required to deal with such a situation. In practice, in order to create new
non-perpendicular edges in the current contour, we linked the endpoints of linear primitives in Lb
to their nearest endpoints in La. After that, the redundant parts would be cut off from the current
polygon to determine the final sub-contour. An instance of processing arbitrary primitive is depicted
in Figure 16. It is noteworthy that the line with arrows represents the new boundary edge added to the
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current boundary. Figure 17 shows the results of sub-contours extraction according to the previously
discussed shrinking strategy.

Figure 15. The process of sub-contour shrinkage: (1) (a,b) and (d–h): ordinary shrinkage situations;
(2) (c): extra situation one; (3) (i–l): extra situation two (see the shrinkage strategy); (4) (m,n): the
extracted boundary of sub-contour: orange dashed lines: the pending edges; blue lines: the determined
edges; (5) (o): the extracted sub-contour polygon model.
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Figure 16. Arbitrary primitive processing: Linkage and cutting (the blue line indicates the set of type III
primitive—Lb).

Figure 17. The results of sub-contours extraction: The extracted contours are rendered in the yellow
background (from layer 48). 1–6 indicate the sub-floorplans in the 2D layer.
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(2) Sub-Contour Mergence

Once we obtain the sub-contours, it is easy to merge them to generate a large contour as the
initial contour (see Figure 18a). In general, the sub-contour mergence can be completed through the
following steps: (1) Initial mergence, (2) virtual walls’ elimination, and (3) connection recovery.

The sub-contour extraction generates a closed boundary even there are no underlying linear
primitives. Thus, in the joint connections between sub-contours may exist virtual inner walls. Therefore,
we eliminate the boundaries on the joint connections between sub-contours (see the red lines depicted
in Figure 18b).

Figure 18. The process of sub-contour mergence: (a) Initial mergence of sub-contours (1–6 indicate
the extracted sub-contours), (b) merging refinement (enlarged to show the connections between
sub-contours), (c) the result of contour extraction (red lines: Virtual connection walls; blue lines: Wall
vacancies; green rectangles: The extracted connections).

Despite the redundant boundary between the adjacency of sub-contours, there may exist some
isolated sub-contours (e.g., part 1 in Figure 17). However, the acquisition of point clouds is completed
in the indoor scenes which means all the rooms are connecting to each other. Thus, we need to
recover the connection information which has been ignored in the previous steps. To this end, we
search the overlapping linear primitive along the boundary of isolated primitives. As shown in
Figure 18b, the linear primitives underlying the boundary between the sub-contours 1 and 2 are
overlapping to each other. Moreover, these two edges of boundaries share the same vacancy which
denotes the location of the missing connection. The blue edges indicate the area of vacancies, and the
green rectangles are the recovered connections. An illustration of the extracted contour is shown in
Figure 18c, and the overall process of contour extraction is summarized in Algorithm 1.
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Algorithm 1: Contour Extraction.
Input: Linear Primitives of the Sub-Contours C = {Ci | i ∈ 1, ..., n1}
Output: Regularized Contour RC

1 begin
2 for i← 1 to n1 do
3 1) classifying the linear primitives in Ci:
4 (La, Lb)← classi f yLinearPrimives{Ci} ; // La: primitive type I, II; Lb:

primitive type III
5 2) building the bounding box as the initial approximation:
6 B← createApprox(La, Ci);
7 3) assigning La to the bounding box B:
8 B← assignPrimitive(La);
9 4) shrinking process of part I (La):

10 for j← 1 to 4 do
11 ecurr ← Bj0 ; // current processing edge
12 Bj ← Bj \ Bj0;
13 while Bj 6= ∅ do
14 lcurr ← f indNearestPrimitive(Bj);
15 ecurr ← extendPrimitive(ecurr);
16 checking shrinking rules:
17 f lag1 ← checkInclusion(ecurr, lcurr, Bj);
18 f lag2 ← checkBlock(ecurr, lcurr, Bj);
19 (Dj, Pj)← shrinkPrimitive(ecurr, lcurr, Bj, f lag1, f lag2);
20 Bj ← Bj \ lcurr ; // delete processed primitive
21 end
22 end
23 5) shrinking process of part II (Lb):
24 while Lb 6= ∅ do
25 (Dj, Pj)← adjustSubContour(Dj, Pj, La, Lb);
26 end
27 6) creating sub-contour from determined and pending edges:
28 SCi ← createSubContour(D, P);
29 end
30 7) merging the sub-contours to generate the regularized contour:
31 RC ← mergeSubContour(SC, La, Lb)

32 end

3.5. Building Reconstruction

With the extracted contours of representative layers (see Figure 19a), we assembled these contours
to generate 3D building models. However, directly extruding contours to create the building model
causes a jagged, unaligned mesh as shown in Figure 19. Instead, we registered each contour
layer-by-layer from bottom to top through averaging the location of edges with the predefined distance
dm (e.g., 0.05 m) and angle θm (e.g., 5◦). Figure 19 contains the final reconstructed models overlapping
with the original point clouds (Figure 19d,f) and labeled vertical point clouds (Figure 19c,e). For the
sake of clarity, we truncated the ceiling to show the performance of the interior reconstruction in
Figure 19c,e.
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Figure 19. The process and results of building reconstruction: (a) The result of contour extraction
(in layers), (b) the result of initial contour assembly, (c,d) the front view of building reconstruction
overlapping with point clouds, and (e,f) the top view of reconstruction results. The colored point
clouds in (c,e) represent the labels of segmentation, and the original point clouds are depicted in (d,f).

4. Experiments

In this section, we present the experimental results of the proposed methods. The performance
and effectiveness of the proposed method are evaluated through various datasets. In addition,
a quantitative experiment compared with other’s algorithms is conducted to evaluate the accuracy
and performance of our method. Finally, we analyze the influence of parameters to the output models.

4.1. Datasets

The datasets utilized in the experiments are from both mobile and terrestrial datasets in indoor
environments (e.g., offices and departments). The terrestrial scanning point clouds is provided by
Ikehata et al. involving channels such as 3D coordinates, color information, reflecting intensity,
and normals [8]. The mobile scanning point clouds were acquired by a trolley-based IMMS with
3D coordinates and intensity information [17] for validating the the extensibility of our methods.
The datasets used in the experiments are listed in Table 1.

Table 1. The description and statistics of the input datasets.

Point Clouds Apartment 1 Apartment 2 Office 1 Office 2

# of points [million] 5.0 4.5 10.1 52.2
# of stations 15 14 32 n/a
# of rooms 6 5 10 18

4.2. Modeling Outputs

Firstly, we utilized three terrestrial point clouds to test the proposed reconstruction method from
3D primitives. Table 2 lists the statistics of the reconstructed outputs and the parameters need to be
adjusted in the reconstruction. Figure 20 contains the original point clouds and the reconstructed
results. We also provided the reconstructed models rendered with a transparent view to display the
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inner spaces. In general, the proposed method can offer detailed 3D models including non-Manhattan
structures, different heights of ceilings, and prominent structures.

Table 2. Statistics of the output models.

Output (from 3D Primitive) Apartment 1 Apartment 2 Office 1

# of rooms 6 4 10
# of vertices 358 194 260
# of faces 689 390 522

Parameters Apartment 1 Apartment 2 Office 1

sr 0.9 0.5 0.5

In the first and third datasets, all rooms have been reconstructed successfully. Nevertheless, one
room in Apartment 2 was discarded in the reconstruction. The red circles in the middle column of
Figure 20 denote the corresponding locations in the original point clouds and reconstructed models.
The main reason behind this phenomenon is that this room was scanned incompletely. Furthermore,
the noise filter aggravated the reduction of points, especially in the lower density area. Therefore,
when the algorithm detected planar primitives, the number of supporting points in this room was
insufficient.

Figure 20. Modeling outputs of the proposed method. From top to bottom: The original point clouds,
the reconstructed models with ceilings, and the transparent view of models. The red circles denote the
missing room in the reconstruction.

4.3. Parameters

In this section, we clarify the reason for parameter settings by tuning different parameters. Some
explanations and analyses will be given to explore the suggested values of our methods. We classify
the parameters according to the different modules into planar primitive detection, contour extraction,
and building reconstruction (please refer to Table 3).

Parameters of planar primitive detection: There are three parameters to be predefined in this
category. θth is the threshold for the normal inconsistency between the current seed and neighboring
points during the region-growing. k is the radius of neighborhood, which is used in region-growing
and smoothness term calculation. ς is a parameter to adjust the weight of smoothness term denoting
the average space of the point clouds. We can calculate it through stuying the density of point clouds.
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Parameters of contour extraction: The parameters utilized in the contour extraction are primarily
based on the distance. The values of these parameters are insensitive since the indoor structures of civil
architecture are similar. Therefore, the parameters do not need to be tuned for different point clouds.

Table 3. Parameters of proposed layer-wise method.

Parameters Values Descriptions

Planar primitive detection parameters

θth 10◦ The threshold for the region-growing.
k 20 The searching radius of neighborhood.
ς 0.01 The threshold to adjust the weight wpq.

Contour extraction parameters

db 1/2*bh–1*bh The maximum distance to extract the boundary point in convex hull.
bh 0.05 m The bin size of histogram (equals to the distance between the vertical slice).
sr * The searching radius of the parallel inner walls.

Building reconstruction parameters

dm 0.05 m The merging distance for different contours.
θm 5◦ The merging angle for different contours.

The symbol ‘*’ represents the parameters determined by the datasets.

db and bh are two parameters leveraged in point cloud partition. db is the parameter to restrict the
distance from point clouds to key points of convex hulls. A large value of db considers more points
as boundary points which decrease the discrepancy of the histogram. We suggest that the value of db
is less than or equal to the bin size bh (1/2–1 times of bh). bh denotes the bin size of the histogram in
the representative layer selection as well as the interval of slice along the vertical direction. Although
approaching layers keep more indoor structures as shown in Figure 21a, the supporting points of each layer
suffer from a corresponding decrease. This decrease causes the problem in linear primitive extraction due
to insufficient supporting points. On the other hand, in spite of the greater interval that can consolidate the
2D projection layer (see bh = 0.15 m in Figure 21d) and accelerate the processing speed, lots of structure
information is thrown away simultaneously. Considering the trade-off between the processing speed, layer
consolidation, and indoor structures, we set the interval threshold bh as 0.05–0.1 m.

Figure 21. The experimental results for different values of search radius sr: (a) Over-segmentation;
(b,c) well-segmented; (d) under-segmentation.

sr denotes the searching radius of parallel inner walls to divide the 2D point clouds into several
subsets for simplifying the contour regularization. Although increasing the searching radius can
improve the ability of locating parallel structures, a large value of sr gives rise to the over-partition.
As illustrated in Figure 22, the smaller value dismisses some large interval parallel walls. However,
a large searching distance introduces errors as indicated in blue circle of Figure 22b. Typically,
the thickness of inner walls is about 20 cm. Therefore, in order to improve the tolerant rate and deal
with the exceptional case as in Figure 22, we set a reasonable range of sr as 0.5–1.0 m.



Appl. Sci. 2019, 9, 2904 21 of 27

Figure 22. The experimental results for different values of search radius sr: (a) Under-partition,
and (b) over-partition. Red circle: Detected parallel structures; Blue circle: Over-partition situation;
Dashed line: Partition boundaries.

Parameters of building reconstruction: Our strategy of building reconstruction was to generate 3D
building models by assembling the contours of different representative layers. dm and θm control the
level-of-detail in the final models. In practice, we mainly adjusted the model’s level-of-detail by dm due
to the observation that the inconsistency of distances regarding linear primitives was more significant
than the inconsistency of angles. A large value of dm discards the details of models as indicated by the
blue rectangles in Figure 23c,d. However, if we assembled the contour without mergence, the output
model would be jagging and zig-zagging between layers. Figure 23a is the initial model without
mergence, and the boundaries of the model are jagging. In general, the inconsistency of boundaries
was less than 0.2 m.

Figure 23. The effects of the merging parameter dm to the final model: From 0 cm to 15 cm.
(a) zig-zagging model without mergence; (b) proper merging parameter keeps the details of building;
(c,d) details discard because of the over-mergence.
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4.4. Quantitative Evaluation

To quantitatively evaluate the quality of modeling results, we used both realistic data and synthetic
data. We took the distance from the point to its nearest reconstructing surface as the measurement
metric. The reconstruction error could be seen in Figure 24. According to our test, the proposed
method was to obtain averaging fitting errors at 3.35 cm.

Figure 24. Point clouds colored with distance between points and the reconstructed model.

We also manually created the building models and sampled them to generate synthetic data to
evaluate the performance of the proposed method against different levels of noises (See Figure 25). As
shown in Table 4, we appended 10% Gaussian noises at σ = 5 mm, 10 mm, and 20 mm. The average
fitting errors from the results to the ground truth were 0.407–3.213 cm.

Figure 25. Accuracy evaluation on the synthetic data. First row: Point clouds with 5 mm, 10 mm,
20 mm Gaussian noise. Second row: Errors from the proposed method.

Table 4. Evaluation of synthetic data with different Gaussian noise.

Synthetic Data Maximum Error (cm) Minimum Error (cm) Average Error (cm)

Data 1 (5 mm) 0.620 0.105 0.407
Data 2 (10 mm) 2.412 0.219 1.576
Data 3 (20 mm) 4.171 0.629 3.213
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To evaluate the robustness towards sparse data, we sampled the original data to 60%, 30%, and
5% (corresponding to Figure 26a–c). The results showed that our method could retain the major part
of building even in 5% point clouds. However, with the decreasing of point density, some details
were discarded (e.g., uneven ceiling depicted in blue rectangle in Figure 26). The errors and detail
deficiency were attributed to the sparse supporting points because of the insufficient extraction of
representative layers.

Figure 26. Sparse point clouds (with different downsampling rates) and corresponding output models:
(a) sampling rate 60%; (b) sampling rate 30%; (c) sampling rate 5%.

4.5. Comparisons

In order to evaluate the performance, we conducted comparisons with two state-of-the-art
methods, namely structured indoor modeling [8] and Manhattan-World urban reconstruction [10]
(see Figure 27). Compared with the structured indoor modeling method, the proposed method
generated more elaborate models, especially when recovering the complicated structures on the
ceilings, and overhang building components (e.g., bay windows, windowsills). The method of
structured indoor modeling required line-of-sight information to compute a score of free space to
distinguish the indoor-outdoor spaces, which limited the capability of extension. Nevertheless, the
proposed method from 3D primitives required nothing except the point clouds, which meant it could
be applied to various types of point clouds.

With respect to another method named Manhattan-World urban reconstruction, our method
had two advantages. As shown in Figure 27c,d, the reconstruction results of these two methods are
comparable. However, our method could produce more compact models with fewer polygons. This is
mainly because Li et al.’s method relied on the process of axis-aligned box selection, thus, the final
model consisted of a stack of closed cuboids, which introduced redundant polygons. The second
advantage of the proposed method was the capability of expressing the interior spaces of the building.
Li et al.’s solution could recover the exterior of the building delicately, but the inner space was blocked
by enclosed boxes (see the transparent view of Figure 27c). In contrast to their implementation, our
method could represent the interior spaces with connections between different rooms. It is worth
noting that the other two methods were based on the Manhattan-World assumption, which cannot
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reconstruct the non-perpendicular structures such as the slant walls indicated in the red rectangles of
Figure 27.

Figure 27. Comparisons with different methods: (a) the original point clouds; (b) the results from
structured indoor modeling method (Ikehata et al. [8]); (c) the results from Manhattan-World urban
reconstruction method (Li et al. [10]); (d) the results from the proposed method. From left to right: Side
view, front view, and transparent view.

Because the aforementioned two methods are designed merely for the terrestrial point clouds
or cannot represent the inner space, we conducted another comparison with method proposed by
Wang et al. [17]. We used the mobile laser scanning (MLS) point clouds to evaluate the extension
capability of the 3D primitive reconstruction method. In practice, the large number of point clouds
lead to a crash in 3D primitive methods because of the deficiency of memory. The bottle-neck of
processing large-scale point clouds for planar primitive detection was the insufficient memory due
to huge computational costs. According to our experiment, it took 30 min for 10 million points on a
desktop computer (Intel i7-4770, 10 GB Ram). Therefore, we downsampled this dataset to approximate
10 million points for the experiment.

In contrast to the previous method, the proposed method possesses the advantages that it can
generates more detailed models in the following aspects: (1) It can represent the actual thickness of
walls, and (2) the planar primitives improved the capability of recovering small corners of buildings.
Although our method provides more detail models, it gets stuck when encountering incomplete or
low density point clouds (also shown in Figure 20). As illustrated in Figure 28, the proposed method
fails in recovering some ceilings because the density of points decreases with the increasing level
of architectures.
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Figure 28. The comparison of different methods on mobile scanning data. (a) Reconstruction from our
method, (b) reconstruction from decomposition and reconstruction of structural elements [17], and
(c) enlarged detail of outputs.

5. Conclusions

This paper proposes a layer-wise method for indoor as-built spaces modeling using 3D planar
primitives. The layer-wise strategy slices the point clouds into several pieces on the vertical directions
which retains the structural changing in the walls and ceilings. By using 3D planar primitives, detailed
structures such as the thickness of inner walls and protruding structures can be retrieved. Compared
with the existing methods, our methods can automatically generate models with a higher level of
details, and enhance the geometric representation of models. To our knowledge, few existing methods
for indoor building modeling can deal with both mobile and terrestrial point clouds. The proposed
reconstruction method provides a possible solution, which does not have the particular requirement
for input point clouds, and does not rely on any extra information such as the line-of-sight record or
the scanner trajectory. The assessment demonstrates the effectiveness and accuracy of our method,
and the capability against sparse and noisy data.

In order to enhance the details of models, in future work, we will focus on exploring more
geometric primitives (e.g., sphere and cylinder) to deal with non-planar structures. We also intend
to integrate the multi-story building detection (i.e., stairs) for modeling a multi-story building in
one pipeline.
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