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Abstract: This study presents a fast Fourier transform (FFT) kernel for multistandard applications,
which employ multiple-input, multiple-output orthogonal frequency-division multiplexing
(MIMO-OFDM). The proposed design uses a mixed-radix, mixed-multipath delay-feedback
(MRM2DF) structure, which enables 4/5/6-stream 64/128-point FFT. This approach allows the effective
usage of guard intervals (GI) in conjunction with a novel resource-sharing scheme to improve area
efficiency. An area-reduced constant multiplication unit and sorting buffer with minimal memory size
further reduced an area overhead. A test chip was designed using UMC 90-nm technology, and was
evaluated through post-layout simulation. The proposed design outperformed previous works in
terms of the throughput per area.
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1. Introduction

With the development of household and industrial applications, wireless data accesses between
devices and users have become a concern on demand. Among various wireless communication
schemes, multiple-input, multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM)
technology [1] are superior in transmission performances and are widely employed in numerous
standards, such as WiFi (IEEE 802.11n/ac/ax), Long Term Evolution (LTE), and advanced 5G New
Radio (NR) [2–5]. In practical applications, to access data from various devices, the user side must
structure MIMO-OFDM communication according to the standard employed by the individual device.
Therefore, developing a user-side transceiver, which can perform a multistandard MIMO-OFDM
transmission for different devices, is useful (Figure 1).
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1. Introduction 

With the development of household and industrial applications, wireless data accesses between 
devices and users have become a concern on demand. Among various wireless communication 
schemes, multiple-input, multiple-output orthogonal frequency-division multiplexing (MIMO-
OFDM) technology [1] are superior in transmission performances and are widely employed in 
numerous standards, such as WiFi (IEEE 802.11n/ac/ax), Long Term Evolution (LTE), and advanced 
5G New Radio (NR) [2–5]. In practical applications, to access data from various devices, the user side 
must structure MIMO-OFDM communication according to the standard employed by the individual 
device. Therefore, developing a user-side transceiver, which can perform a multistandard MIMO-
OFDM transmission for different devices, is useful (Figure 1). 
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Figure 1. Scheme illustration of multistandard multiple-input, multiple-output orthogonal frequency-
division multiplexing (MIMO-OFDM) data access applications. 

Figure 1. Scheme illustration of multistandard multiple-input, multiple-output orthogonal
frequency-division multiplexing (MIMO-OFDM) data access applications.
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For all MIMO-OFDM communication between users and devices, Figure 2 shows the block
diagram of a conventional M ×M MIMO-OFDM transmission model. A transmitter (TX) sends M
streams of data symbols through M antennas. To reduce intersymbol interference (ISI) in OFDM
communication, a guard interval (GI) was applied to the symbols by copying the number of samples
from a symbol end to a symbol head. A receiver (RX) then uses M antennas to receive signals, which
was obtained through the M ×M MIMO channel. Figure 2 shows that the RX part contains M sets
of radio frequencies (RF), analog-to-digital convertors (ADC), fast Fourier transforms (FFTs) and the
following equalization and demodulation blocks. For the given N samples in an OFDM symbol, an M
×M MIMO-OFDM receiver requires M-stream N-point FFT operations. The TX requires to perform
M-stream N-point inverse FFT (IFFT) operations. Therefore, a set of M-stream N-point FFT (IFFT)
processors are essential components in the MIMO-OFDM system. In general, the maximum M and N
values for standard MIMO-OFDM FFT are 8 and 2048, respectively [6,7], and they can be higher in 5G
applications [5]. Therefore, the cost of hardware and operation throughput for the required FFT/IFFT
processors are significant design concerns. Further considering the FFT/IFFT design for multistandard
MIMO-OFDM applications, implementing an effective scheme to develop the multimode hardware
configuration is a difficult task. In this study, an FFT kernel design, which could be structured as a
base module for reconfigurable FFT/IFFT processors, was proposed in a multistandard MIMO-OFDM
system. The proposed FFT kernel could perform 4/5/6-stream 64/128-point FFT operations by efficiently
using GI duration with resource-sharing and operation-rescheduling schemes. Therefore, the presented
FFT kernel supports area-efficient and high-throughput development for multistandard MIMO-OFDM
FFT/IFFT processors. The remainder of the paper is organized as follows. Section 2 outlines the design
considerations for the FFT design and literature. Section 3 presents the hardware architecture of the
proposed FFT kernel. Section 4 reports the implementation and comparison of the proposed FFT kernel
design. Finally, conclusions are presented in Section 5.
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Figure 2. Block diagram for the conventional M × M MIMO-OFDM transmission model. 
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2.1. Related Works for MIMO-OFDM FFT  

Various hardware architectures have been developed to perform the FFT algorithm. Among 
these architectures, the memory-based [8] and pipelined [9] architecture are the two primary 
categories. The memory-based FFT configuration is structured based on the employment of one or 
several processing elements (PEs) in cooperation with the memory modules. This memory-based 
structure is suitable for flexible FFT operations, which provide various FFT streams or operation 
points (i.e., FFT length) [10–12]. However, this approach is not appropriate for high-throughput or 
low-latency FFT operations when the operability of PEs or memory bandwidths is limited [13–15]. 
By using flexible FFT computation (length or streams), numerous memory-based FFT designs have 
been presented for MIMO-OFDM applications [15–17]. However, most of these approaches employ 
low-radix PEs (i.e., radix-r, where r is ≤ 16), which limits throughput performance. The pipelined FFT 
architecture is applied to increase operation throughput and latency by using hardware resources [9]. 
Moreover, two conventional pipelined FFT categories are multipath delay communicator (MDC) 
[9,18] and single-path delay-feedback (SDF) architectures [9,19].  
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2. FFT Design Considerations

2.1. Related Works for MIMO-OFDM FFT

Various hardware architectures have been developed to perform the FFT algorithm. Among these
architectures, the memory-based [8] and pipelined [9] architecture are the two primary categories.
The memory-based FFT configuration is structured based on the employment of one or several
processing elements (PEs) in cooperation with the memory modules. This memory-based structure
is suitable for flexible FFT operations, which provide various FFT streams or operation points (i.e.,
FFT length) [10–12]. However, this approach is not appropriate for high-throughput or low-latency
FFT operations when the operability of PEs or memory bandwidths is limited [13–15]. By using flexible
FFT computation (length or streams), numerous memory-based FFT designs have been presented
for MIMO-OFDM applications [15–17]. However, most of these approaches employ low-radix PEs
(i.e., radix-r, where r is ≤ 16), which limits throughput performance. The pipelined FFT architecture
is applied to increase operation throughput and latency by using hardware resources [9]. Moreover,
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two conventional pipelined FFT categories are multipath delay communicator (MDC) [9,18] and
single-path delay-feedback (SDF) architectures [9,19].

The MDC structure has the features of multipath (i.e., parallel) feedforward operations performed
using switch control with first in first out (FIFO) memory. By effectively using the parallel data paths
and operation units, the multipath processing feature of MDC can be applied to the FFT computation
of multiple streams [20]. Therefore, several FFT designs based on MDC structures have been presented
for MIMO-OFDM applications [20–23]. Figure 3 shows the block diagram for the conventional M-path
MDC architecture applied to MIMO-OFDM FFT of M streams, where the feedforward multipath data
is processed using switch blocks, FIFOs, butterfly units and multipliers. The SDF architecture provides
a feedback path for FIFOs to efficiently manage the butterfly operation data at each pipeline stage [9].
To enable parallel processing for SDF configurations, the extended multipath delay-feedback (MDF)
architecture [24,25] was proposed. Because the MDF scheme can process multiple input streams,
MDF architectures have been researched for required multistream FFT operations in MIMO-OFDM
systems [7,25–29]. On the basis of the MDF structure using the radix-2k algorithm (where k is a positive
integer) [30], an N-point FFT unit has log2(N) radix-2 operation stages involving the feedback-pathed
FIFO and butterfly 2 (BF2) units [9,30]. Figure 4 shows a conventional M-path MDF FFT structure for
M ×M MIMO-OFDM applications. Furthermore, some previous studies [21,25,28] discuss the schemes
of hardware cost reduction for multipliers located at multiple paths (Figures 3 and 4). In general, these
MDC or MDF approaches [20–29] enable multipath/parallel operations associated with multiple FFT
streams (i.e., the number of data paths and FFT streams is equal).
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2.2. Kernel-Based FFT for Multiple Standards

Most MIMO-OFDM standards have variable FFT lengths and stream levels, and thus,
the corresponding MDC or MDF FFT designs generally employ a reconfigurable structure to support
various FFT operation modes specified at the aimed specification [7,20,22]. In addition, considerable
research has been conducted on advanced restructure schemes for multimode FFT processors that
support multiple MIMO-OFDM standards [28,29]. For such multimode/multistandard MIMO-OFDM
FFT applications, the aforementioned studies have employed tailored reconfiguration methods
to enable multimode FFT operations based on their individual MDC/MDF structures. Therefore,
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the aforementioned approaches lack the design flexibility and convenience to develop the multistandard
MIMO-OFDM FFT architecture.

However, among the mainstream MIMO-OFDM standards (WiFi, LTE, and 5G applications), 1- to
4-stream 128/64-point FFT is implemented with a base operation mode [20–23,25–28]. This is one
approach, using which a common optimized four-stream 128/64-point FFT kernel can be developed
as a base module to construct specified M-stream N-point FFT/IFFT processors. For example, in the
MDF FFT architecture, Figure 5 presents the aforementioned scheme. Considering M-stream N-point
FFT computation (M > 4; N > 128, and N is to the power of 2), each N-point FFT can be performed
using N′-point FFT in conjunction with 128-point FFT based on the radix-N′/128 FFT algorithm, where
N′ is equal to N/128, and M-stream FFT can be implemented in dM/4e sets of four-stream FFT; d.e
denotes a ceiling operation. Figure 5 shows a four-stream 128/64-point FFT kernel prepared first
as a common base module. This kernel module was further integrated with a front four-stream
N′-point FFT computation unit to complete a set of four-stream N-point FFT. Such configuration (FFT
kernel and N′-point FFT unit) can be extended to dM/4e sets, and complete M-stream N-point FFT
operations can be implemented. For hardware modularization, kernel-based FFT configurations are
more efficient and flexible when applied to scalable M-stream N-point FFTs for multiple MIMO-OFDM
standards. Figure 5 presents a configuration which can be further modified and extended to integrate
a conventional FFT kernel with MDC or memory-based units for target FFT computation. Considering
four-path 128/64-point FFT kernel designs, employing the available FFT processors, which can perform
the same FFT specification, is an efficient approach [21,25]. Nevertheless, for system optimization,
specific development of a hardware-efficient FFT kernel as a common module can be advantageous.
In this study, the target FFT kernel module was designed using a modified MDF structure as support.
In addition to the original four-stream 128/64-point FFT operations, the proposed FFT kernel used GI
duration to enable five- and six-stream FFT operations, and thereby enhance the overall throughput
with an improved area efficiency. The concept for GI utilization for the FFT design has been mentioned
in [31] for the purpose of improving the operation latency. In our design, we further utilized the GI
in common with a resource-sharing scheme to increase the operation throughput. The details of the
proposed design are discussed in Sections 3 and 4.
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3. Proposed FFT Kernel Architecture

3.1. Algorithm and Architecture Overview

In conventional MDC/MDF FFT schemes [20–26], the number of paths is equal to the number of
FFT streams. By contrast, a mixed-radix, mixed-multipath delay-feedback (MRM2DF) architecture
was developed, which operated on a radix-dependent number of paths. For 128-point FFT operations,
the MRM2DF design operated based on the mixed radix-2/8/8 algorithm, which can be described
using Equations (1)–(5). A 128-point discrete Fourier transform (DFT) of a time domain sequence
x(n), was defined as Equation (1), where X(k) and Wnk

128 = exp(− j2πnk/128) are the DFT results and
twiddle factor, respectively. Moreover, n and k are represented using Equation (2), and Equation (1)
can be derived using Equation (3), a two-step computation based on radix-2 and radix-64 operations
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represented as BF2 and 64-point DFT, respectively. Between BF2 and 64-point DFT operations,
128-based (W128) twiddle factors must be multiplied with the BF2 output. Furthermore, the 64-point
DFT operation in Equation (3) can be further decomposed into the radix-8/8 operation.

By using Equation (4), a 64-point DFT can be derived as Equation (5), where two-stage radix-8
operations are performed. The two radix-8 stages correspond with the first and second butterfly 8 (BF8)
operations, respectively. Similarly, 64-based (W64) twiddle factor multiplication is required between
the first and second BF8 operations. For 64-point FFT operations, the MRM2DF design executes the
radix-8/8 algorithm as Equation (5).

X(k) =
127∑
n=0

x(n)Wnk
128, k = 0, 1, . . . , 127 (1)

{
n = 64n1 + n2, n1 = 0, 1; n2 = 0, 1, . . . , 63
k = k1 + 2k2, k1 = 0, 1; k2 = 0, 1, . . . , 63

(2)

X(2k2 + k1) =
63∑

n2=0

1∑
n1=0

x(64n1 + n2)W
(64n1+n2)(2k2+k1)
128

=
63∑

n2=0


1∑

n1=0

x(64n1 + n2)Wn1k1
2︸                        ︷︷                        ︸

BF2 (radix−2) operation

Wn2k1
128


Wn2k2

64 =
63∑

n2=0

BF2 (k1, n2)Wn2k2
64︸                       ︷︷                       ︸

64−point DFT (radix−64)

(3)

{
n2 = 8α1 + α2, α1 &α2 = 0, 1, . . . , 7
k2 = β1 + 8β2, β1 & β2 = 0, 1, . . . , 7

(4)

X(2(β1 + 8β2) + k1) =
7∑

α2=0

7∑
α1=0

BF2 (k1, 8α1 + α2)W(8α1+α2)(β1+8β2)
64

=
7∑

α2=0


 7∑
α1=0

BF2(k1, 8α1 + α2)Wα1 β1
8

︸                                   ︷︷                                   ︸
1st BF8 (radix−8) operation

Wα2 β1
64

︸                                                ︷︷                                                ︸
2nd BF8 (radix−8) operation

Wα2 β2
8

(5)

Corresponding with the radix-2/8/8 algorithm, the proposed MRM2DF kernel was operated with
hybrid path configurations (i.e., mixed-multipath). Hardware units associated with the radix-2 (BF2)
computation allowed operations on at most six data paths (i.e., 4/5/6 paths) based on the number of
streams. By contrast, radix-8 (BF8) hardware units allowed operations on eight paths corresponding to
the number of radices. A shared hardware module was employed to perform W128 and W64 twiddle
factor multiplication in six and eight paths, respectively. When performing 64-point FFT, the MRM2DF
kernel performed only eight-path operations based on the radix-8/8 algorithm. The features of the
proposed MRM2DF structure are as follows:

(i) In mixed-multipath operations based on streams or radix-8, GI duration can be employed to
conduct 128-point FFT operations in up to six streams.

(ii) Resource sharing is applied to multipath radix-2/8/8 operations by using an area-reduced constant
multiplication unit.

(iii) The required memory size (i.e., the number of stored data elements) are maintained at a modest
level by using a sophisticated sorting scheme applied to the buffer.
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(iv) Points (i)–(iii) allow significant improvements in area efficiency compared with available designs
that support multipath 128-point FFT (e.g., [21,25]).

Figure 6a presents the block diagram of the proposed MRM2DF FFT kernel, comprised of four
modules (Modules 1–4). The operations associated with Modules 1–4 are illustrated in Figure 6b
(association with color of Modules). Figure 6b shows that Module 1 is tasked with 4/5/6-path BF2
(radix-2) operations. Module 4 provides eight-path first and second BF8 (radix-8) computations.
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Intermediate data transfer for radix-2/8/8 calculations was achieved using a sorting buffer in
Module 2. As mentioned previously, W128 and W64 twiddle factors must be multiplied with the output
of the radix-2 and first radix-8 stage. Module 3 was a constant multiplication unit (CMU) for performing
twiddle factor multiplications by using a novel resource-sharing scheme. Modules 1–4 are detailed in
Section 3. For 64-point FFT, only Modules 2 and 3 were used to perform radix-8/8 operations.

For example, for the six-stream 1024-point MDF FFT, Figure 7 shows an operation flow to generate
a 128-point FFT block based on the MDF processing (Figure 5). In most OFDM standards (e.g.,
IEEE 802.11ac for WiFi), the GI period is 1/4 or 1/8 of the symbol duration, depending on the channel
conditions. For example, six streams of 1024 data samples were accessed to perform 1024-point FFT
operations, and the number of GI samples was 256 (i.e., 1/4 symbol duration). Figure 5 shows that
this mechanism allowed the calculation of six-stream 1024-point FFT through the radix-23 stages and
128-point FFT block. The corresponding radix-23 signal flow chart with the radix-2 (BF2) operations
is shown in Figure 7 for reference. Through the three stages of MDF-based radix-2 operations
(including twiddle factor multiplication), sets of 512/256/128-point FFT sequences were generated
(corresponding with the color and slash in the signal flow chart). Finally, eight sets of six-stream
sequences were generated, including 128 data and 32 GI′ samples. For each set of 128-sample data
streams, the proposed MRM2DF kernel was prepared to process six-stream 128-point FFT. Figure 8
presents the detailed timeliness diagram of MRM2DF hardware operations and signal flow chart based
on the radix-2/8/8 algorithm. The inclusion of GI duration in the time available for processing OFDM
FFT is an efficient approach. However, for conventional MDC/MDF FFT structures operating at the
input sample rate [20–22,25,26], the operations were generally idle during GI clock cycles, thereby
reducing hardware efficiency. By contrast, the proposed MRM2DF scheme used all 160 clock cycles,
including GI′ (Figure 8), for 128-point FFT operations.
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and its associated signal flow chart for the radix-2/8/8 algorithm.

Figure 8 illustrates that BF2 and W128 multiplications were performed concurrently for all six
data streams. BF8 and W64 multiplications were performed on eight stream-by-stream, based on a
time unit of eight cycles (i.e., a time slot (TS)) for the operation of each stream. The radix-2/8/8 signal
flow chart reveals that only half of the BF2 outputs (i.e., BF2 subtraction terms) were multiplied using
W128 twiddle factors. This observation indicated that W128 multiplication was performed only during
some of the 160 cycles (A- or B-portion mcl in green or red colors). This observation ensures that
the non-occupied duration is available for W64 multiplication by using the resource-shared CMU.
Moreover, using the TS unit (eight cycles) for BF8/W64 operations per stream allowed the efficient use
of GI′ for the processing of additional streams. In the aforementioned example, GI′ had 32 cycles (i.e.,
T2), and T3 was half of T2. Thus, six TS units (T4) were available for BF8/W64 operations for six-stream
128-point FFT. Similar schemes can be applied to other GI′ situations by evaluating T1–T4 terms in
Figure 8. Table 1 lists T1–T4 parameters associated with various operating modes of 128-point FFT.
In the 64-point FFT configuration (Figure 6), the proposed scheme provided only BF8/W64 operations
based on the BF8/W64-related portions of the timing schedule (Figure 8).

Table 1. Parameters for various operating modes.

GI’ Clock
Cycles

No. of Streams
(max.)

T1 Clock
Cycles

T2 Clock
Cycles

T3 Clock
Cycles

T4 Clock
Cycles

32 (1/4 symbol) 6 160 32 16 48 (6 TS)
16 (1/8 symbol) 5 144 16 8 40 (5 TS)

0 (None) 4 128 0 0 32 (4 TS)
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3.2. Architecture Modules

3.2.1. Module 1

The block diagram in Figure 9 shows that Module 1 comprises six sets of BF2 units and two banks
of 32-element RAM modules for radix-2 operations. The path-routing control of multiplexers (M1–M5)
allows Module 1 to perform six-path addition and the subtraction of the input for BF2 execution or
route the read/write the data of six-set RAM banks for I/O data delivery. Module 1 operations were
more complex than those conventionally used for SDF or MDF radix-2 stages [9,24–26] because this
process enables data access for W128 multiplications by using the shared CMU (Figure 8).
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Referring to the top radix-2 related portions in Figure 8, Figure 10 details the operations of Module
1 and the controls of multiplexers M1–M5 for the first (the initial) and second 128-point input sequences
of the six streams. Figure 10 presents addresses based on the schedule of clock cycles and radix-2
operations with W128 multiplication (Figure 8).
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3.2.2. Module 2

Figure 11 presents the block diagram of Module 2 (i.e., the sorting buffer), comprising six chains
of shift registers (SRs) and multiplexers. The six streams of data from Module 1 were sent or routed
to six SR chains (1–6) through paths A to F, respectively. Module 2 conducted the intermediate data
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sorting of raidx-2/8/8 operations. For the radix-2/8 calculation, six-stream radix-2 data from Module
1 were stored in six-chain SR and then selectively read out to Module 4 for the first BF8 operations.
The calculated results were stored back into the SR chain 1 by using configurable path routing and
were prepared for subsequent radix-8/8 calculation. To continue radix-8/8 operations, eight data paths
were selected from SR chain 1 and the output to Module 3 (CMU) for W64 multiplication and the
subsequent execution of the second BF8. Figure 11 shows each SR chain was structured using eight SR
units, which were classified into two types: Type I and Type II. Both types exhibited eight stages of
flip flops and front multiplexers to support the data shift and hold. Type I was used for SR chain 1,
whereas providing parallel data accesses for eight flip flop stages. Type II was used for SR chains 2–6
and optionally enabled the routing input from other SR units.
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Figure 12 details the sorting operations of Module 2 corresponding to the periodic 10 TS units
(i.e., TS0 to TS9) in Figure 8. In Figure 12, the data of each of the six A, B, . . . , or F streams from
Module 1 (Figure 11) were represented using eight 8-sample data sections (i.e., X0, X1, . . . , and X7,
where X can refer to A, B, . . . , or F). A, B, . . . , or F indicate the current six streams, whereas A’, B’,
. . . , or F’ denotes the next six streams. Figure 12 at TS0 show that seven data sections of each stream
(e.g., A0-A6 and B0-B6) were prepared in SR chains. From TS0 to TS5, the first BF8 operation was
performed for the eight-section A, B, . . . , and F sequence, and the calculated results were stored
back to SR chain 1. At next TSs (i.e., TS1–TS6), the first BF8 outcomes stored in SR chain 1 for B-F
streams were sent out for CMU and for second BF8 operations. The data access schemes of SR chain
1 for first BF8 (stored in) and CMU/second BF8 (sent out) were alternately changed to satisfy the
radix-8/8 data permutation [Equation (5)]. This observation was enabled using type I SR (Figure 11),
which proved dual serial/parallel data shifts. Figure 12 shows the data of the new-coming six sequences,
namely A’, B’, . . . , and F’, were sent to Module 2 after TS3. By appropriately routing the data across
the SR chains (the red dashed line in Figures 11 and 12), the eight-section data of A’, B’, . . . , and F’
streams were regularly arranged in SR chains for new preparation at TS7/TS8/TS9. Therefore, the
proposed sophisticated sorting buffer scheme allowed Module 2 to efficiently access intermediate data
for radix-2/8/8 operations. The number of word storage elements for Module 2 was 64 per stream.
By combing the level of two 32-element RAMs for Module 1, the total number of storage elements
was 128. This process facilities the use of minimum memory sizes for 128-point FFT as the level of
SDF/MDF-based designs [9,24–26].
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3.2.3. Module 3

Module 3 (CMU) performed intermediate W128 and W64 multiplications for the radix-2/8/8
algorithm. According to the π/4 symmetry of twiddle factors [32], W64 multiplications could be
calculated using only eight factors of Wp′

64 = exp(− j2πp′/64) and p′ = 1, 2, . . . , 8, in cooperation with
sweeping and sign controls [24,25]. Considering the six eight-cycle TSs (i.e., TS1–TS6) executed by
the second BF8 in Figure 12, the CMU/W64 multiplication for each cycle within a single TS period
could be performed using the eight-path Wp′

64 factors, which is shown using p′ parameters in Table 2.
The appropriate rescheduling of cycles 2, 4, and 6 (the red arrow in Table 2) could be used to reduce
conflict in Wp′

64 multiplication in order to minimize the number of required Wp′

64 constant multipliers.
Additional multiplexer controls and registers were introduced to Module 2 to enable rescheduling.
For W128 multiplication, π/4-symmetry check increased the required number of Wp′

128 factors to sixteen

(p′ = 1, 2, . . . , 16) compared with Wp′

64. However, the scheme in [33] can be employed to decompose Wp′

128
into a form as Equations (6) and (7) if p′ parameter is even or odd. Because Wk,k±1

64 could be obtained

using one of the original Wp′

64 factors, thus, Wp′

128 could be derived as a combined calculation of W1or3
128

and Wp′

64. Therefore, only W1or3
128 constant multipliers were required to perform W128 multiplication

with the existing Wp′

64 constant multipliers.

Wp′

128 = W2k
128 = Wk

64, when p′ is even (6)

Wp′

128 = W2k+1
128 = W1

128Wk
64 = W−1

128Wk+1
64

= W3
128Wk−1

64 = W−3
128Wk+1

64 , when p′ is odd
(7)

As mentioned previously (Figures 9 and 10), six streams of data were accessed between Modules
1 and 3 for W128 multiplications. To avoid conflict operations associated with access to identical
six-stream W128 factors in the same cycle, a one-sample shift was sequentially applied to the six paths
of the CMU-related data accesses of the RAM banks (from Module 1, Figure 9). Figure 13 shows that
the architecture of Module 3 allows access to six streams of data from Module 1 for multiplications
involving W128 factors, and eight data paths from Module 2 for multiplications involving W64 factors
(two arrow lines in Figure 13). Several duplicated W3

128 and W4
64 constant multipliers were used to

manage residual conflicting W128 and W64 multiplications, such as cycle 4 in Table 2, to perform W4
64

multiplication twice. On the basis of our evaluation, the overall CMU (Module 3) covered an area
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equivalent to 4.18 complex multipliers (structured as four real multipliers and two adders). This process
was more area-efficient than the direct approach by using six/eight complex multipliers for six-stream
or eight-path operations.

Table 2. Lists and scheduling of eight-path Wp′

64 factors (in p′) for each cycle in a given TS.
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Table 2. Lists and scheduling of eight-path '
64

pW  factors (in p′) for each cycle in a given TS. 

cycles 0 1 2 3 4 5 6 7 
BF8 path 1 0 0 0 0 0 0 0 0 
BF8 path 2 0 1 2 3 4 5 6 7 
BF8 path 3 0 2 4 6 8 6 4 2 
BF8 path 4 0 3 6 7 4 1 2 5 
BF8 path 5 0 4 8 4 0 4 8 4 
BF8 path 6 0 5 6 1 4 7 2 3 
BF8 path 7 0 6 4 2 8 2 4 6 
BF8 path 8 0 7 2 5 4 3 6 1 

As mentioned previously (Figures 9 and 10), six streams of data were accessed between Modules 
1 and 3 for W128 multiplications. To avoid conflict operations associated with access to identical six-
stream W128 factors in the same cycle, a one-sample shift was sequentially applied to the six paths of 
the CMU-related data accesses of the RAM banks (from Module 1, Figure 9). Figure 13 shows that 
the architecture of Module 3 allows access to six streams of data from Module 1 for multiplications 
involving W128 factors, and eight data paths from Module 2 for multiplications involving W64 factors 
(two arrow lines in Figure 13). Several duplicated 3

128W  and 4
64W  constant multipliers were used to 

manage residual conflicting W128 and W64 multiplications, such as cycle 4 in Table 2, to perform 4
64W  

multiplication twice. On the basis of our evaluation, the overall CMU (Module 3) covered an area 
equivalent to 4.18 complex multipliers (structured as four real multipliers and two adders). This 
process was more area-efficient than the direct approach by using six/eight complex multipliers for 
six-stream or eight-path operations. 

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 14 

 
Figure 13. Block diagram of Module 3 (CMU). 

3.2.4. Module 4 

The two BF8 units in Module 4 were used for the first and second BF8 operations, respectively. 
Figure 14 shows the BF8 unit used three radix-2 stages based on the radix-23 algorithm [9]. In each 
radix-2 stage, four sets of BF2 elements were used for eight-path BF8 operations. Moreover, one 1

8W  

and one 3
8W  constant multiplier each were required between the radix-2 stages 2 and 3.  

1
8W3

8W
 

Figure 14. Block diagram of the first or second BF8 unit in Module 4. 

4. Results and Comparison 

4.1. Design Implementation 

The evaluated signal is used to evaluate the proposed kernel accuracy. After fixed-point 
simulation using MATLAB, the signal-to-quantization-noise ratio (SQNR) was approximately 40 dB 
by using the proposed FFT kernel. This was implemented in a 1.0-V UMC 90-nm 1P9M 
complementary metal-oxide semiconductor process, the proposed FFT kernel used the Synopsys 
Design Compiler to synthesize the RTL code and employed Cadence SOC Encounter for placement 
and routing. The proposed FFT kernel consumed 10.72 mW of power and was operated at 80 MHz, 
and the core area of the proposed kernel was 739 × 734 μm2. Figure 15 shows the core layout of the 
proposed kernel and its characteristics. The kernel test chip could perform 128/64-point FFT in 4–6 
streams depending on the GI′ duration. A test module was included in this kernel chip to enable the 
serial storage of test patterns from the I/O and to send them to the kernel circuit along multiple paths. 
Moreover, the FFT results were sent to the test module and then sequentially read out through I/O 
for data evaluation. The post-layout simulation was performed based on the idea that the FFT kernel 
continuously processes the pattern stored in the test module. 

Figure 13. Block diagram of Module 3 (CMU).

3.2.4. Module 4

The two BF8 units in Module 4 were used for the first and second BF8 operations, respectively.
Figure 14 shows the BF8 unit used three radix-2 stages based on the radix-23 algorithm [9]. In each
radix-2 stage, four sets of BF2 elements were used for eight-path BF8 operations. Moreover, one W1

8
and one W3

8 constant multiplier each were required between the radix-2 stages 2 and 3.
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4. Results and Comparison

4.1. Design Implementation

The evaluated signal is used to evaluate the proposed kernel accuracy. After fixed-point simulation
using MATLAB, the signal-to-quantization-noise ratio (SQNR) was approximately 40 dB by using the
proposed FFT kernel. This was implemented in a 1.0-V UMC 90-nm 1P9M complementary metal-oxide
semiconductor process, the proposed FFT kernel used the Synopsys Design Compiler to synthesize the
RTL code and employed Cadence SOC Encounter for placement and routing. The proposed FFT kernel
consumed 10.72 mW of power and was operated at 80 MHz, and the core area of the proposed kernel
was 739 × 734 µm2. Figure 15 shows the core layout of the proposed kernel and its characteristics.
The kernel test chip could perform 128/64-point FFT in 4–6 streams depending on the GI′ duration.
A test module was included in this kernel chip to enable the serial storage of test patterns from the
I/O and to send them to the kernel circuit along multiple paths. Moreover, the FFT results were sent
to the test module and then sequentially read out through I/O for data evaluation. The post-layout
simulation was performed based on the idea that the FFT kernel continuously processes the pattern
stored in the test module.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 14 
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4.2. Comparison

Table 3 compares the proposed design with previous studies which could perform the same
FFT operations (i.e., maximum FFT length of 128). An SDF 128-point FFT processor was developed
based on the radix-24 algorithm [30] and its performance was extended to four streams for evaluation.
That which is compared deals with devices based on different technologies; therefore, the area was
normalized [Equation (8)] based on the scheme in [27,33]. Although the GI duration is relatively short
(e.g., 1/4 symbol duration) in timeliness considerations, the proposed FFT kernel could lend support to
a throughput gain of (6/4) for the number of streams, only mainly needing additional memory elements
for the two-stream data storage. The comparison results demonstrated the per-stream area efficiency
of the proposed design by using area-efficient Modules 2 and 3 (sorting buffer and CMU), resource
sharing and hardware use GI duration. Table 3 shows the improved area efficiency of the proposed
design because the proposed scheme achieved the highest throughput by using modest hardware
resources (i.e., throughput per area).

Nor. Core Area =
Core Area

(Tech./90 nm)2 (8)
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Table 3. Performance evaluation and comparison based on 128-point FFT specification.

[25] [30] (ref.) [21] Proposed

Architecture MRMDF R-24 SDF MDC MRM2DF
Technology 0.13 µm 90 nm 0.18 µm 90 nm

No. stream (path) 4 4 4 6
Clock rate (MHz) 40 80 75 80

Nor. core area3 (mm2) 0.67 1 0.54 0.525 2 0.55 1

Throughput (R: clock rate) 4R 4R 4R 6R (six streams)
Throughput per area (R/mm2) 5.97 7.41 7.62 10.91

1 A test module was included. 2 An output sorting buffer was included. 3 All the values for area were normalized
using Equation (8).

5. Conclusions

In this study, an area-efficient FFT kernel was presented using the MRM2DF structure for
multistandard MIMO-OFDM applications. The proposed design scheme allowed 64/128-point FFT in
up to six streams through the efficient use of GI duration, thereby enhancing area efficiency per stream.
Novel resource-sharing and operation-rescheduling schemes were developed using an area-reduced
CMU to minimize multiplication hardware costs. Finally, a sophisticated sorting buffer was proposed
using the minimum memory size to further reduce area overhead. A test chip was developed using
UMC 90-nm technology, and was validated through post-layout simulation. The proposed design
exhibited an area efficiency superior to that of previous 128-point-based FFT designs in terms of the
throughput per area.
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