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Abstract: A computerized detection system for the diagnosis of Schizophrenia (SZ) using
a convolutional neural system is described in this study. Schizophrenia is an anomaly in the
brain characterized by behavioral symptoms such as hallucinations and disorganized speech.
Electroencephalograms (EEG) indicate brain disorders and are prominently used to study brain
diseases. We collected EEG signals from 14 healthy subjects and 14 SZ patients and developed
an eleven-layered convolutional neural network (CNN) model to analyze the signals. Conventional
machine learning techniques are often laborious and subject to intra-observer variability. Deep learning
algorithms that have the ability to automatically extract significant features and classify them are
thus employed in this study. Features are extracted automatically at the convolution stage, with the
most significant features extracted at the max-pooling stage, and the fully connected layer is utilized
to classify the signals. The proposed model generated classification accuracies of 98.07% and 81.26%
for non-subject based testing and subject based testing, respectively. The developed model can likely
aid clinicians as a diagnostic tool to detect early stages of SZ.

Keywords: automated detection system; schizophrenia; deep learning; deep learning algorithm

1. Introduction

In the medical field, diseases are often diagnosed by means of laboratory tests, biological markers,
or by imaging modalities. However, the diagnosis of diseases encompassing psychiatric disarray is
predominantly based on interviews from patients, symptoms presented, and the existence or absence of
representative behavioral signs [1]. Schizophrenia (SZ) is a severe, prolonged disorder of the brain that
interrupts normal thinking, speech, and the behavioral characteristics of an individual [2]. The National
Institute of Mental Health views SZ as a significant contributor to disease burden, with about 2.4
million people in the United States over the age of 18 effected by it [3]. Moreover, the World Health
Organization reports that more than 21 million people are affected by SZ worldwide. Schizophrenia is
a manifestation of a constellation of symptoms that can include hallucinations, hearing voices that are
non-existent, disorganized speech, and functional deterioration, among many others.
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Environmental perils such as premature birth, low birth weight, perinatal hypoxia, exposure to
an intrauterine virus at an early stage of life, and stressors related to social isolation, migrant status,
and urban life at adulthood, subtly hamper brain development, which can lead to the disease [4].
Additionally, since SZ is highly genetic [5], individuals with the genes Neurogranin and Zinc Finger
Protein 804A have an increased risk of developing it [6]. Quality of life is then compromised,
with most SZ patients being unable to function in workplaces, 20–40% attempting suicide at least
once, and between 5–10% successfully committing suicide [7]. Hence, precise and timely prognosis is
desired for better treatment and for the recovery of the patient. To date, there is not an established
clinical test for SZ, and diagnosis relies on behavioral markers observed by experts. Such assessments
are subjective and not very accurate; they fail to capture underlying abnormalities taking place within
the brain.

Neuroimaging techniques using multimodal imaging are currently used to detect SZ. Some of
these modalities include magnetic resonance imaging, positron emission tomography, functional
magnetic resonance imaging, and diffusion tensor magnetic resonance imaging. A combination of
the above-mentioned methods may be useful when one imaging modality alone does not explicate
the neurological disease of the patient [8]. However, employing a combination of imaging devices
may not only be costly for implementation, but also the fusion of images acquired from two different
devices may not be of sufficient quality due to motion artifacts [9]. Hence, a more cost-effective
method of diagnosing SZ is needed. Electroencephalograms (EEG) are signals which characterize
the electrical activity of the human brain recorded from the scalp. It would be very helpful to
automatically detect neurological disorders such as epilepsy, depression [10] Parkinson’s disease [11]
and Alzheimer’s disease [12,13] by computerized means. Recent studies have analyzed EEG signals
for SZ diagnosis [14,15]. Table 1 summarizes the published studies of computer-aided detection (CAD)
systems using EEG for SZ classification.

Kim et al. [16] extracted EEG recordings with 21 gold cup electrodes placed according to the 10–20
international system, as the horizontal and vertical eye movements of participants were monitored.
MATLAB and EGGLAB toolboxes [17] were employed to pre-process the signals, and five frequency
bands were selected for analysis. The spectral power of EEG data was computed with fast Fourier
transformation, after which the EEG power deviations were studied using the analysis of variance
(ANOVA) measure for each of the five frequency bands examined. The diagnostic performance of
a test used to distinguish between normal and SZ patients was evaluated with receiver operating curve
(ROC) analysis. The delta power was reported to have the highest classification accuracy, at 62.2%.
Dvey-Aharon et al. [14] studied the EEG recordings of 50 participants using a 64 electrode array.
The electrodes were placed above and beneath the right eye, and laterally with respect to the left
and right eyes, to monitor vertical and horizontal eye movements, respectively. The EEG signals
were pre-processed, with the raw signals being segmented into relevant intervals, and time-frequency
representation was then implemented using the Stockwell transform [18]. Features were extracted
from the time-frequency representation, after which certain time frames were discerned based on
a set of stimuli between the time-frequency matrix representations of healthy and SZ patients. A high
classification accuracy was yielded, with the best five distinct electrodes having a prediction accuracy
ranging between 92.0% and 93.9%. The best electrode was found to be F2.

Johannesen et al. [19] acquired EEG recordings from participants using a 64 electrode system,
and according to international standards, the patients were tasked with a memory working activity.
Participants were required to press one of two response buttons, using either their right or left index
finger, to indicate whether a particular letter was presented in the previous set. The signals were
analyzed using the Brain Vision Analyser software and segmented via four stages of processing:
pre-stimulus baseline, encoding, retention and retrieval. At each of the four stages of processing,
time-frequency data (squared wavelet coefficients, binned and averaged according to correct versus
incorrect response accuracy) were retrieved for the five frequency bands examined. Statistical analyses
were conducted on spectral power measured at the Frontal, Central and Occipital locations. Feature
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selection was done using the wrapper method [20]. The 1-norm Support Vector Machine (SVM) classifier
was utilized to classify correct and incorrect trials in data with the SVM Model 1, yielding a classification
accuracy of 84%. The SVM Model 2 was implemented to classify normal versus SZ condition in
correct trial data, achieving a classification accuracy of 87%. Santos-Mayo et al. [21] analyzed the
EEG-event-related potentials(ERP) signals of participants who were involved in an auditory oddball
task. The brain signals were recorded using Brain Vision equipment, in compliance with 10–20
international standards. After acquisition, the signals were pre-processed using EGGLAB, after which
16 time-domain features and four frequency-domain features were extracted per electrode, for each
participant. Features were selected via linear discriminant analysis using J5, mutual information
feature selection (MIFS), and double input symmetrical relevance. The Multilayer Perceptron (MLP)
and SVM classifiers were employed for classification. High classification rates of 93.42% and 92.23%
were achieved with the J5 MLP and J5 SVM classifiers, respectively.

Ibanez-Molina et al. [22] acquired EEG recordings from participants while they were at rest
and engaged in a naming task. The Neuroscan SynAmps 32-channel amplifier was employed for
the data acquirement. EEG signals at the resting phase were acquired prior to the task, while those
from the task were extracted after each trial. In the resting phase, the segments were analyzed using
a moving window method, after which Lempel–Ziv complexity (LZC) was computed per window.
After normalization, the final LZC value was computed by calculating the average of the values
obtained from the moving window method. A total of 80 EEG segments of 2 × 103 ms were evaluated,
at task, and then averaged to obtain the final Multiscale LZC value. Higher complexity values were
reported in right frontal regions of patients who were at rest. Pang et al. [23] analyzed 2D time and
frequency domain connectivity features and 1D intricate network features gauged from EEG signals.
These features were then input to the Multi-domain connectome CNN model to obtain feature maps,
which aided in the classification process. An accuracy of 93.06% was yielded.

It is notable from Table 1 that most prior studies employed machine learning techniques to
diagnose SZ. However, these conventional techniques can be cumbersome, as features require manual
extraction and selection prior to SZ classification. Additionally, these methods underperform when
large datasets are used. Hence, we have employed a deep convolutional neural network (CNN) model
to detect SZ in this study. The novelty of this method lies in the development of an eleven-layered
system to distinguish between normal and SZ subjects using EEG signals. Moreover, this model
circumvents the typical feature extraction and classification processes, allowing quicker yet more
accurate diagnosis.

2. EEG Recording and Preprocessing

EEG signals from 14 patients with paranoid SZ, comprising seven males and seven females,
with average ages of 27.9 ± 3.3 and 28.3 ± 4.1 years, respectively, were collected from the Institute
of Psychiatry and Neurology in Warsaw, Poland [24]. The exclusion standards involved patients
with severe neurological ailments such as Alzheimer’s, early stage SZ, and epilepsy, amongst other
considerations, such as pregnancy and existence of a general medical condition. Fourteen healthy
subjects within the same age group and gender proportion were recruited for the study from the same
institute as well. Each participant provided informed consent to participate in the study upon receiving
the study protocol.

As participants remained in a relaxed state with eyes closed, fifteen minutes of EEG data was
collected at a sampling rate of 250 Hz. Data was obtained via the typical International 10–20 System.
The electrodes used were Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2.
The signals acquired were then divided into segments, in which the signals can be considered to be
stationary. Each segment consisted of a 25 s (6250 sample) window length and was normalized with
Z-score, before feeding to the one-dimensional deep convolution network for training and testing.
A total of 1142 EEG segments were used and each segment consisted of 6250 × 19 sampling points.
Normalization was employed to scale the signals to a standard range of values, hence allowing
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faster convergence by the deep learning model during training. For subject-based testing and
non-subject-based testing, 50 epochs and 70 epochs were fed into the network, respectively. An epoch
is the dataset that passes forward and backward through a neural network once. An epoch of training
for deep learning lasted between 2 to 3 s. For subject-based testing, the validation of the system is
executed in three phases: training the data, validation, and testing of data, respectively. During the
training phase, k-fold validation is employed, wherein the full data pool is split into fourteen equal
parts (subjects). Of these subjects, twelve were used for training, one subject for validation, and one
subject for testing, respectively. This process was repeated fourteen times so that all of the fourteen
subjects were subjected to the training, validation, and testing phases. In non-subject based testing,
the system is validated through the training and testing phases. During the training phase, ten-fold
validation is employed, whereby the entire data is split into ten uniform parts. Of these, nine are used
for training the model and the remaining one part is used to test. This process is reiterated such that
each of the ten portions is involved in both the training and testing phases. Thereafter, 20% of the
cross-validation training data is set aside for validation of the model. Figure 1 illustrates an example of
EEG recordings from normal and SZ patients.

Figure 1. Illustration of normal (left) and Schizophrenia (SZ) (right) Electroencephalograms (EEG)
recordings. (X axis: seconds, Y axis: channels).

3. Deep Learning

Since EEG signals are nonlinear in nature, nonlinear feature extraction techniques are often
employed to differentiate between EEG signals of normal versus SZ patients [25]. Machine learning
is prevalently used for pattern recognition. However, this state-of-the-art technique exhibits some
impediments. It works well for simple recognition tasks [26], but in realistic settings where the
features studied display substantial variability, larger training datasets are needed in order to recognize
them [27]. Additionally, a model with a sizeable learning capacity enables higher level features to be
studied through learning of data from large datasets as compared to the traditional machine learning
techniques. Moreover, conventional techniques require features to be extracted manually. In deep
learning, both the feature extraction and classification processes are conducted automatically [28,29]
unlike the traditional machine learning techniques. Amongst others, CNN is the most prevalent type
of deep learning network that has been exploited by researchers to identify abnormal EEG signals [30]
and to study these signals to diagnose disorders such as depression [31], seizure [32], attention deficit
hyperactivity disorder [33] and autism [34]. In this study, an eleven-layer deep CNN model has been
implemented to discern between normal and SZ classes for non-subject based testing and subject
based testing, respectively. Figures 2 and 3 illustrate the models used for non-subject based testing and
subject based testing, respectively.
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Figure 2. The proposed convolutional neural network (CNN) model for non-subject based testing.

Figure 3. The proposed CNN model for subject based testing.

3.1. Convolutional Neural Network

The CNN is a complex network which comprises many masked layers and parameters. The three
main tiers in the network are the convolution, max pooling, and fully connected layers [35]. The CNN
undergoes a training protocol wherein the convolutional layer uses different sized kernels to interpret
the input signal. During convolution, features are extracted from input signals, with the feature maps
formed thereafter for the next layer [36]. To normalize the training data, the batch normalization layer
is then exercised so that it flows between the middle layers. This helps to expedite and boost the
learning process. Max pooling shrinks the size of the feature map, as it yields only the highest number
in every kernel. The output from the convolutional and pooling layers portray the top features of the
input data. The fully-connected layer then categorizes the input data into the various classes based on
the training data. Each neuron in the max pooling and fully-connected layers are connected, whereby
the output accurately forecasts the outcome of the input signal as normal or not [37,38].

The system generally learns better with increasing depth of the network; however deeper networks
may prolong computational time. Yet, in our study, careful consideration was taken in designing
a network that merits a more rapid calibration time. The best classification result is yielded from
parameters which are calibrated during training.
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3.2. Proposed CNN Architecture

Figures 2 and 3 highlight the architectures proposed in this study. Subject-based testing and
non-subject based testing involve different approaches. CNN architecture of subject-based testing
uses average pooling layer to obtain smoother features and global average pooling layer at the end
to provide more generalized predictions, while the non-subject based testing is a classical CNN
architecture that consists of convolution, max pooling and fully connected layers. These structural
differences help to enable the model to generalize better during the training phase, depending on the
partitioned training and testing data. The non-subject based testing model tends to perform well as we
may be using the same subject data for training as well as testing. However, when data are separated
based on subject, the classification model needs to learn well the generalized features, in order to
classify the new subject data correctly. Hence different architectures of CNN were used.

To improve generalization for subject based testing, dropout is applied to layers 4 and 6 during
training, with a dropout rate of 0.5 (meaning that there is 0.5 probability that a neuron will be dropped
out during training) but in non-subject based testing, dropout is applied to layers 9 and 10 with a dropout
rate of 0.5. Table 1 details the layers used. In subject based testing, Adam optimization [39] parameters,
with a learning rate of 0.001, are employed with the Leaky Rectifier Linear Unit (LeakyRelu) and their
function is used as the activation functions for layers 1, 3, 5, 7, 9 and 11, respectively. Max pooling is
employed after convolution to extract the most crucial features. The average pooling layer is applied
after max pooling, to better smooth the features. Subsequently, the global average pooling layer is
used instead of the dense layer, in order to obtain a more generalized model. Global average pooling
has the upper hand over the dense layer as it does not contain any trainable parameters, thus reducing
the likelihood of overfitting. All of the factors are fine-tuned based on the training set that provides the
optimal training accuracy. The number of filters and kernel size were determined via the brute force
technique. Classification was then done with the help of the fully-connected layer.

In non-subject based testing, Adam optimization parameters with a learning rate of 0.0001 are
used with LeakyRelu and Softmax functions for layers 1, 3, 5, 7, 9, 10 and 11, respectively. Max pooling
is applied after convolution at each stage to extract the most important features. Table 2 highlights the
details of all layers used. The model with the best validation accuracy was considered during training
and testing. Classification was then done with the help of the fully-connected layer.

Table 1. Parameter details of each layer of the developed CNN model in subject base testing.

Layers Type of Layer No. of Neurons (Output Layer) Kernel Size Stride

1 Convolution 6248 × 5 3 1
2 Max pooling 3124 × 5 2 2
3 Convolution 3122 × 5 3 1
4 Max pooling 1561 × 5 2 2
5 Convolution 1559 × 5 3 1
6 Average pooling 779 × 5 2 2
7 Convolution 777 × 5 3 1
8 Average pooling 388 × 5 2 2
9 Convolution 386 × 5 3 1

10 Global Average pooling 5 - -
11 Fully connected 2 - -



Appl. Sci. 2019, 9, 2870 7 of 13

Table 2. Parameter details of each layer of the developed CNN model in non-subject based testing.

Layers Type of Layer No. of Neurons (Output Layer) Kernel Size Stride

1 Convolution 6241 × 5 10 1
2 Max pooling 3120 × 5 2 2
3 Convolution 3111 × 10 10 1
4 Max pooling 1555 × 10 2 2
5 Convolution 1546 × 10 10 1
6 Max pooling 773 × 10 2 2
7 Convolution 769 × 15 5 1
8 Max pooling 384 × 15 2 2
9 Fully connected 20 - -
10 Fully connected 10 - -
11 Fully connected 2 - -

3.3. Results

The CNN network employed in this study was designed using Two Intel Xeon 2.40 GHz (E5620)
processors with 24 GB RAM and the Intel(R) Xeon(R) CPU E5-2650 v4 2.20GHz (2 processors), 384 GB
RAM and NVIDIA Quadro K4200. Accuracy, sensitivity, positive predictive value, and specificity
were utilized as the assessment parameters. Tables 3 and 4 show the classification result per fold for
subject based testing and non-subject based testing, respectively. The best diagnostic performance
for the subject based testing is achieved with a learning rate of 0.001 while that of the non-subject
based testing it is 0.0001. Figure 4a,b indicate the performance of the network with dropout layers.
It is notable that the accurateness of the training set does not deviate substantially from that of the
validation set in Figure 4a, when dropout is added to layers 9 and 10 during training for non-subject
base testing. However, in Figure 4b, the accuracy of the training set is far better than that of the
validation set, when dropout is added to layers 4 and 6 during training for the subject base testing.
The proposed architecture generated high accuracy, sensitivity, specificity, and positive predictive
values of 98.07%, 97.32%, 98.17%, 98.45% and 81.26%, 75.42%, 87.59%, 87.59%, for the non-subject
based testing and subject based testing, respectively. It is apparent that non-subject based testing using
10-fold yields results of higher accuracy compared to subject based testing using 14-fold. Figure 5
shows the confusion matrix result. Based on Figure 5a, it is evident that 13.18% of healthy subjects are
miscategorized as SZ patients and 23.32% of healthy subjects are incorrectly classified as SZ patients.
In Figure 5b, 1.56% of healthy subjects are miscategorized as SZ patients and of 2.24% healthy subjects
are wrongly classified as SZ patients.

Table 3. Classification result per fold for subject based testing.

Fold Accuracy (%) PPV (%) Sensitivity (%) Specificity (%)

1 87.14 100.00 72.73 100.00
2 100.00 100.00 100.00 100.00
3 51.35 100.00 5.26 100.00
4 100.00 100.00 100.00 100.00
5 94.44 100.00 88.57 100.00
6 65.15 100.00 20.69 100.00
7 69.66 66.67 98.11 27.78
8 77.78 95.45 58.33 97.22
9 55.42 56.10 97.87 0.00

10 55.13 0.00 0.00 97.73
11 98.89 100.00 98.15 100.00
12 72.15 100.00 48.84 100.00
13 100.00 100.00 100.00 100.00
14 96.67 95.56 100.00 88.24
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Table 4. Classification result per fold for non-subject based testing.

Fold Accuracy (%) PPV (%) Sensitivity (%) Specificity (%)

1 96.52 98.36 95.24 98.08
2 99.13 100.00 98.41 100.00
3 99.13 100.00 98.41 100.00
4 96.52 95.38 98.41 94.23
5 100.00 100.00 100.00 100.00
6 98.26 100.00 96.83 100.00
7 94.69 95.16 95.16 94.12
8 98.23 98.39 98.39 98.04
9 99.12 100.00 98.39 100.00

10 99.12 100.00 98.39 100.00

Figure 4. Accuracy versus different epoch plot for (a) non-subject based testing and (b) subject
based testing.

Figure 5. Confusion matrix of (a) non-subject based testing and (b) subject based testing.

4. Discussion

4.1. Comparison with Related Work

Among related work, Kim et al. [16] exploited feature extraction methods on the different brain
waves and obtained an accuracy of 62.2% on the delta frequency band. Dvey-Aharon et al. [14]
also explored feature extraction methods on beta brain waves and obtained an accuracy between
91.5% and 93.9%. Johannesen et al. [19] analyzed five brain waves using a software program and
employed statistical analysis and feature selection. Two SVM models were then implemented for
classification, with accuracies of 84% and 87% yielded for models 1 and 2, respectively. Santos-Mayo et
al. [21] extracted features by employing feature extraction methods and selected features via linear
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discriminant analyses. Classification accuracies of 93.42% and 92.23% were achieved with the J5 MLP
and J5 SVM classifiers, respectively. Ibanez-Molina et al. [21] used the moving window method to
compute Multiscale LZC to analyze brain signals. The study revealed that higher complexity values
were present in right frontal regions of patients who were at rest. Pang et al. [23] employed the
Multi-domain connectome CNN model to classify extracted features with an accuracy of 93.06%.
It can be noted from Table 5 that the current state-of-the-art techniques can be employed to classify
SZ accurately. Comparing the different techniques discussed, it is evident that the highest accuracy
is yielded for the classification of SZ using the CNN deep learning algorithm. In non-subject based
testing, the segments used for training and testing are split randomly, wherein the subjects are not truly
separated, resulting in higher accuracy, as compared to subject based testing, wherein the segments are
not randomly split. Hence, using 10-fold validation [40,41] for non-subject based testing generated more
accurate results as compared to 14-fold validation for subject based testing. The model developed in
our study and described herein could potentially also be used to diagnose other neurological disorders
such as Alzheimer′s, Parkinson’s disease, and epilepsy. Apart from the CNN model, other deep
learning methods such as long short-term memory (LSTM) and autoencoders could also be explored in
the diagnosis of SZ.

4.2. Merits and Drawbacks of the New Paradigm

The main advantages of the proposed system include:

(1) An eleven-layered CNN model has been developed to accurately assess SZ patients versus controls.
(2) The CNN model does the extraction, selection, and classification processes automatically.
(3) The model is validated with the highly graded 10-fold cross validation technique.
(4) High accuracy with a small data size is an attestation to the robustness of the system.

Despite its high classification accuracy, the proposed system does exhibit some limitations.
The main disadvantages of the proposed system are:

(1) The CNN model was developed using a small data pool of 14 healthy subjects and 14 SZ patients.
(2) Compared to the traditional machine learning techniques, CNN is costly to compute.
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Table 5. Summarized studies of computer-aided detection (CAD) systems using EEG for SZ classification.

Authors Number of Features Techniques Number of Participants Classification Results

Kim et al. [16],
2015 -

� Spectral power of EEG computed with Fast Fourier
Transformation using MATLAB (covariates)
� Delta, Theta, Alpha 1 and 2, Beta frequency bands analysed.
� Analysis of variance (ANOVA), ROC analysis.
� QEEG parameters

Normal: 90 healthy subjects
SZ: 90 patients

Best classification Acc:
Delta frequency band, 62.2%.

Dvey-Aharon et
al. [14], 2015 -

� Time-frequency transformation
� Feature-Optimisation
� Beta2 band frequencies
� Leave one out cross validation

Normal: 25 healthy subjects
SZ: 25 patients

Best electrodes that differentiate the 2 classes:
F2, FC3
Classification Acc:
between 91.5% and 93.9%.

Johannesen et
al. [19], 2016 60 features per participant

� Theta 1 and 2, alpha, beta and gamma frequency bands analysed
during a working memory task.
� Brain Vision Analyser software to analyse signals
� Support vector machine (SVM) to build EEG classifiers
� Regression-based analyses used to validate SVM models.

Normal: 12 healthy subjects
SZ: 40 patients

Model 1: Achieved 84% accuracy in classifying
SZ and healthy individuals.
Model 2: Achieved 87% classification accuracy
in discriminating healthy and SZ patients.

Santos-Mayo et
al. [21], 2017 20 per subject

� P3b brain signals
� Time, frequency domain features
� Channel grouping
� J5, mutual information feature selection (MIFS) or DISR feature
selection algorithms
� SVM, Multilayer perceptron (MLP) classifiers

Normal: 31 healthy subjectsSZ:
16 patients

Using 15 Hz-J5-MLP

Acc: 93.42
%Sen: 87.27%
Spe: 96.73%
Using 35 Hz-J5-SVM

Acc: 92.23%
Sen: 88.38%
Spe: 94.99%

Ibanez-Molina et
al. [22], 2018 -

� EEG signals analysed at rest and during picture naming.
� Neuroscan SynAmps 32-channel amplifier.
� Lempel–Ziv complexity (LZC), Multiscale LZC.
� Feature selection using J5, MIFS, DISR.

Normal: 17 healthy subjects
SZ: 18 patients

Healthy subjects had lesser errors made
compared to patients.
Higher complexity values were found inpatients,
in right frontal regions at rest but no differences
were found between the two groups during the
naming activity.
Higher complexity values were observed in SZ
patients at rest, compared to at task.

Pang et al. [23],
2019 -

� Multi-domain connectome CNN model
� 2D time and frequency domain connectivity features gauged from
EEG signals
� 1D intricate network features gauged from EEG signals.
� Feature maps obtained for classification via features fed into CNN.

Normal: 39 healthy subjects
SZ: 45 patients Acc: 93.06%

Present work -
� 11-layered deep CNN model
� Subject base testing using 14-fold
� Non-subject base testing using 10-fold

Normal: 14 healthy subjects
SZ: 14patients

Non-subject base testing:

Acc: 98.07% Sen: 97.32%
Spe: 98.17% Ppv: 98.45%
Subject base testing:

Acc: 81.26% Sen: 75.42%
Spe: 87.59% Ppv: 87.59%

Acc—accuracy, Sen—sensitivity, Spe—specificity, Ppv—positive predictive value.
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5. Future Work

To improve the efficacy of our CAD system, we propose adding a web-based detection component
to the existing model. Figure 6 highlights how the added component would work. This method taps
the Internet for SZ patient diagnostics. The EEG signals gathered from patients would be saved in the
server within the clinic or hospital and sent to cloud, wherein the developed CNN model is positioned.
The diagnostic result is then ported to the clinic or hospital via the cloud. Additionally, this technique
has an edge over others, as the diagnostic result can also be sent directly to the patient via a push
notification ported to mobile devices. With the implementation of this system, the task of healthcare
professionals can be made easier.

Figure 6. Illustration of the proposed cloud model.

6. Conclusions

An eleven-layered CNN model was proposed to detect SZ using EEG signals. High classification
accuracies of 98.07% and 81.26% were obtained for non-subject based testing and subject based testing,
respectively, despite the small data pool. With the proposed technique, exhaustive screening of SZ
patients to alert for behavioral markers of the disease is not required, as the model is satisfactory in
automatically assisting with the diagnosis. This robust system is foreseen to be a windfall to clinicians
as a diagnostic tool, aiding them in SZ assessment. In the near future, we intend to use a larger dataset
to test our model, and also plan to combine the web-based cloud method to identify the early stages
of SZ.
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