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Abstract: In the present study, the performance of the moment method, in terms of accuracy and
computational efficiency, was evaluated at both the macro- and microscopic levels. Three different
types of non-equilibrium gas flows, including the force-driven Poiseuille flow, lid-driven and thermally
induced cavity flows, were simulated in the slip and transition regimes. Choosing the flow fields
obtained from the Boltzmann model equation as the benchmark, the accuracy and validation of
Navier–Stokes–Fourier (NSF), regularized 13 (R13) and regularized 26 (R26) equations were explored
at the macroscopic level. Meanwhile, we reconstructed the velocity distribution functions (VDFs)
using the Hermite polynomials with different-order of molecular velocity moments, and compared
them with the Boltzmann solutions at the microscopic level. Moreover, we developed a kinetic
criterion to indirectly assess the errors of the reconstructed VDFs. The results have shown that the R13
and R26 moment methods can be faithfully used for non-equilibrium rarefied gas flows in the slip and
transition regimes. However, as indicated from the thermally induced case, all of the reconstructed
VDFs are still very close to the equilibrium state, and none of them can reproduce the accurate VDF
profile when the Knudsen number is above 0.5.

Keywords: R13 moment method; R26 moment method; slip regime; transition regime; discrete
velocity method

1. Introduction

Due to the rapid development of micro-electro-mechanical systems (MEMS) [1,2] and the shale gas
revolution in North America [3], extensive works have been devoted to constructing accurate physical
models and efficient numerical methods for non-equilibrium gas flows [4,5]. In general, the behavior
of such non-equilibrium gas flows can be described from either the microscopic or macroscopic points
of view.

The Boltzmann equation is the fundamental equation for the dynamics of rarefied gases at the
microscopic level, which uses a molecular velocity distribution function to describe the system state.
Historically, there are two mainly categories of approaches to solve the Boltzmann equation. One is
based on the probabilistic approach, well-known examples are the direct simulation Monte Carlo
(DSMC) methods developed by Brid and Nanbu [6,7]. DSMC method is an excellent approach for
solving high-speed rarefied gas flows, however, it becomes time-consuming if the flow is in the slip- and
transition-flow regimes. Another one is based on the deterministic approach, well-known examples are
the discrete velocity methods (DVMs) [8], which use a finite set of discrete velocity points to approximate
the continuous molecular velocity space. In the past two decades, most of the deterministic numerical
methods are developed based on the DVM. Many full Boltzmann solvers, especially the Fourier
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spectral methods [9,10] and fast-spectral methods [11–14], provide accurate numerical results, which
can serve as reference solutions. However, the structure of the collision operator in the full Boltzmann
solver is rather complicated: It is a fivefold integral with three dimensions in velocity space and two
dimensions in a unit sphere. Therefore, the Boltzmann equation is usually replaced by simplified kinetic
model equations, such as the Bathnagar–Gross–Krook (BGK) [15], ES-BGK [16], and Shakhov [17]
models. And most of DVMs are developed for these Boltzmann model equations. Among those
DVM solvers, the gas-kinetic unified algorithm was developed and applied to study the hypersonic
flows around spacecraft re-entry problems [18,19]. The asymptotic preserving schemes, especially
the unified gas-kinetic scheme (UGKS) [20,21] and the discrete unified gas-kinetic scheme [22,23], are
proposed for problems involving different flow regimes. The performance of the discrete unified gas
kinetic scheme and traditional Godunov DVM, in terms of accuracy and efficiency, has been evaluated
with a wide range of Knudsen numbers [24]. Most recently, the unified gas-kinetic wave-particle
method was developed under the UGKS framework, in which the evolution of simulation particles
and distribution function was guided by evolution of macroscopic variables [25,26]. Even though great
effort has been devoted to reducing the computational cost in solving the Boltzmann equation, the
multi-dimensional nature of the VDF and the complicated structure of the nonlinear collision term still
make the Boltzmann equation impractical for many applications. Therefore, alternative macroscopic
modeling and simulation strategies for rarefied gas flows have been developed [27].

The most classical macroscopic equations for rarefied flows are the Navier–Stokes–Fourier (NSF)
equations in association with the velocity-slip and temperature-jump wall boundary conditions. This
set of equations has found a wide range of applications in most of today’s industrial problems where
the Knudsen number Kn, i.e., the ratio of the mean free path λ0 of gas molecules to the characteristic
flow length L0 [27], is less than 10−1. However, additional efforts are required as the Knudsen number
increases, and many macroscopic equations are proposed to describe the rarefied gas dynamics beyond
the Navier–Stokes level. Chapman and Enskog proposed a technique via a formal asymptotic expansion
of the molecular VDF in powers of the Knudsen number [28,29]. By truncating the Chapman–Enskog
(CE) expansion into different orders, the approach leads to respectively the Euler, NS, Burnett, and
super-Burnett equations at the zeroth-, first-, second-, and third-order approximations [30]. However,
Karlin and Gorban have pointed out that the Burnett equations violate the underlying physics behind
the Boltzmann equation [31], and Wu has argued that as the order of Chapman–Enskog expansion
increases, the accuracy of the obtained macroscopic equations does not necessary increase [32].

In 1949, Grad proposed a new way to derive the macroscopic equations via the method of
moment [33,34]. Unlike the CE expansion in which the molecular VDF is expanded in powers of the
Knudsen number, Grad expanded the molecular VDF in Hermite polynomials [35]. In addition to
the mass, momentum, and energy conservation laws, the governing equations for the shear stress
and heat flux were obtained by multiplying the moment of the peculiar velocity ci = Ci − ui with the
Boltzmann equation and integrating over the velocity space Ci. This set of equations is called G13
moment equations, which can be closed by expanding the VDF into the Hermite polynomials [23,24].
Struchtrup and Torrilhon [36,37] and Struchtrup [27] regularized the G13 moment equations (denoted
as the R13 moment equations) by applying a CE-like expansion and an order-of magnitude approach.
Gu and Emerson [38] and Struchtrup and Torrilhon [37,39] obtained the wall boundary conditions
(WBCs) for the regularized 13 moment equations (R13) based on the Maxwell’s kinetic WBC [40].
The capability of the R13 moment equations in modeling microscale gas phenomena have been
investigated [41], and the R13 moment method can capture the non-equilibrium effects with the
Knudsen number up to 0.25 [41,42]. However, they cannot provide sufficient accurate description of
the Knudsen layer [43,44]. To remedy the deficiency of the R13 equations, Gu and Emerson extended
the theory of moment to regularized 26 (R26) equations [42], which is demonstrated as a potential
engineering design tool for the non-equilibrium flows in the early transition regime [45–49].

The R26 moment equations have been successfully applied in the study of pressure driven Poiseuille
flow [42,45], thermal transpiration flow [46], gas flows in porous media [47,48] and non-equilibrium
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rarefied flow past a circular cylinder [49]. However, a detailed comparative study between the moment
method and the DVM, in terms of the accuracy and efficiency, at both the microscopic and macroscopic
levels, remains relatively scarce in the literature. Therefore, the purpose of this paper is to give a
detailed comparison of the moment methods and the discrete velocity method and provide essential
information for users to choose the appropriate one for applications.

The remaining part of this paper is organized as follows. We first make an overview of the
Boltzmann model equation and the discrete velocity method, as described in Section 2. The method of
moments, including the R13 and R26 moment methods, are introduced briefly in Section 3, followed by
the evaluation of the reconstructed VDFs, as described in Section 4. Numerical simulations of several
types of typical non-equilibrium flows (1D force-driven Poiseuille flow, 2D lid-driven cavity flow, and
thermal cavity flow induced by temperature gradients) are presented and discussed in Section 5 in
comparison with the DVM data. A brief summary is finally given in Section 6.

2. The Kinetic Equation and Discrete Velocity Method

From the microscopic point of view, the behavior of the rarefied gas dynamics can be described
from the Boltzmann model equation:

∂ f
∂t

+ Ci
∂ f
∂xi

+ gi
∂ f
∂Ci

= −
1
τ
[ f − f eq], (1)

where f = f (t, xi, Ci) denotes the VDF of gas molecular with the molecular velocity Ci at the position
xi = (x, y, z) and the time t. gi is the external acceleration. The mean relaxation time τ is related to the
viscosity µ and pressure p by τ = µ/p [50]. In this work, the Bhatnagar–Gross–Krook (BGK) collision
model [15] is utilized, and the equilibrium VDF can be defined as [40]:

f eq = fM =
ρ

(2πRT)3/2
exp

− (Ci − ui)
2

2RT

, (2)

where ρ, ui and T represent the density, bulk velocity and the temperature of the gas, respectively. R is
the gas constant. For convenience, the intrinsic or peculiar velocity is introduced as, ci = Ci − ui.

The classical way to solve this Boltzmann model equation is through the time-implicit discrete
velocity method. Firstly, the time derivate term can be removed, and the discretization of the partial
differential equation can be expressed by:

Ci
∂ f n+1

∂xi
+

1
τ

f n+1 =
1
τ

f eq,n
− gi

∂ f n

∂Ci
, (3)

where the superscript n and n + 1 stand for the nth and n + 1th iterations, respectively. The right-hand
side of the Equation (3) is the explicit part, and the left-hand side is the implicit part which can be
solved by introducing a second-order upwind scheme. In the upwind scheme, the spatial gradient
term with respect to the mesh point x = xi (e.g., in the x-direction), is evaluated by:

∂ f n+1

∂x

∣∣∣∣∣
x=xi

=
3 f n+1

i −4 f n+1
i−1 + f n+1

i−2
2∆x , Cx > 0

∂ f n+1

∂x

∣∣∣∣∣
x=xi

=
− f n+1

i+2 +4 f n+1
i+1 −3 f n+1

i
2∆x , Cx < 0

. (4)

Then, the evolution equations for the VDF can be obtained by substituting Equation (4) into
Equation (3), which yields:

[
1
τ +

3Cx
2∆x

]
f n+1
i = 1

τ f eq,n
i − gx

∂ f n
i

∂Cx
+ Cx

4 f n+1
i−1 − f n+1

i−2
2∆x , Cx > 0[

1
τ −

3Cx
2∆x

]
f n+1
i = 1

τ f eq,n
i − gx

∂ f n
i

∂Cx
+ Cx

f n+1
i+2 −4 f n+1

i+1
2∆x , Cx < 0

. (5)
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Meanwhile, the Maxwell’s kinetic diffuse–specular wall boundary condition is applied [40], which
assumes that a fraction α of gas molecules undergoes diffusive reflection with Maxwellian distribution
function f w

M, while the remaining part (1− α) will be reflected specularly. Suppose the wall has a
temperature of Tw and moves with the velocity uw, the VDF for the reflected molecules at the wall is
given by:

f w =

α f w
M + (1− α) f (−Cini), Cini ≥ 0,

f (Cini), Cini < 0,
(6)

where ni is the normal unit vector of the wall pointing towards the gas in a frame in which the coordinates
are attached to the wall. The reflected Maxwellian distribution function can be expressed as:

f w
M =

ρw

3√2πRTw
exp

−
∣∣∣Ci − uw

i

∣∣∣2
2RTw

, (7)

where ρw is the reflected gas density and need to be determined such that the mass flux across the
wall is equal to zero. In the Maxwell’s kinetic wall boundary condition, the cases of α = 1 and α = 0
correspond to the diffusive-reflection and specular-reflection conditions, respectively. The results
obtained from the Boltzmann model equation can be served as the benchmark data.

3. The Method of Moments

The conservation laws for the mass, momentum, and energy read [27]:
∂ρ
∂t +

∂ρui
∂xi

= 0,
∂ρui
∂t +

∂ρuiu j
∂x j

+
∂σi j
∂x j

= −
∂p
∂xi

+ ρgi,
∂ρT
∂t +

∂ρuiT
∂xi

+ 2
3R

∂qi
∂xi

= − 2
3R

(
p∂ui
∂xi

+ σi j
∂u j
∂xi

)
,

(8)

in which, the pressure p is related to the temperature T by the ideal gas law p = ρRT. σi j and qi are
the stress tensor and heat flux, respectively. Any subscript i, j, k represents the usual summation
convention. The classic way to close this set of equations is through a CE expansion of the molecular
distribution function, and yields the NSF equations:

σi j = σNSF
ij = −2µ

∂u<i
∂x j>

, and qi = qNSF
i = −

15
4

Rµ
∂T
∂xi

, (9)

in which, the angular brackets are used to denote the traceless part of a symmetric tensor. With the
moments obtained from the NSF solutions, i.e.,

{
ρ, ui, T, σi j, qi

}
, the VDF can be approximated by the

first-order expansion of Hermite polynomials f (1),

f (1) = fM

[
1 +

σi jcic j

2pRT
+

ciqi

pRT

(
c2

5RT
− 1

)]
. (10)

As the value of the Knudsen number increases, Newton’s law for stress and strain and Fourier’s
law for heat flux and temperature gradient in Equation (9) do not hold anymore, and it is necessary to
adopt the method of moments. In R13 moment method, the governing equations for the σi j and qi are:

∂σi j
∂t +

∂ukσi j
∂xk

+
∂mi jk
∂xk

= −
p
µσi j − 2p ∂u<i

∂x j>
−

4
5
∂q<i
∂x j>
− 2σk<i

∂u j>
∂xk

,
∂qi
∂t +

∂u jqi
∂x j

+ 1
2
∂Ri j
∂x j

= − 2
3

p
µqi −

5
2 pR ∂T

∂xi
−

7σikR
2

∂T
∂xk
−RT ∂σik

∂xk
+

σi j
ρ

(
∂p
∂x j

+
∂σ jk
∂xk

)
−

2
5

(
7
2 qk

∂ui
∂xk

+ qk
∂uk
∂xi

+ qi
∂uk
∂xk

)
−

1
6
∂∆
∂xi
−mi jk

∂u j
∂xk

,

(11)
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respectively. In which mi jk, Ri j, ∆ represent the unknown moments. To closed this set of R13
moment equations, the algebraic expressions for mi jk, Ri j, ∆ have been derived by Struchtrup and
Torrilhon [27,36]. An alternative way to evaluate these high order moments mi jk, Ri j, ∆ is by deriving
their governing equations from the Boltzmann equation. In R26 moment method, they are [42]:

∂mi jk
∂t +

∂ulmi jk
∂xl

+
∂φi jkl
∂xl

= −
p
µmi jk − 3RT

∂σ<i j
∂xk>
−

3
7
∂R<i j
∂xk>

+Mi jk,
∂Ri j
∂t +

∂ukRi j
∂xk

+
∂ψi jk
∂xk

= −
p
µRi j −

28
5 RT ∂q<i

∂x j>
− 2RT

∂mi jk
∂xk
−

2
5
∂Ω<i
∂x j>

+<i j,
∂∆
∂t + ∂∆ui

∂xi
+ ∂Ωi

∂xi
= −

p
µ∆ − 8RT ∂qk

∂xk
+ ℵ.

(12)

fi jkl, ψi jk, Ωi present the unknown high order moments, andMi jk, <i j, ℵ are the nonlinear source
terms, they are all listed in Appendix A. To apply the R13 and R26 equations to non-equilibrium flows,
appropriate wall boundary conditions are required. Based on the Maxwell’s kinetic wall boundary
condition, Gu and Emerson and Torrilhon and Struchtrup derived a set of solid wall boundary
conditions for these extended thermodynamic macroscopic equations, they are listed in ref [38,39,42].
With the moments available in the R13 moment equations, i.e.,

{
ρ, ui, T, σi j, qi, mi jk, Ri j, ∆

}
, the VDF can

be approximated by the third-order expansion of Hermite polynomials f (3),

f (3) = fM
[
1 +

σi jcic j
2pRT +

ciqi
pRT

(
c2

5RT − 1
)
+

mi jkcic jck

6p(RT)2

+
Ri jcic j

4p(RT)2

(
c2

7RT − 1
)
+ ∆

8pRT

(
c4

15(RT)2 −
2c2

3RT + 1
)]

.
(13)

Similarly, the macroscopic quantities
{
ρ, ui, T, σi j, qi, mi jk, Ri j, ∆,φi jkl,ψi jk, Ωi

}
can be obtained after

solving the R26 moment equations, and the VDF can be approximated by the fifth-order expansion of
Hermite polynomials f (5),

f (5) = fM
[
1 +

σi jcic j
2pRT +

ciqi
pRT

(
c2

5RT − 1
)
+

mi jkcic jck

6p(RT)2 +
fi jklcic jckcl

24p(RT)3 +
Ri jcic j

4p(RT)2

(
c2

7RT − 1
)

+ ∆
8pRT

(
c4

15(RT)2 −
2c2

3RT + 1
)
+

ψi jkcic jck

12p(RT)3

(
c2

9RT − 1
)
+ ciΩi

40p(RT)2

(
c4

7(RT)2 −
2c2

RT + 5
)]

.
(14)

With Equations (10), (13) and (14), the accuracy of different macroscopic equations including the
NSF equations, R13 and R26 moment equations can be evaluated and compared with the Boltzmann
solutions at the microscopic level.

4. Evaluation of the f (1), f (3) and f (5) at the Microscopic Level

As ‘nonequilibrium’ is a very broadly used term, Meng et al. [51] propose a kinetic criterion to
indirectly assess the errors introduced by a continuum-level description of the gas flow, as shown in
Equation (15):

Eeq
s =

√√√√√√√∫ (
f − f

eq)2
dC∫ (

f
eq)2

dC
, (15)

where f and f eq are the non-dimensional form of f and feq, they are:

f = f

(√
2RT0

)3

ρ0
and f

eq
= f eq

(√
2RT0

)3

ρ0
. (16)
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Similarly, we equate the accuracy of the reconstructed VDFs to how far the molecular velocity

distribution function f deviates from the f
(1)

, f
(3)

, f
(5)

. At the kinetic level, the errors of f
(1)

, f
(3)

, f
(5)

can be measured by:

E(1)
s =

√√√√√√√√√√√∫ (
f − f

(1)
)2

dC∫ (
f
(1)

)2
dC

, E(3)
s =

√√√√√√√√√√√∫ (
f − f

(3)
)2

dC∫ (
f
(3)

)2
dC

, E(5)
s =

√√√√√√√√√√√∫ (
f − f

(5)
)2

dC∫ (
f
(5)

)2
dC

, (17)

where f
(1)

, f
(3)

and f
(5)

are the non-dimensional form of f (1), f (3) and f (5). With above assumptions
and definitions, the analysis of the moment methods can be implemented at both the macroscopic and
microscopic levels.

5. Numerical Results and Discussions

5.1. Force-Driven Poiseuille Flow

The performance of the moment equations and the DVM is first evaluated by simulating the
one-dimensional (1D) force-driven Poiseuille flow between two parallel plates, which are located at
y = −L0/2 and y = L0/2. The reference characteristic length and the reference temperature are set
to be L0 = 10−5m and T0 = 273 K, respectively. An external force is applied in the x-direction, and
the non-dimensional force is set to be gi = L0gi/(2RT0) = 0.01. The spatial space is discretized with

51 grids, and the velocity space for the DVM is discretized in a range of
[
−6
√

2RT0, 6
√

2RT0
]3

with
64 × 64 × 24 non-uniform distributed Newton–Cotes quadrature points. Independence of results with
respect to the number of discrete velocities is already validated. In the DVM, the diffuse boundary
condition is applied on both plates. Suppose the magnitude of the external acceleration is very small,
the derivation of the force term can be approximated by:

gi
∂ f
∂Ci
≈ gi

∂ f eq

∂Ci
(18)

The normalized velocity profiles along the channel cross-section using the NSF, R13, R26 equations
and the DVM are shown in Figure 1. A good agreement can be observed between the DVM and the
macroscopic equations when Kn = 0.01, the dimensionless maximum velocity ux = 0.229 appears in
the center of the channel and both the micro- and macroscopic approaches have the ability to capture
the velocity profiles accurately.

However, when Kn = 0.1, the NSF equations in association with the velocity slip and temperature
jump boundary conditions underestimate the maximum velocity by about 8.2% in the center of the
channel. Meanwhile, the R26 moment equations are more accurate than the R13 equations, which
reduces the maximum velocity error from 3.6% to 1.1%. As the Knudsen number further increases, e.g.,
Kn = 0.5 and Kn = 1, the NSF equations fail to predict the velocity profiles. Both R13 and R26 moment
equations begin to lose their accuracy in the velocity prediction at Kn = 0.5, and they underestimate
the maximum velocity by about 6.4% and 5.2% in the center of the channel and overpredict the slip
velocity by about 28.8% and 12.4% in the near-wall region. From the Figure 1c,d, it is clear to see that
the R26 moment equations can reproduce relatively more accurate slip velocity than that predicted by
the R13 equations.
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A detailed comparison for f
(1)

, f
(3)

, f
(5)

are shown in Figure 2. We choose the point (y = 0.48) as
the characteristic point to evaluate their accuracy. Since the f (t, xi, Ci) is a multi-dimensional function,
the contours in the left panel of Figure 2 are non-dimensional VDFs f = f (2RT0)

3/2/ρ0 with the
molecular velocity Cz = 0. Similarly, the profiles in the right panel are dimensionless VDFs with the
molecular velocity Cy = 0, Cz = 0.

It is clear to see that, as the Knudsen number increases, the VDF shifts away from the equilibrium

state. In the slip regime, where Kn < 0.1, the VDFs f
(1)

, f
(3)

, f
(5)

obtained from NSF equations and R13,
R26 moment equations agree very well with that obtained from the DVM. However, when Kn = 1, the
non-equilibrium effects begin to dominate, and f is clearly away from the equilibrium, in contrast, all

of the VDFs f
(1)

, f
(3)

, f
(5)

are not accurate anymore, as indicated in Figure 2f. From the magnification

of the Figure 2f, we can also see that f
(5)

is closer to the DVM result in comparison with f
(3)

and f
(1)

.
That also helps to explain why the R26 moment method is more accurate than the NSF and the R13
moment method.
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Figure 2. Comparison of the dimensionless VDF f with f
(1)

, f
(3)

and f
(5)

at (a,b) Kn = 0.01; (c,d)

Kn = 0.1; (e,f) Kn = 1. Left panel of the figure, contours: VDF obtained from the DVM; lines: f
(5)

obtained from the R26 moment solutions. Right panel of the figure, VDFs against the dimensionless
molecular velocity Cx = Cx/

√
2RT0 along the molecular velocity cross-section where Cy = 0, Cz = 0.

And the terms: ‘NSF’, ‘R13′, ‘R26′ corresponding to f
(1)

, f
(3)

, f
(5)

reconstructed from the NSF solutions
and R13, R26 moment solutions, respectively. The same notations are also used in the following figures
unless otherwise stated.

As the Knudsen number further increases, e.g., Kn = 10, the moment method doesn’t work

anymore. However, we can still evaluate the accuracy of f
(1)

, f
(3)

, f
(5)

using the moments obtained
from the DVM, as shown in Figure 3. From the Figure 3a,b we can see that the ‘real VDF’ f is clearly
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far away from the equilibrium state. In contrast, all of the VDFs f
(1)

, f
(3)

, f
(5)

can only describe the
gas that is not far away from the continuum regime.
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Figure 3. Comparison of f with f
(1)

, f
(3)

, f
(5)

. (a) Contour: VDF f obtained from the DVM, lines: f
(5)

using the moments obtained from the DVM; (b) Profiles of f
(1)

, f
(3)

, f
(5)

using DVM results.

The corresponding errors of f
(1)

, f
(3)

, f
(5)

are calculated based on Equation (17). Four Knudsen
numbers, i.e., Kn = 0.01, 0.1, 0.5, 1 are considered. The errors E(1)

s , E(3)
s , E(5)

s along the channel are
shown in Figure 4.
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The overall results in Figure 4 indicate that, as the Knudsen number increases, E(1)
s , E(3)

s , E(5)
s

increase subsequently. When Kn = 0.01, all of the errors are very close to 0, so that all the macroscopic
equations are able to predict accurate solutions. Besides, for all the tested Knudsen numbers, we can

find that E(1)
s > E(3)

s > E(5)
s , which means f

(5)
is more accurate than f

(3)
and f

(1)
. Moreover, from each

line of the error profile, it is easy to find that the value of the error in the near wall region is larger than
that in the center of the channel, which indicates that the ‘non-equilibrium effects’ in the near wall
region is stronger than that in the center of the channel.

Our simulations start from a global equilibrium state, and the convergence criterion for the
steady-state is defined by Equation (19). For this case, all tests are done on single processor (Intel
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Corporation, Santa Clara, CA, USA, i7-8550u). The computational cost, in terms of the computational
memory and time cost, are listed in Table 1.

E(n + 1) =

∑∣∣∣un+1
i − un

i

∣∣∣∑∣∣∣un+1
i

∣∣∣ < 10−6, (19)

Table 1. Comparison of the computational cost between the DVM and the moment methods.

Method
Computational
Memory (MB)

Computational Time (Min)

Kn = 0.01 Kn = 0.1 Kn = 0.5 Kn = 1

DVM 5562.00 142.2 19.18 3.65 2.40
NSF 2.20 0.50 0.20 0.25 1.27
R13 2.20 2.00 1.20 3.52 6.46
R26 2.20 3.20 2.50 4.36 10.38

Due to the multi-dimensional nature of the VDF, the computational memory cost of DVM is about
2528 times larger than the macroscopic solvers. Besides, in the slip regime, the convergence rate of the
DVM is also much slower than the macroscopic solvers, especially when the Knudsen number Kn < 0.1.
As the Knudsen number increases, e.g., Kn = 1, the implicit DVM becomes highly efficient which needs
46 steps to get the steady-state solutions. In contrast, the macroscopic equations, especially the R13
and R26 moment equations, cost more computational time than the DVM. That is because when the
value of the Knudsen number is high, the relaxation factors for the R13 and R26 moment equations
should be very small to avoid the divergence.

5.2. Lid-Driven Cavity Flow

In addition to the force-driven Poiseuille flow, the evaluation of the moment method is also
performed on a 2D lid-driven cavity flow, which is also a standard benchmark problem to validate
numerical accuracy and efficiency. The length and the height of the cavity are both set to be 10−5

m, and the velocity of the top-wall u0 is 10 m/s. The reference length, temperature and viscosity
are L0 = 10−5 M, T0 = 273 K and µ0 = 21.25× 10−6Pa · s, respectively. Three Knudsen numbers, i.e.,
Kn = 0.01, 0.1, and 0.5 are considered. The spatial space is discretized with 101 × 101 non-uniform

grids, and the velocity space for the DVM is discretized in a range of
[
−6
√

2RT0, 6
√

2RT0
]3

with
64× 64× 24 non-uniform distributed Newton–Cotes quadrature points. Independence of results with
respect to the number of discrete velocities and spatial grids are already validated. In the DVM, the
diffuse boundary condition is applied on all the solid walls.

Figure 5 shows the normalized velocity profiles ui = ui/
√

2RT0 and the normalized heat flux

qi = qi/
(
ρ0

(√
2RT0

)3
)

along centerlines of the cavity for Kn = 0.01 in the early slip regime. It is usually

recognized that it is difficult for the traditional DVM in this regime due to the requirement of large
meshes. However, in terms of the velocity prediction, we note that the results obtained from the
microscopic and macroscopic equations with the fine mesh of 101 × 101 are in excellent agreement
with each other. The dimensionless heat flux qi predicted by both the microscopic and macroscopic
methods are presented in Figure 5c,d. It can be seen that the NSF equations with the velocity slip and
temperature jump boundary conditions fail to reproduce the heat flux profiles at the Knudsen number
of 0.01. Besides, the R13 moment equations overpredict the absolute value of the heat flux adjacent to
the wall compared to the R26 moment equations. The overall agreement between the microscopic and
macroscopic approaches in terms of the velocity profiles is better than that of the heat flux profiles.
That is because, the heat flux, a high-order moment quantity, is more sensitive to the core model than
low-order ones.
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Figure 5. The simulation results of the cavity flow at Kn = 0.01.

.
The accuracy of f

(1)
, f

(3)
, f

(5)
at (x = 0, y = −0.48) is shown in Figure 6. It is clear to see that

when Kn = 0.01, f
(1)

, f
(3)

, f
(5)

agree very well with the VDF obtained from the DVM.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 23 
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, and f
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In the early transition regime, e.g., Kn = 0.1, the NSF equations underpredict the velocity by about
12.3% close to the wall, as indicated in Figure 7. The R13 and R26 moment equations represent almost
the same ux velocity profiles along the vertical centerline, and both of them agree very well with the
DVM results. In terms of the uy, the R26 and R13 moment equations overpredict and underpredict the
velocity adjacent to the wall by about 4.8% and 5.4%, respectively. It is also interesting to find that the
heat flux profiles predicted by the R26 moment equations are not as accurate as these predicted by the
R13 moment equations at Kn = 0.1. Similar phenomena appear in the pressure-driven Poiseuille flow
given by Gu and Emerson [29], which demonstrates that the R26 moment equations are not necessary
more accurate than the R13 moment equations.
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Figure 7. The simulation results of the cavity flow at Kn = 0.1.

As the Knudsen number further increase, e.g., Kn = 0.5, all of the macroscopic equations fail to
reproduce correct heat flux profiles. That is because, compared to the lower-order moment quantity,
such as the velocity, the heat flux is more sensitive to the accuracy of the VDF. However, both R13 and
R26 moment equations are able to predict relatively accurate velocity profiles along the centerlines of
the cavity, as shown in Figure 8. When the Knudsen number is above 1, it will be very difficult for the
R13 and R26 moment equations to find the steady-state solutions.
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Figure 8. The simulation results of the cavity flow at Kn = 0.5.

In this case, three Knudsen numbers, i.e., Kn = 0.01, Kn = 0.1, Kn = 0.5, are considered. The errors
of the reconstructed VDFs are compared and presented in Figure 9.

Several interesting phenomena can be observed from Figure 9. Firstly, as the Knudsen number
increases (from Kn = 0.01 to Kn = 0.5, as shown in each column of the figure), all of the errors
E(1)

s , E(3)
s , E(5)

s increase. Secondly, from each row of the figure, we can see the overall solutions indicate
that E(1)

s > E(3)
s > E(5)

s , which demonstrates that the R26 moment equations are more accurate than the
R13 moment equations and the NSF equations at the microscopic level. Last but not least, from each
sub-figure, we can see that the maximum errors appear near the upper wall of the cavity, especially at
the corners of the cavity. In contrast, the minimum errors appear near the bottom of the cavity.

Take Kn = 0.5 as an example, we have compared f
(1)

, f
(3)

, f
(5)

near the upper and bottom walls
to evaluate whether the ‘nonequilibrium effects’ near the upper wall are stronger than that near the
bottom wall. Two characteristic points include (x = 0, y = −0.48) and (x = 0, y = 0.48) are chosen

along the vertical centerline of the cavity. The comparison of the f with f
(1)

, f
(3)

, f
(5)

are shown in
Figure 10, and they are evaluated under the same scale in Cx-direction.

It can be seen that the difference between the f and f
(1)

, f
(3)

, f
(5)

in Figure 10b is larger than
that in Figure 10a, which means the ‘nonequilibrium effects’ in the upper wall region is stronger than

that in the bottom wall region. Besides, we also find that both f
(3)

and f
(5)

are still very close to the
Maxwellian equilibrium VDF, and that is why the R13 and R26 moment methods are not working
when the Knudsen number is above 0.5.

For this case, all tests are done on a single processor, the computational memory and time cost are
listed in Table 2. The convergence criterion for the steady-state is defined by Equation (19). We can see
that the R13 and R26 moment methods have the ability to save the computational memory and time
cost, especially in the slip and early transition regimes.
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Figure 9. Contours of E(1)
s , E(3)

s , E(5)
s at (a–c) Kn = 0.01; (d–f) Kn = 0.1; (g–i) Kn = 0.5.
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Table 2. Comparison of the computational cost between the DVM and moment method.

Method
Computational
Memory (MB)

Computational Time (Min)

Kn = 0.01 Kn = 0.1 Kn = 0.5

DVM 9943.6 325.44 152.62 47.83
NSF 11.00 1.98 1.37 1.52
R13 11.00 5.58 8.37 22.32
R26 11.10 8.55 12.82 29.92

5.3. D Thermal Cavity Flow

The last case is the thermal cavity flow induced by temperature gradients at wall. The geometric
configuration and numerical setup are sketched in Figure 11. The computational domain is a
10−5

× 10−5 m2 square, partitioned by structured rectangular mesh. The left and right walls are
maintained at constant temperature TC = 263 K, while at the top and bottom walls, T f , we introduce
a linearly increasing temperature (from TC = 263 K to TH = 283 K) in left half of domain, and a
linearly decreasing temperature (from TH to TC) in the right half. All the walls are treated as diffusive
boundaries. The reference mean free path λ is calculated from the initial uniform density. The reference
temperature T0 and the characteristic length L0 are set to be 273 K and 10−5 m, respectively.
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Figure 11. Numerical setup for thermally driven cavity flow.

Three cases corresponding to Kn = 0.01, Kn = 0.1, and Kn = 0.5 are computed. For all of
these cases, the spatial space is discretized with 101 × 101 non-uniform points, and the discrete

velocity space is discretized in the range of
[
−6
√

2RT0, 6
√

2RT0
]3

with 64× 64× 24 non-uniform points.

The nondimensional temperature contours T = T/T0 and streamlines as well as the nondimensional
velocity ux contours are shown in Figure 12. The temperature profiles T along the vertical center and
the horizontal center lines are shown in Figure 13.

As indicated from Figure 12, the overall agreement between the DVM and the moment methods,
especially in terms of the temperature field, is quite well. For all the tested cases, four vortices are
generated with two of them rotate counter-clockwise at the lower left and upper right of the cavity, and
another two vortices rotate clockwise at the upper left and lower right of the cavity. Besides, we can
find that the NSF equations are able to reproduce the temperature fields when Kn < 0.1, however, they
can’t predict the velocity fields accurately. In contrast, both the R13 and R26 moment equations can
reproduce accurate temperature and velocity fields in comparison with the DVM solutions. Moreover,
from the Figure 13, it is found that from the regions near solid walls to the cavity center, the gas
temperature increases along horizontal lines, while decreases along vertical lines. The maximum
temperature value decreases as the degree of rarefaction increases. It is because both the interactions
between gas molecules and hot wall and the molecular collisions become weak when the gas is far
away from the equilibrium state.
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√

2RT0 contours and streamlines of the temperature
gradients induced flow case at different Knudsen numbers: (a,b) Kn = 0.01, (c,d) Kn = 0.1, (e,f) Kn = 0.5.
Due to symmetry of the problem, in each sub-figure, upper left and upper right are results obtained
from the DVM and R26 moment method, respectively; lower left and lower right are results obtained
from the R13 moment method and NSF, respectively.
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Figure 13. Temperature profiles T = T/T0 along the vertical center (a–c) and the horizontal center lines
(d–f) at different Knudsen numbers.

From the microscopic point of view, like the other cases in this study, E(1)
s , E(3)

s , E(5)
s are evaluated

at different Knudsen numbers, shown in Figure 14. Several interesting phenomena can be found:

Firstly, the overall results show that, E(1)
s > E(3)

s > E(5)
s , which demonstrate the f

(5)
, reconstructed

from the R26 moment equations, is more accurate than f
(1)

and f
(3)

. Secondly, like the lid-driven

cavity case, as the Knudsen number increases, all of the VDFs f
(1)

, f
(3)

and f
(5)

begin to lose their
accuracy, especially in the near wall region. Last but not least, the maximum errors of E(1)

s , E(3)
s , E(5)

s
appear near the center of the upper and lower walls, which are also the hottest regions of the walls,
as indicated in Figures 11 and 14. Hence, we choose the point (x = 0, y = −0.48) close to the hottest
center of the lower wall as a characteristic point to evaluate the accuracy of VDFs. The comparison of

f , f
(3)

, and f
(5)

are shown in Figure 14. The definitions of the dimensionless f and the descriptions of
the contours and the lines are similar to that described in the force-driven Poiseuille case.

When Kn = 0.1, f moves away from the equilibrium states. However, f
(1)

, f
(3)

, and f
(5)

are still
very close to the equilibrium states, as indicated in Figure 15c. From the Figure 15d, we can find that

the f
(5)

is more accurate than that obtained from the R13 moment equations and the NSF equations.

When Kn = 0.5, f appears the special double peaks phenomenon, while all of the VDFs f
(1)

, f
(3)

, and

f
(5)

cannot capture this special phenomenon.
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Figure 14. Contours of the E(1)
s , E(3)

s , E(5)
s at (a–c) Kn = 0.01; (d–f) Kn = 0.1; (g–i) Kn = 0.5.
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Figure 15. Comparison of the VDFs at (a,b): Kn = 0.01; (c,d): Kn = 0.1; (e,f): Kn = 0.5. Left panel

of the figure, contours and white lines: f ; black lines: f
(5)

; red dash dot lines: f
(3)

. The remaining
notations have been defined in Figure 2.

Like the other cases in this study, the computational memory and time cost have been evaluated
for the thermally gradients induced case, as shown in Table 3. For this case, all tests are done on
single processor (Intel Corporation, Santa Clara, CA, USA, i7-8550u), and the convergence criterion for
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the steady-state is defined by Equation (20). The macroscopic equations are able to save tremendous
computational time and memory cost in comparison with the DVM.

E(n + 1) =

∑∣∣∣Tn+1
i − Tn

i

∣∣∣∑∣∣∣Tn+1
i

∣∣∣ < 10−7. (20)

Table 3. Comparison of the computational cost between the DVM and moment method.

Method
Computational
Memory (MB)

Computational Time (Minutes)

Kn = 0.01 Kn = 0.1 Kn = 0.5

DVM 10691 265.14 126.24 36.6
NSF 10.8 0.46 1.00 1.20
R13 11.2 1.08 5.58 15.50
R26 11.2 1.20 10.26 24.46

6. Conclusions

The main objective of this work is to quantify the computational performance of the moment
methods at both the macro- and microscopic levels, so that researchers may choose the most appropriate
method for their applications. Three types of rarefied gas flows have been investigated with different
Knudsen numbers and the results have been validated using DVM results. From the macroscopic
point of view, the simulation results show that, as the Knudsen number increases, the NSF equations
will gradually lose this validation and accuracy. In contrast, both R13 and R26 moment equations are
able to reproduce accurate results in the slip and the transition regimes.

From the microscopic point of view, the errors of the reconstructed VDFs are evaluated based on
the ‘non-equilibrium indicator’. Several interesting phenomena have been found. Firstly, as the value
of the Knudsen number increases, E(1)

s , E(3)
s and E(5)

s increase subsequently, especially in the near wall

region. Secondly, the overall results show that, E(1)
s > E(3)

s > E(5)
s , which demonstrates the f

(5)
is more

accurate than f
(1)

and f
(3)

. Last but not least, even though f
(5)

is much closer to the f , all of f
(1)

, f
(3)

,

and f
(5)

, are still very close to the equilibrium state. In terms of the computational cost, both the R13
and R26 moment methods have the ability to save tremendous computational memory (by more than
95%) and time cost in the slip and early transition regimes, in comparison with the DVM.

In summary, the moment method bridges the gap between the conventional hydrodynamic model
and kinetic model in early transition regime, where the NSF and DVM become either inaccuracy or
inefficient. In the slip and early transition (where the Knudsen number is below 0.5), the moment
methods can predict the flow field accurately, besides, they are much faster than the implicit DVM,
especially when Kn ≤ 0.1. However, when Kn > 0.5, the time-implicit DVM is a better choice.
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Appendix A High Order of Moments and Source Terms in Equation (12)

(1). Algebraic expression for high order of moments fi jkl, ψi j, Ωi in terms of derivatives of lower
moments:

φi jkl = −
4µ

A f 1ρ

∂m<i jk
∂xl>

−
4µ

A f 1p

[
3
7 R<i j

∂uk
∂xl>
− 3RTσ<i j

∂uk
∂xl>

+ m<i jk
∂RT
∂xl>
−

m<i jk
ρ

(
∂σl>m
∂xm

+
∂p
∂xl>

)]
−

A f 2
A f 1

σ<i jσkl>
ρ ,

ψi jk = −
27µ

7Aψ1ρ
∂R<i j
∂xk>
−

27µ
7Aψ1ρ

(
28
5 q<i

∂u j
∂xk>
−R<i j

∂ lnρ
∂xk>

+
R<i j+7RTσ<i j

RT
∂RT
∂xk>

)
−

Aψ2q<iσ jk>+Aψ3σ<lim jkl>
Aψ1ρ

,

Ωi = − 7
3

µ
AΩ1ρ

∂∆
∂xi

+
28µ

AΩ1p

[
2

3ρqi

(
∂qm
∂xm

+ σml
∂um
∂xl

)
−

(
4
5 qk

∂u<i
∂xk>

+ σik
∂RT
∂xk

)]
−

AΩ2qkσik+AΩ3mi jkσ jk
AΩ1ρ

.

(A1)

(2). Expression for the source termsMi jk, <i j, ℵ:

Mi jk = −3σ<i j
∂RT
∂xk>

+
3σ<i j
ρ

(
∂p
∂xk>

+
∂σk>m
∂xm

)
−

12
5 q<i

∂u j
∂xk>
− 3mm<i j

∂uk>
∂xm

,

<i j = −AR2
p
µ

σk<iσ j>k
ρ +

(
8
3 RTσi j −

2
7 Ri j

)
∂uk
∂xk
−

4
7 (7RTσk<i + Rk<i)

(
∂u j>
∂xk

+
∂uk
∂x j>

)
−2Rk<i

∂u j>
∂xk

+ 28
5

q<i
ρ

∂σ j>k
∂xk

+ 28
5 RTq<i

(
∂p

p∂x j>
− 2 ∂T

T∂x j>

)
+ 2

mi jk
ρ

∂σkl
∂xl

+mi jk

(
2
ρ
∂p
∂xk
− 9∂RT

∂xk

)
+ 14

3
σi j
ρ

(
∂qm
∂xm

+ σml
∂um
∂xl

)
−

14
15 ∆ ∂u<i

∂x j>
− 2 fi jkl

∂uk
∂xl

,

ℵ = −A∆2
p
µ

σkjσ jk
ρ −

4
3 ∆ ∂uk

∂xk
− 4(2RTσkl + Rkl)

∂uk
∂xl

+ 8 qk
ρ

(
∂σkl
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)
+ RTqk

(
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− 28 ∂T
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(A2)
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