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Featured Application: optical trapping, tight focusing, microscopy.

Abstract: Partially coherent sources with non-conventional coherence properties present unusual
behaviors during propagation, which have potential application in fields like optical trapping and
microscopy. Recently, partially coherent sources exhibiting circular coherence have been introduced
and experimentally realized. Among them, the so-called pseudo Schell-model sources present
coherence properties that depend only on the difference between the radial coordinates of two points.
Here, the intensity and coherence properties of the fields radiated from pseudo Schell-model sources
with a degree of coherence of the besinc type are analyzed in detail. A sharpening of the intensity
profile is found for the propagated beam by appropriately selecting the coherence parameters. As a
possible application, the trapping of different types of dielectric nanoparticles with this kind of beam
is described.

Keywords: partial coherence; statistical optics

1. Introduction

The research for physically realizable partially coherent sources keeps on attracting a considerable
interest, due to the advantages that partially coherent beams present over their coherent counterparts
in some applications, such as, for instance, free space optical communications [1–3], imaging [4],
and optical trapping [5,6] (see also [7,8] and references therein).

In the coherence theory the Schell model [9,10], describing sources with shift-invariant coherence
properties, has played a crucial role. Schell-model sources can be also produced in a very simple
way starting from spatially incoherent sources. Nonetheless, recent advances in different fields
require new source models with specific properties to be provided. In this sense, the control of the
coherence properties of the source allows to obtain beams with peculiar behaviour of their intensity
in propagation [8,11–23].

In analogy to the Schell model, scalar sources that present shift-invariance only along either
the radial or azimuthal coordinate have been recently proposed [18,20,24,25]. Since their coherence
properties are shift-invariant only along a polar coordinate, they have been named pseudo-Schell model
sources [20,24]. Their cross-spectral density (CSD) can fulfill the non-negativeness condition [10,26],
in which case they represent physically realizable sources.

The aim of this work is to analyze the behavior of a type of pseudo-Schell model sources whose
coherence properties depend only on the difference of the radial coordinates of two points, so that
they show circular coherence properties [15,16]. The degree of coherence has been chosen as a besinc
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function while a Laguerre-Gaussian profile has been selected for the intensity at the source plane.
In this case, a pseudo-modal expansion of these sources has been derived. The intensity and coherence
properties of the fields radiated from such sources has been described. For appropriate coherence
parameters, a sharpening of the intensity profile occurs within a certain range of propagation distances.
It has been shown that this sharpening effect could be exploited for simultaneous trapping of dielectric
nanoparticles with either higher or lower refractive index than that of the surrounding medium.

The paper is organized as follows: after this Introduction, in Section 2, a family of pseudo-Schell
model sources is presented, its coherence properties are described and a pseudo-modal expansion is
obtained; the paraxial propagation of the beams generated from such sources are studied in Section 3,
while their trapping capabilities are analyzed in Section 4. The main results of this work are discussed
in Section 5. Concluding remarks are summarized in Section 6.

2. Source Model

The CSD function W (r1, r2, 0), defined as the field correlation at two points rj =
(
rj, θj

)
with

j = 1, 2 across the source plane, can be used to properly describe the spatial coherence properties
of a light source [10]. Some years ago, a superposition rule was presented [26,27] to establish a
sufficient and necessary condition that any function must fulfill to represent a physically realizable
CSD. According to it, W (r1, r2, 0) is a bona fide CSD provided that it can be written as

W (r1, r2, 0) =
∫

H∗ (r1, υ) H (r2, υ)dυ, (1)

where H (r2, υ) is a kernel that, in this work, has been chosen as

H (r, υ) = τ (r) G (υ) exp (ikrυ cos φ) , (2)

k being the wavenumber. Substitution of Equation (2) into Equation (1) results in the following CSD

W (r1, r2, 0) = τ∗ (r1) τ (r2) g (r2 − r1) , (3)

where
g (r) = 2π

∫ ∞

0
|G(υ)|2 J0 (krυ) υ dυ (4)

and Jn(·) is the Bessel function of first kind and order n [28]. Furthermore, by suitably normalizing the
function G(υ), it can be obtained that g(0) = 1.

It can be observed that the irradiance of the source, I(ρ, 0) = W (ρ, ρ, 0), depends on τ (ρ) only,
while its degree of coherence, defined as [10]

µ (r1, r2, 0) =
W (r1, r2, 0)√

W (r1, r1, 0)W (r2, r2, 0)}
=

τ∗ (r1) τ (r2)

|τ (r1) τ (r2)|
g(r2 − r1), (5)

is determined by the function g. Moreover, the absolute value of the degree of coherence depends
only on the difference between the radial distances of the considered points from the source center.
This means that the coherence characteristics of such sources are shift invariant along the radial
coordinate and, therefore, they belong to the class of the pseudo-Schell model sources [20,24].

Different families of pseudo-Schell sources are generated for each selection of the functions G(υ)

and τ (r2). In this work, we take G(υ) as

G(υ) =
kδc

ζ
√

π
circ

(
kδc

ζ
υ

)
, (6)
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corresponding to (from Equation (4))

g(r) = 2
J1(ζr/δc)

ζr/δc
. (7)

Here, ζ is the lowest positive value for which J1 is zero, δc is a distance related with the coherence
area and circ(t) = 1 for |t| ≤ 1 and 0, otherwise. The function in Equation (7) is also known as besinc.

The absolute value of the degree of coherence at the source plane turns out to be

|µ(r1, r2, 0)| = 2
∣∣∣∣ J1 [ζ(r2 − r1)/δc]

ζ(r2 − r1)/δc

∣∣∣∣ . (8)

The degree of coherence at the source plane for sources described by Equation (3) is shift invariant
along the radial coordinate. Hence, two points lying on the same circle concentric to the source center
are completely coherent, while the coherence decreases for points belonging to different circles. In other
terms, they present circular coherence [15,16].

These results are shown in Figure 1, where the absolute value of the degree of coherence between
points is plotted as a function of r1 for fixed values of r2. It can be noted that the region where
the degree of coherence is significant is a circle for r2 = 0, but, on increasing r2, becomes a donut
(with radius r2). It should be noted that, for a point at a fixed distance r2 from the source center, there is
a set of points, located in concentric circles of radius r1, where the field is completely uncorrelated to
the field in r2. The radius of these circles satisfies the condition J1 [ζ(r2 − r1)/δc] = 0 with r1 6= r2.

Figure 1. Absolute value of the degree of coherence relative to a point located at the following distances
r2 from the source center: r2 = 0 (left); r2 = 0.5 δc (center), and r2 = δc (right).

Figure 2 shows the profile of the absolute value of the degree of coherence along a radius r1 for
several values of r2. It can be noted that, for r2 > 2δc, the thickness of the donut-shaped area of high
coherence is constant, so that the coherence area grows linearly with increasing r2.

Figure 2. Absolute value of the degree of coherence as a function of the radius r1 for different distances
r2 from the source center.
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Once the function g(r) has been selected, different sources are obtained on changing the
modulating function τ (r). Let us choose τ as a Laguerre-Gaussian function [29] with Laguerre
polynomials of order zero, that is,

τ (r) =
√

I0

(√
2 r

w0

)m

exp

(
− r2

w2
0

)
, (9)

where I0 is a parameter having dimensions of an irradiance, m is an integer, and w0 is a positive
quantity related to the source width. It reduces to a Gaussian function when m = 0 while, for m > 0,
presents a donut-like shape.The resulting CSD will be denoted by Wm (r1, r2, 0) and takes the form

Wm (r1, r2, 0) = I0

(
2 r1r2

w2
0

)m

exp

(
−

r2
1 + r2

2
w2

0

)
2J1 [ζ (r2 − r1) /δc]

ζ (r2 − r1) /δc
. (10)

A pseudo-modal expansion in terms of coherent pseudo-modes [27,30] can be written for the
whole class of sources described by the CSD of Equation (10) in the following form:

Wm (r1, r2, 0) = I0

∞

∑
n=1

Λm,nΦm,n (r2, 0)Φ∗m,n (r1, 0) , (11)

where Λm,n are the pseudo-eigenvalues and the corresponding coherent pseudo-modes are given by

Φm,n (r, 0) =
1

βm,n

(√
2 r

w0

)m

exp

(
− r2

w2
0

)
2 Jn (ζr/δc)

ζr/δc
. (12)

In the derivation of Equation (11), the following relation for the Bessel functions has been taken
into account [30,31]:

2J1 [ζ (r2 − r1) /δc]

ζ (r2 − r1) /δc
=

∞

∑
n=1

4n2 Jn (ζr2/δc)

ζr2/δc

Jn (ζr1/δc)

ζr1/δc
. (13)

The parameters βm,n are normalization factors defined as

β2
m,n =

∫ ∞

0

∫ 2π

0

(√
2 r

w0

)2m

exp

(
−2r2

w2
0

)[
2 Jn (ζr/δc)

ζr/δc

]2
r dr dθ, (14)

in such a way that the pseudo-modes Φm,n (r, 0) are normalized. However, they are not orthogonal
and for this reason we refer to them as pseudo-modes. By comparing Equations (10)–(14),
the pseudo-eigenvalues Λm,n can be obtained as Λm,n = n2β2

m,n that are explicitly nonnnegative,
which confirms the nonnegativeness of the proposed CSD. The normalization factors can be expressed
in terms of the generalized hypergeometric functions pFq

(
a1, a2, . . . , ap; b1, b2, . . . , bq; c

)
[31] as

β2
m,n = 4π

(
w0 ζ

δc

)2n (m + n− 1)!

23n (n!)2 2F2

(
1
2
+ n, m + n; 1 + n, 1 + 2n;−

w2
0ζ2

2δ2
c

)
. (15)

Figures 3 and 4 show the dependence of the first eight pseudo-eigenvalues as functions of the
ratio δc/w0 for the cases m = 0 and m = 1, respectively. It can be observed that, when the value
of δc is greater than the beam width, the source is almost coherent and can be represented with the
contribution of few modes. However, on decreasing the coherence parameter, a larger number of
modes is necessary, and this number grows with decreasing δc/w0.

It is also seen that the most important contribution for a coherence parameter larger than w0

is due to the lowest-order mode. However, for values of the ratio δc/w0 lower than, approximately,
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1 (2) for m = 0 (m = 1), the first pseudo-eigenvalue is not the highest one, and the contribution of
higher-order modes becomes more and more significant for decreasing values of δc/w0.

Figure 3. Pseudo-eigenvalues, Λm,n = n2β2
m,n, for the CSD in Equation (10) with m = 0 as functions of

the ratio δc/w0. The values of βm,n are evaluated from Equation (15).

Figure 4. Pseudo-eigenvalues, Λm,n = n2β2
m,n, for the CSD in Equation (10) with m = 1 as functions of

the ratio δc/w0. The values of βm,n are evaluated from Equation (15).

From Figures 3 and 4, it can be concluded that the proposed pseudo-Schell model sources with
circular coherence (Equations (3) and (7)) can be synthesized (with the desired precision) just by
superposing a sufficiently large number of pseudo-modes with appropriate weights [32,33].

3. Paraxial Propagation

In the following, it will be assumed that the light radiated from the planar source located at
the plane z = 0 propagates under paraxial conditions along the z-axis of a suitable reference frame.
The extended Huygens–Fresnel diffraction integral will be used to obtain the CSD of the field at any
plane z = constant after propagation through an ABCD optical system as [10]

W (R1, R2, z) = k2

4π2B2

∫∫
W (r1, r2, 0) exp

[
− ikA

2B
(
r2

1 − r2
2
)
− ikD

2B
(

R2
1 − R2

2
)]

× exp
[

ik
2B r1R1 cos (φ1 − θ1)− ik

2B r2R2 cos (φ2 − θ2)
]

dr1dr2,
(16)

where Rj = (Rj, φj) (with j = 1, 2) are two typical position vectors across the transverse plane
z =constant.
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For the case of the CSD in Equation (10), the angular integration of Equation (16) gives

Wm (R1, R2, z) =
I0 k2

2πB2 exp
[

ikD
2B

(
R2

2 − R1
2
)]

×
∞∫

0

∞∫
0

(
2 r1 r2

w2
0

)m

exp

(
−

r2
1 + r2

2
w2

0

)
2J1 [ζ (r2 − r1) /δc]

ζ (r2 − r1) /δc

× exp
[

ikA
2B

(
r2

2 − r2
1

)]
J0

(
k
B

R1 r1

)
J0

(
k
B

R2 r2

)
r1 r2dr1dr2,

(17)

which allows us to evaluate the irradiance profile and the degree of coherence of the propagated field
across any transverse plane.

By choosing the ABCD parameters corresponding to a free space propagation (A = 1, B = z,
C = 0, D = 1), the evolution of the field CSD can be obtained. Results of the numerical evaluation of
Equation (17) are shown in Figures 5 and 6 for m = 0 and m = 1, respectively. Both cases present a
peculiar behavior of the intensity profile during propagation.

Figure 5 shows the intensity profile for different values of the ratio δc/w0 for the case m = 0.
The intensity profile shows a bell-like shape with its peak on the beam axis. It can be observed that,
for sufficiently small values of the ratio δc/w0, the peak of the intensity profile grows up to a maximum
value that is reached at a given propagation distance from the beam waist, which coincides with the
source plane. The maximum value of the intensity and the plane at which this maximum is reached
depend on the selected value of δc/w0. Moreover, the beam shows a sharper intensity profile after a
certain propagation distance than at the beam waist, as it can be easily seen from the insets.

Figure 5. Evolution of the intensity profile with propagation distance for a beam with m = 0 and
different values of the ratio δc/w0 [numerical evaluation of Equation (17) for free space propagation].
The insets show the intensity profile across the source plane and across the plane where the maximum
intensity is reached.
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Figure 6 shows the evolution of the intensity profile with the propagation distance for the case
m = 1. At the source plane, the intensity profile shows a donut shape with a zero value at its center
(see blue lines in the insets). However, when the beam propagates, the intensity at the beam axis
grows and reaches a maximum value at a given propagation distance that depends on the value of the
coherence parameter. At the plane where the intensity reaches its maximum, the intensity profile is
bell shaped. For lower and lower values of the coherence parameter, a ripple becomes more and more
evident (see red lines in the insets). In a similar way that happens for the case with m = 0, when δc is
comparable to or lower than w0, the maximum intensity is reached after a certain distance propagation
instead of at the source plane. This last fact can be easily observed in the insets of Figure 6, where the
intensity profile is drawn for source plane, z = 0 (blue lines), and for the plane where the maximum
intensity is reached (red lines).

Figure 6. Evolution of the intensity profile with propagation distance for a beam with m = 1 and
different values of the δc/w0 ratio [numerical evaluation of Equation (17) for free space propagation].
The insets show the intensity profile across the source plane and across the plane where the maximum
intensity is reached.

4. Trapping Dielectric Nanoparticle with Pseudo-Schell Beams

Previous results suggest that a focused pseudo-Schell model beam could be used for trapping
dielectric nanoparticles in a similar way to other kinds of partially coherent beams [5,6,34–37].
An advantage of the pseudo-Schell model beams is the sharpening of the intensity profile and the high
peak that is reached after the source plane (see Figures 5 and 6), which could increase the gradient
force exerted on a dielectric particle. By appropriately choosing the source parameters, traps can be
obtained with the same beam for particles with a refractive index n1 either higher or lower than the
refractive index n2 of the surrounding medium.
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If the source plane is at a distance s0 before a thin converging lens with focal length f , the beam
propagated at a distance z after the lens focus can be calculated applying Equation (17), where the
ABCD transfer matrix has to be chosen as(

A B
C D

)
=

(
1 f + z
0 1

)(
1 0
−1/ f 1

)(
1 s0

0 1

)
=

(
−z/ f f + z− zs0/ f
−1/ f 1− s0/ f

)
. (18)

In the following, we consider a pseudo-Schell model source described by Equation (10) with
coherence parameter δc = 0.1 mm, intensity width at the source plane w0 = 0.5 mm, and m = 1
(which correspond to the case depicted in the bottom right-hand part of Figure 6). The usual operation
line of a visible He–Ne laser is taken for the wavelength λ = 632.8 nm. The source plane is located at
s0 = 2.50 m before a converging lens of focal length f = 5 mm. These parameters have been chosen
to obtain high values of the intensity gradient in a region close to the lens focus, within the paraxial
approximation. A factor I0 = 1 W/mm2 is taken for calculating the intensity of the generated beam
for a propagation distance z after the focus of the lens.

Figure 7a shows the evolution of the intensity at the beam center (R = 0) along the z-axis in a
region after the lens focus. It can be observed that the intensity shows two relative maxima and a
relative minimum at given propagation distances in this region. This fast variation of the intensity
with propagation distance could be exploited for particle trapping along the z-direction in different
positions, depending on the optical properties of the particle. Figure 7b shows the transverse intensity
profile of the beam at three different planes, namely, those where the maximum and the minimum
axial intensity is reached.

(a) (b)

Figure 7. (a) evolution of the intensity in the beam axis with propagation distance after the focus of a
lens and (b) intensity profile at different propagation distances for a source with m = 1, λ = 632.8 nm,
δc = 0.1 mm and w0 = 0.5 mm. Other parameters are f = 5 mm, s0 = 2.50 m, and I0 = 1 W/mm2.

Let us consider a spherical dielectric nanoparticle having a radius smaller than the wavelength of
the light (a << λ). Therefore, the Rayleigh scattering approximation can be used to obtain the radiation
forces exerted on the nanoparticle. Two different contributions can be distinguished: the scattering
force and the gradient force.

The first one is directed along the propagation direction and is proportional to the beam intensity.
It can be written as [38]

FScat(X, Y, z) =
8 π

3 c
n2 (k a)4 a2

(
n2

r − 1
n2

r + 2

)2

I(X, Y, z)uz, (19)

where c is the speed of light in vacuum, nr = n1/n2 is the relative refractive index of the particle,
and uz is a unitary vector along z. The gradient force pushes the particle towards the region of
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maximum (minimum) intensity if the relative refractive index is higher (lower) than 1. This force can
be expressed as [38]

FGrad(X, Y, z) =
2 π

c
n2 a3 n2

r − 1
n2

r + 2
∇I(X, Y, z). (20)

Figure 8a shows the evolution along the beam axis of the z-component of the gradient force
on a dielectric nanoparticle with radius a = 30 nm and refractive index n1 = 1.59 or n1 = 1.00
immersed in water (n2 = 1.33). The on-axis scattering force (that always push the particle away from
the focus, z = 0) is shown in Figure 8b. It must be noted that other forces, such as the weight and
buoyancy forces, are of the order of 10−7 pN for dielectric nanoparticles of that size. On the other
hand, the Brownian force has a magnitude FB =

√
12 π κ a kB T [39], where κ is the medium viscosity,

kB is the Boltzmann constant and T the temperature. For water at room temperature (T = 300 K),
the viscosity is κ ' 7.977× 10−4 Pa, so that the Brownian force is of the order of 2× 10−3 pN. It can
be noted that the scattering force is about two orders of magnitude lower than the z-component of
the gradient force, so that this is the dominant force, the remaining ones (weight, buoyancy, drag and
or Brownian forces) being negligible. Taking these considerations into account, there are two (one)
stable equilibrium positions along the z-axis for particles with higher (lower) refractive index than
the surrounding medium. These positions correspond to the propagation distances where the on-axis
intensity (see Figure 7a) reaches a relative or absolute maximum (minimum) that is, z1 ' 9.39 µm and
z3 ' 10.69 µm (z2 ' 10.02 µm).

(a) (b)

Figure 8. (a) z-component of the gradient force and (b) scattering force along the beam axis for a
dielectric nanoparticle with radius a = 30 nm and having a refractive index n1 higher (blue line) or
lower (red line) than that of the surrounding medium (n2 = 1.33). Other parameters are the same as in
Figure 7.

Figure 9 shows the behavior, as functions of the transverse coordinate, of the x-component of the
gradient force (parts (a) and (c)) and the scattering force (parts (b) and (d)) at the three planes where a
maximum or a minimum of the axial intensity is reached. Due to the circular symmetry of the intensity
profile across the transverse section, these results are the same along any radius. Again, the scattering
force (always directed along the z-axis) is about two orders of magnitude lower than the gradient force,
so that the main effects of the radiation on the particle are due to the gradient force. For the case of
dielectric particles with a refractive index lower than that of the surrounding medium (parts (a) and (b)
of Figure 9), there is stable equilibrium point in the plane z2 ' 10.02 µnm. In the case of a particle with
higher refractive index than the medium (parts (c) and (d) of Figure 9), there is a stable equilibrium
point in the plane z1 ' 9.39 µm and another one in the plane z3 ' 10.69 µm.
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(a) (c)

(b) (d)

Figure 9. (a) x-component of the gradient force for n1 = 1 and (b) for n1 = 1.59, and (c) scattering force
for n1 = 1 and (d) for n1 = 1.59. In all cases, n2 = 1.33. Other parameters are the same as in Figure 7.

5. Discussion

Pseudo-Schell model sources present shift invariant coherence properties either along the radial or
the angular coordinate. Here, the class of pseudo-Schell model sources with a besinc-like dependence
of the coherence on the radial distance (Equation (7)) is analyzed.

Complete coherence is attained for points lying on the same circle, although they can be as far as
twice the circle radius. Furthermore, the absolute value of the degree of coherence decreases for pairs
of points that belong to circles with greater and greater radii difference, although they can be closer
than a pair of points for which complete coherence is found. Complete incoherence is found for points
located on different circles with radii difference such that J1 [ζ(r2 − r1)/δc] = 0.

When a Laguerre-Gaussian intensity at the source plane is considered (see Equation (9)),
a pseudo-modal expansion [27] of the CSD has been found. Then, these kinds of sources can be
synthesized by superposing a large enough number of pseudo-modes [32,33]. Peculiar behavior
of the intensity profile with the propagation distance has been found: the profile becomes sharper
and the maximum intensity is reached after a propagation distance from the source plane, the latter
corresponding to the waist. This effect is more and more evident for lower and lower ratios between
the coherence parameter and the beam width. Similar behaviors have been described for other partially
coherent beams with nonconventional correlation functions [11,17,20,40,41]

These features could be useful for particle trapping, due to the high intensity gradient that can
be obtained along transverse and radial directions on focusing the beam generated by this kind of
sources. An example has been developed showing the trapping capabilities of these kinds of beams
for nanoparticles presenting a refractive index either higher or lower than the surrounding medium.
It should be noted that the trapping of these two types of particles is achieved using the same beam,
i.e., a beam generated from a besinc pseudo-Schell source with fixed parameters (ω0 and δc) and a
fixed lens.

6. Conclusions

A new class of partially coherent sources, called Besinc Pseudo-Schell Model Sources, has been
proposed, for which the degree of coherence across the source plane behaves like J1 [ζ(r2 − r1)/δc],
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r1 and r2 being the radial coordinates of two points. In particular, pairs of points lying on
circles concentric to the source center are completely coherent, while they are totally incoherent
if J1 [ζ(r2 − r1)/δc] = 0. When a Laguerre-Gaussian intensity profile at the source plane is chosen,
the beam radiated from the source has been shown to present a sharp intensity profile within certain
propagation ranges, for properly selected source parameters. This effect would allow the simultaneous
trapping of dielectric nanoparticles having a refractive index both higher or lower than the surrounding
medium by using the same beam. A pseudo-modal expansion for this class of sources has been derived,
suggesting a way to experimentally synthesize them.
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