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Abstract: Continuum robots represent a class of highly sensitive, multiple-degrees-of-freedom robots
that are biologically inspired. Because of their flexibility and accuracy, these robots can be used
in maxillary sinus surgery. The design of an effective procedure with high accuracy, reliability,
robust fault diagnosis, and fault-tolerant control for a surgical robot for the sinus is necessary to
maintain the high performance and safety necessary for surgery on the maxillary sinus. Thus, a robust
adaptive hybrid observation method using an adaptive, fuzzy auto regressive with exogenous input
(ARX) Laguerre Takagi–Sugeno (T–S) fuzzy robust feedback linearization observer for a surgical
robot is presented. To address the issues of system modeling, the fuzzy ARX-Laguerre technique is
represented. In addition, a T–S fuzzy robust feedback linearization observer is applied to a fuzzy
ARX-Laguerre to improve the accuracy of fault estimation, reliability, and robustness for the surgical
robot in the presence of uncertainties. For fault-tolerant control in the presence of uncertainties
and unknown conditions, an adaptive fuzzy observation-based feedback linearization technique is
presented. The effectiveness of the proposed algorithm is tested with simulations. Experimental
results show that the proposed method reduces the average position error from 35 mm to 2.45 mm in
the presence of faults.

Keywords: continuum robot manipulator; maxillary sinus surgery; T–S fuzzy algorithm; variable
structure algorithm; observation technique; fuzzy ARX–Laguerre system modeling; feedback
linearization observer; adaptive technique; fault diagnosis; fault-tolerant control

1. Introduction

The maxillary sinus is a conic, hollow space in the bones of the face that connects to the nose.
It is the largest cavity of air in the body, and its main function is mucus production. The maxillary
sinus can experience many health issues, such as nasal polyps, maxillary sinusitis, and nasal sinus
cysts, which can cause infections [1,2]. Task complexities, narrow geometry, and limited accessibility
to the sinus creates several challenges for maxillary sinus surgery. Infection of a maxillary sinus causes
pain and pressure (e.g., headache and toothache). Therefore, finding a good method for maxillary
sinus surgery is important [3]. These techniques are divided into two main groups: (a) minimally
invasive surgery, and (b) a non-invasive surgery technique. The creating an incision in the face, pain,
and long recovery time are main challenges of the open sinus surgery. In most of cases, sinus surgery
is performed as minimally invasive surgery [4]. The natural orifice transluminal endoscopic surgery
(NOTES) is one of the important techniques for minimally invasive surgery. Despite the several
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advantages of NOTES, surgeons still have challenges due to the narrow operating space. To improve
the performance of endoscopic surgery, a number of continuum robots (e.g., concentric tube robots,
tendon-driven robots, and soft robots) have been represented [3,4]. While concentric tube robots have
several advantages, limited bending angle and small stiffness are two drawbacks of the technique [5].
Various tendon-driven robots have been developed by various researchers for surgery [3,6]. A soft
robot is a promising technique for surgical techniques. This technique has been used in various
surgery but it is not useful for maxillary sinus surgery [3,7]. Figure 1 illustrates the position of the
maxillary sinus. Robot-assisted surgery is used to reduce surgeon’s hand tremors, postoperative
complications, and pain and to increase the precision of the actions performed during surgery. Robots
have been widely used in many medical fields such as orthopedics, neurology, urology, and cardiology.
Robot-assisted surgery is expanding its effects in the general medical field but has various challenges,
such as non-linear behavior, the need for high-accuracy control, insertion depth perception, contact
force feedback, and fault diagnosis. Various defects in robotic assistants can be categorized as actuator
faults, sensor faults, and system faults. The actuator fault is affecting the continuum robot inputs.
The actuator fault can be caused by abnormal operation or material aging and can drastically change
the system behavior and operation. Therefore, a fault in a continuum robot motor’s joint or operator
can cause the actuator fault. Continuum robots are usually equipped with sensors to recognize the
surrounding environment. Unfortunately, sensors are susceptible to faults and they might lead to
task failure. In this paper, actuator and sensor fault detection, diagnosis, and tolerant control are
analyzed. To analyze the condition of actuator and sensor faults in robot-assisted surgery, various
monitoring techniques for robot conditions such as torque, voltage, current, and vibration have been
reported [8–10]. This research exploits torque measurements because these signals are suitable for
system and fault modeling, identification, estimation, and fault-tolerant control.
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Various techniques have been presented recently for surgical robot fault detection, identification,
and tolerant control and can be divided into two main categories: a) hardware-based techniques
that rely on various physical instruments installed on the surgical robot and b) software-based
techniques that utilize limited equipment. Different techniques are used for software-based fault
detection, estimation, and identification, such as model-reference techniques [11,12], signal-based
methods [13,14], knowledge-based algorithms [15–17], and hybrid methods [18–20]. Hybrid fault
detection, estimation, and identification algorithms are used to design a stable and reliable technique by
employing multiple methods. Different techniques have been used for hybrid methods [18–20]. In this
study, the hybrid method is designed based on three different algorithms: (a) signal-based method, (b)
model-reference technique, and (c) knowledge-based algorithm. Signal-based and knowledge-based
methods are used for system (surgical robotic system for the sinus) modeling based on torque and
pose (position and orientation) data. A model reference technique is used to design a robust feedback
linearization observer based on the variable structure technique for fault detection, estimation, and
identification. A knowledge-based algorithm is used to design a Takagi–Sugeno (T–S) fuzzy technique
to improve the fault estimation accuracy in the fuzzy autoregressive with exogenous input (ARX)
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Laguerre robust feedback linearization observer. The hybrid technique based on adaptive fuzzy
observation-based estimation and feedback linearization control is used for fault-tolerant control.

Physical-based system modeling and signal-based methods for system estimation are the main
methods used for modeling complex systems such as surgical robots for the sinus. Apart from the
reliability of physical-based modeling of a surgical robot for the sinus, this technique has drawbacks in
highly uncertain (faulty) conditions. System estimation and identification techniques such as ARX,
autoregressive moving average with external input (ARMAX), orthonormal function bases (OFB),
and generalized orthonormal bases (GOB) methods have been used for system estimation in various
systems. Independence of the system time delay and reduction of the number of parameters are the
main advantages of orthonormal techniques such as OFB and GOB with respect to classical system
modeling such as ARX and ARMAX techniques. Apart from the advantages of orthonormal techniques
compared to classical algorithms, these techniques have two difficulties, calculating the optimal
orthonormal values and the number of restrictions in decoupled systems. To address these issues, the
ARX-Laguerre technique was presented in a number of reports [21–23]. In real world applications, the
impact of noise plays a significant role in accurate system estimation. To circumvent these challenges,
the fuzzy ARX-Laguerre technique is presented in this research.

Linear-based observation techniques and nonlinear-based observation algorithms are the main
techniques used to design observation systems [22–25]. Linear observation systems such as
proportional integral (PI) controllers have been applied in several systems for control and fault
diagnosis, but their effectiveness in the presence of uncertainties is the main restriction of these
algorithms [26]. To circumvent this restriction, nonlinear-based observation techniques such as
variable structure techniques [22,27], feedback linearization methods [26], and fuzzy algorithms have
been recommended [28–30]. Despite the advantages of nonlinear observers, a feedback linearization
observer has the challenge of limited robustness [26], a variable structure observer has the limitation
of chattering in uncertain conditions [22], and fuzzy logic observers have the challenge of reliability
and predefinition of fuzzy gain updating factors [31] for fault detection, estimation, and identification.
Consequently, a hybrid algorithm is suitable for fault detection, fault estimation, and fault identification
for a surgical robot for the sinus.

Linear- and nonlinear-based fault-tolerant control techniques are the main algorithms for reducing
or eliminating the effects of faults in a surgical robot for the sinus. Linear-based fault-tolerant control
techniques have two main drawbacks: (a) coupling effects and (b) increase in gear ratio [32]. However,
several techniques have been introduced as nonlinear-based fault-tolerant algorithms. This technique is
divided into three main categories: (a) model-based algorithms, (b) knowledge-based techniques, and
(c) hybrid-based fault-tolerant control methods [32]. Model-based and knowledge-based fault-tolerant
control techniques have various positive points, but these techniques face a large challenge in the
unlimited level of a faulty signal [18,32]. Hybrid techniques for fault-tolerant algorithms are used to
address this issue [33]. The feedback linearization algorithm can be a good candidate for a fault-tolerant
control algorithm, but it must be robust. To improve robustness, the proposed observation-based
feedback linearization controller is the best candidate. To increase accuracy, performance, and reliability,
an adaptive, fuzzy observation-based feedback linearization fault-tolerant control algorithm is suitable
for manipulators for a surgical robot for the sinus.

Figure 2 shows the block diagram of the proposed algorithm for fault detection, estimation,
identification, and fault-tolerant control. The proposed adaptive ARX-Laguerre T–S fuzzy robust
feedback linearization observer has the following steps: (1) modeling the surgical robot for the sinus
based on the ARX method; (2) modifying the performance of the ARX technique based on an orthonormal
function and designing the ARX-Laguerre method; (3) improving the accuracy of the ARX-Laguerre
technique based on the fuzzy logic algorithm and designing a fuzzy ARX-Laguerre system model;
(4) designing a high-performance nonlinear observer based on the fuzzy ARX-Laguerre feedback
linearization observation technique; (5) improving the robustness of the fuzzy ARX-Laguerre feedback
linearization observer based on the variable structure algorithm; (6) improving the performance of
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faulty signal estimation based on the T–S fuzzy algorithm and designing a fuzzy ARX-Laguerre T–S
fuzzy robust feedback linearization observer; (7) creating a residual generation and a threshold process
for fault detection and identification; (8) detecting, estimating, and identifying faults; (9) reducing
the fault effect in the surgical robot for the sinus based on a feedback linearization algorithm and
improving the accuracy of the fault-tolerant control using the proposed observation algorithm; and (10)
tuning the feedback linearization coefficients in the various conditions and online tuning for increasing
the reliability and accuracy in the proposed observation-based feedback linearization fault-tolerant
control using an adaptive method.
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This paper introduces three different problems and the solutions to solve these problems.
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Problem 1. The main idea of the fuzzy observation-based technique for fault detection, estimation, and isolation
is system modeling. Which types of system modeling are represented in this paper?

Solution 1. In the first step, the ARX technique is introduced to system modeling. To improve the robustness
and reduce the effect of the noise, the Laguerre technique is used in the ARX technique as a ARX-Laguerre
method. To reduce error of system estimation, a fuzzy ARX-Laguerre technique is performed for modeling of
robotic maxillary sinus surgery (Section 2.2).

Problem 2. Another contribution of this paper is the design of robust and reliable technique for fault detection,
estimation, and isolation. Which techniques are used in this paper?

Solution 2. In this study, a feedback linearization observer is used for fault estimation. To improve the robustness
of the feedback linearization observer, a variable structure algorithm is employed in the next step. To modify the
fault estimation accuracy in the robust feedback linearization observer, the fuzzy technique is presented in the
third step (Section 3.1). To improve the fault detection and isolation, robust residual signal and threshold value
are generated, compared, and classified (Section 3.2).

Problem 3. To reduce the effect of a fault in the robot surgery, which techniques are employed in this study?

Solution 3. In this study, the main idea of the fault-tolerant controller is feedback linearization control. The
proposed observation technique is applied to this controller to improve the power of fault reduction. To improve the
robustness in uncertain and noisy condition, a fuzzy adaptive technique is applied to the robust observation-based
feedback linearization controller (Section 3.3).

The rest of this research paper is organized as follows. In Section 2, the surgical robot for
maxillary sinus surgery is modeled based on the fuzzy ARX-Laguerre procedure. The proposed
adaptive fuzzy ARX-Laguerre T–S fuzzy robust feedback linearization observation for surgical robot
fault detection, estimation, identification, and tolerant control are presented in Section 3. Section 3
includes three main steps. In the first step, the fuzzy ARX-Laguerre T–S fuzzy robust feedback
linearization observer based on a variable structure algorithm is utilized. In the second step, fault
detection, estimation, and identification are proposed. For the fault-tolerant algorithm, an adaptive
fuzzy advanced observation-based feedback linearization algorithm is recommended in the third step.
In Section 4, fault detection, estimation, identification, and tolerant control results for the surgical robot
for maxillary sinus surgery are analyzed. Finally, the conclusions are provided in the last section.

2. Surgical Robot Modeling

Continuum robots have a biologically inspired form characterized by flexible backbones and high
degree-of-freedom structures [34]. These robots have the ability to move, grasp, and manipulate into
tight and congested spaces. Hence, these robots have potential applications in whole-arm grasping and
manipulation in unstructured environments such as those of surgery [3]. The system information is
listed in Table 1. The bending robotic system is composed of a continuum module, system drives, and
control unit. The backbone of the flexible part is obtained using a superelastic NiTiNo1 tube because
of its large elastic deformation, long life span, and high performance. As a result, the manipulator is
safe for surgery. Figure 3 illustrates the continuum module of a surgical robot for the sinus. Figure 3a
illustrates the continuum joints with four holes for NiTiNo1 tube with cable (gripper) and cable
(deflection). These joints are used to improve structural stability. The joints are made of stainless
steel and the manipulator consists of 17 joints and each joint can be tiled up by about 30◦. Based on
Figure 3b, these joints are connected by NiTiNo1 tubes and cables. Regarding Figure 3c, these cables
are used to control the scissor. To improve the operational space for the sinus robot, it is designed
with the rotation and translation space by spherical joints. The rotational space is used to activate the
end-effector to reach the maxillary sinus and the translation space is used to reach the front and back
of the maxillary sinus. The system drives are used to activate the rotational and translational motion
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and the controllers are used to control of rotational, translational, deflection, and gripper (four degrees
of freedom (4-DOF)) for bent to into maxillary sinus for surgical tasks [3].

Table 1. Specifications of a continuum sinus robot [3].

Part Quantity Description

Manipulator Degrees of freedom 4
Continuum module Diameter 4 [mm]

Number of joints 17
Maximum bending angle 270◦

Length of continuum module 30 [mm]
Diameter of holes 0.6 [mm]

Minimum radius of curvature 5.8 [mm]
Radius of curvature at 180◦ 10 [mm]

Grippers Length 10 [mm]
Cables (gripper) Diameter 0.2 [mm]

Material Stainless Steel
Cables (deflection) Diameter 0.36 [mm]

Material Stainless Steel
NiTiNo1 tube Outer diameter 0.508 [mm]

Inner diameter 0.305 [mm]
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Figure 3. Continuum module of a surgical robot for the sinus: (a) continuum joint, (b) motion schematic,
and (c) structure.

2.1. Surgical Robot Kinematics and Dynamics

As shown in Figure 3, a surgical robot for the sinus has two segments and two deflection stages
(DS). Figure 4 shows that the proximal segment (PS) consists of areas II and III, which include seven
joints, and the distal segment comprises 10 joints for areas I and IV. To analyze the continuum surgical
robot for sinus deflection shown in Figure 4, the D-H conventions are presented in Table 2.
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Table 2. D-H parameters of a continuum surgical robot: stage I (θ ≤ 90
◦
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Link α a d θ State

1 0 a1 d1 0 θ ≤ 90
◦

2 −90◦ 0 d2 φ θ ≤ 90
◦

3 90◦ 0 0 θ3 θ ≤ 90
◦

4 −90◦ 0 d4 0 θ ≤ 90
◦

5 90◦ 0 0 θ5 θ ≤ 90
◦

6 0 0 d5 0 θ ≤ 90
◦

7 0 0 d6 0 θ ≤ 90
◦

8 0 a1 d1 0 θ ≥ 90
◦

9 −90◦ 0 d2 −90◦ θ ≥ 90
◦

10 90◦ 0 0 90◦ θ ≥ 90
◦

11 −90◦ 0 d4 −90◦ θ ≥ 90
◦

12 90◦ 0 0 90◦ θ ≥ 90
◦

13 −90◦ 0 0 −90◦ θ ≥ 90
◦

14 90◦ 0 0 90◦ θ ≥ 90
◦

15 −90◦ 0 d8 −90◦ θ ≥ 90
◦

16 90◦ 0 0 90◦ θ ≥ 90
◦

17 0 0 d10 0 θ ≥ 90
◦

The translation matrix is defined by the following equation:

i−1
i T =


cosθi − sinθi 0 ai−1

sinθi cosαi−1 cosθi cosαi−1 − sinαi−1 − sinαi−1di
sinθi sinαi−1 cosθi sinαi−1 cosαi−1 cosαi−1di

0 0 0 1

 (1)

Here, i−1
i T , ai,αi, di and θi are the transformation matrix for each link, the distance from Ẑi to Ẑi+1

measured along X̂i, the angle from Ẑi to Ẑi+1 measured about X̂i, the distance from X̂i−1 to X̂i measured
along Ẑi, and the angle from X̂i−1 to X̂i measured about Ẑi, respectively. Based on Equation (1), the
forward kinematics is represented by Equation (2).

FK = 0
17T = 0

1T1
2T2

3T3
4T4

5T5
6T6

7T7
8T8

9T9
10T10

11T11
12T12

13T13
14T14

15T15
16T16

17T (2)

A slave robot manipulator to drive a surgical continuum robot has 4-DOF, is serial linked, and is a
coupling effects system. The configurations for continuum sinus surgery with the master robot are
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illustrated in Figure 5. As shown in Figure 5, the master manipulator is used for input control, and
four controllers are designed to control the four motors located in the slave manipulator. As shown
in Figure 6, these motors are used to actuate the translation, rotation, deflection, and gripper of the
surgical robot for the sinus.
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The dynamic formulation of the surgical robot for the sinus is represented by Equation (3) [34–36].

Fcτ = I(q)
..
q + N(q,

.
q) + G(q) + δ, (3)

where Fc, τ, I(q), N(q), G(q), and δ are the force coefficient matrix, inertial matrix, coefficients of the
first-order generalized coordinate matrix, gravity, and faults and uncertainties, respectively. The force
coefficient matrix transforms the input forces to the generalized forces and torques in the system. The
inertia matrix is composed of four block matrices. The block matrices that correspond to pure linear
accelerations and pure angular accelerations in the system are symmetrical. The matrix N(q) contains
coefficients of the first order derivatives of the generalized co-ordinates. Since the system is nonlinear,
many elements of N(q) contain first order derivatives of the generalized co-ordinates. The remaining
terms in the dynamic equations resulting from gravitational potential energies and spring energies are
collected in this matrix. Therefore, the joint position is represented by Equation (4).

x ..
q =

x
I(q)−1

×(Fcτ−N(q,
.
q) −G(q)) + δ (4)
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Hence, the state-space equation is introduced as follows [14]: Xq,Fcτ(k + 1) = I(q)−1(Xq,Fcτ)UFcτ(k) + ξ(Xq,Fcτ) + δ(k)
Yq(k + 1) = (κ)TXq,Fcτ

(5)

Here, ξ(Xq,Fcτ) = (N(q,
.
q) + G(q)). The Xq,Fcτ(k), UFcτ(k), Yq(k), and κ are the state function, state

input, state output, and Fourier coefficient, respectively. To design an observation-based fault diagnosis
and fault-tolerant control, modeling of the surgical robot for the sinus is the first step.

2.2. Fuzzy Auto Regressive with Exogenous Input (ARX) Laguerre System Modeling

Based on Figure 2, the proposed system modeling has three main steps: (a) ARX technique,
(b) improve the robustness of the ARX technique by the orthonormal method and design of the
ARX-Laguerre method, and (c) improve the accuracy of system estimation based on the fuzzy
ARX-Laguerre technique. An extensive variety of sinus surgery continuum robots based on the ARX
method is represented by the following equation [37]:

W(k) + λW1W(k− 1) + λW2W(k− 2) + . . .+ λWW W(k− nW) = λH1H(k− 1) + λH2H(k− 2)
+ . . .+ λHH H(k− nH) + e(k)

. (6)

Therefore, the future output can be predicted by observation parameters based on Equation (7).

W(k) = −λW1W(k− 1) − λW2W(k− 2) − . . .− λWW W(k− nW) + λH1H(k− 1) + λH2H(k− 2)
+ . . .+ λHH H(k− nH) + e(k)

, (7)

where (W(k−nW), H(k−nH)), W(k), H(k), (λW ,λH), and e(k) are system lag, output, input, coefficients,
and zero-mean noise, respectively. Building on Equation 7, the state-space ARX modeling is represented
by Equation (8). 

W(k) = −ε(k).ψ+ e(k)
ψ = [ λW1 . . . λWW λH1 . . . λHH ]

ε = [ −W(k− 1) . . . −W(k− nW) H(k− 1) . . . H(k− nH)]

. (8)

Here, ε and ψ are regressor variables of the ARX system modeling and the coefficient matrix,
respectively. Thus, Equation (8) represents the ARX estimation technique.

W(k) = φ̂[W(k− 1), W(k− 2), . . . , W(k− nW), H(k− 1), H(k− 2), . . . , H(k− nH)], (9)

φ̂ = arg minφ̂{ f (φ̂,ψ)}

f (φ̂,ψ) = 1
k

k∑
0
(W(k) − ε(k)ψ)2 , (10)

Therefore, the state-space ARX system modeling is represented by the following equation.{
Xq,Fcτ(k + 1) = αXXq,Fcτ + αUUFcτ(k) + δ(k)
Yq(k + 1) = (κ)TXq,Fcτ

. (11)

Here, (αX,αU) are coefficients. To improve the accuracy and reduce the system estimation order,
the ARX–Laguerre technique for modeling the surgical robot for the sinus is represented by the
following equation [18,21].

Yq(k) =
iY∑
0

αn,Y(
∞∑

j=1

λY ∗Yq(k)).χn,Y(k) +
iU∑
0

αn,U(
∞∑

j=1

λU ∗U(k)).χn,U(k), (12)
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where (αn,Y&αn,U), (iY, iU), (λY,λU), ∗,χn,Y(k) and χ
n,U(k) are the Fourier coefficients, the robot

manipulator order, the function of the Laguerre orthonormal, the product of the convolution, the
filter system output, and the filter system input, respectively. Figure 7 illustrates the block diagram of

the ARX-Laguerre algorithm. Here, φo1 =
√

1−ζa
Z−ζa

, φo2 = φon = 1−ζaz
Z−ζa

, φi1 =

√
1−ζb

Z−ζb
, φi2 = φin =

1−ζbz
Z−ζb

,
κ = [G0,a, . . . , Gn,a, G0,b, . . . , Gn,b], and (ζa, ζb) is the orthonormal basis. Therefore, the state-space
ARX-Laguerre surgical robot estimation is represented by the following equation.{

Xq,Fcτ(k + 1) = [αXXq,Fcτ + αUUFcτ(k) + αYYq(k)] + δ(k)
Yq(k + 1) = (κ)TXq,Fcτ

. (13)
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In this research, to modify the accuracy of the ARX-Laguerre method, a fuzzy logic technique
is recommended. Based on the bounds of the uncertainties and faults, the primary objective is to
present a systematic fuzzy algorithm for modeling the multi-input-multi-output (MIMO) systems in
the presence of unknown parameters. Based on the fuzzy algorithm, this technique consists of the
following parts: fuzzification, an IF-THEN rule, a reasoning mechanism, and defuzzification. The
primary challenge of system modeling based on the fuzzy algorithm is improving the performance of
the knowledge base and inference parts. The fuzzy ARX-Laguerre system estimation is defined based
on the following equation:

W f uzzy(k) = f f uzzy[W(k− 1), W(k− 2), . . . , W(k− nW), H(k− 1), H(k− 2), . . . , H(k− nH)], (14)

where f f uzzy is a fuzzy function for system estimation. The fuzzy IF-THEN rule is defined as follows [28]:

Rule (N) : If em is Hm
e and

.
em is Hm

.
e

then f f uzzy is Hm
f uzzy, (15)

where em, (Hm
e , Hm

.
e

, Hm
f uzzy), and

.
em are the estimation error, the fuzzy sets, and the estimation change

of error, respectively. The fuzzy membership functions for em in the interval of [−0.1, 0.1] are Gaussian,



Appl. Sci. 2019, 9, 2490 11 of 26

and the fuzzy sets are defined as negative big (NB), negative small (NS), zero (Z), positive small (PS),
and positive big (PB). The fuzzy membership functions for

.
em in the interval of [−1, 1] are Gaussian,

and the fuzzy sets are defined as NB, NS, Z, PS, and PB. The fuzzy membership functions for f f uzzy in
the interval of [−10, 10] are Gaussian, and the fuzzy sets are defined as NB, NS, Z, PS, and PB. Thus,
the state-space fuzzy ARX-Laguerre estimation for the surgical robot for the sinus is represented by:{

Xq,Fcτ(k + 1) = [αXXq,Fcτ + αUUFcτ(k) + αYYq(k) + αF f f uzzy] + δ(k)
Yq(k + 1) = (κ)TXq,Fcτ

. (16)

where (αX,αU,αY,αF) are coefficients. The rule table of the fuzzy ARX-Laguerre algorithm is shown
in Table 3.

Table 3. Fuzzy rule table for the fuzzy ARX-Laguerre surgical robot for the sinus estimation algorithm.

Error (e)

Change of Error (de)

NB NS Z PS PB
NB PB PB PB PS Z
NS PB PB PS Z NS
Z PB PS Z NS NB

PS PS Z NS NB NB
PB Z NS NB NB NB

Figures 8 and 9 illustrate the estimation accuracy and errors for the normal and abnormal conditions
based on the ARX method, the ARX-Laguerre technique, and the fuzzy ARX-Laguerre algorithm.
According to these figures, the estimation accuracy of the fuzzy ARX-Laguerre technique is higher
than those of the ARX and ARX-Laguerre techniques, and the error rate in the fuzzy ARX-Laguerre
estimation technique is close to zero under normal and abnormal conditions.
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3. Proposed Method for Fault Estimation, Detection, Identification and Tolerant Control

Based on the algorithm shown in Figure 2, the surgical robot for the sinus was modeled using
the fuzzy ARX-Laguerre method. After modeling the surgical robot for the sinus with the fuzzy
ARX-Laguerre technique, the advanced intelligent nonlinear observer was designed. In the next step,
fault detection, estimation, and identification were analyzed. In the last step, fault-tolerant control
was designed to eliminate or reduce the effect of faults of the surgical robot for the sinus based on the
proposed adaptive fuzzy observer feedback linearization controller.

3.1. Takagi–Sugeno (T–S) Fuzzy Advanced Observer

Following the abbreviations shown in Figure 2, the fuzzy ARX-Laguerre T–S fuzzy robust feedback
linearization observer designed in this section comprises three main blocks: (d) the fuzzy ARX-Laguerre
feedback linearization observer, (e) improvement of the robustness and estimation performance based
on the fuzzy ARX-Laguerre robust (variable structure) feedback linearization observer algorithm,
and (f) reduction of the estimation error of the fuzzy ARX-Laguerre robust feedback linearization
observer based on the T–S fuzzy algorithm and formulation of the fuzzy ARX-Laguerre T–S fuzzy
robust feedback linearization technique. The feedback linearization observer offers a non-linear
model-reference approach to find an accurate system and fault estimation. Based on Equation (16),
the fuzzy ARX-Laguerre feedback linearization observer is proposed for a surgical robot for the sinus
based on the following Equation (26):

X̂q,Fcτ(FLO)(k + 1) = [αXX̂q,Fcτ(FLO) + αUUFcτ(k) + αYŶq(FLO)(k) + αF f̂ f uzzy(FLO)]

+δ̂(FLO)(k) + αP(Yq(k) − Ŷq(FLO)(k)) + f (X̂q,Fcτ(FLO), U) + I−1(αP(Yq(k) − Ŷq(FLO)(k)))
Ŷq(FLO)(k + 1) = (κ)TX̂q,Fcτ(FLO)(k)

. (17)

where f (X̂q,Fcτ(FLO), U) = I−1[Fcτ−N(q,
.
q)−G(q)]. Here, X̂q,Fcτ(FLO)(k), Ŷq(FLO)(k), f̂ fuzzy(FLO), δ̂(FLO)(k),

and αp are the state estimation, output estimation, fuzzy estimation function, fault estimation, and a
coefficient, respectively. Except for αp, all are based on the fuzzy ARX-Laguerre feedback linearization
observer. The fault is estimated in the fuzzy ARX-Laguerre feedback linearization observer based on
Equation (18).

δ̂(FLO)(k + 1) = I−1(δ̂(FLO)(k) + αP(Yq(k) − Ŷq(FLO)(k))) (18)

The state and fault estimation errors in the fuzzy ARX-Laguerre feedback linearization observer
are represented by Equation (19). X̃q,Fcτ(FLO)(k) = Xq,Fcτ(k) − X̂q,Fcτ(FLO)(k)

δ̃(FLO)(k) = δ(k) − δ̂(FLO)(k)
(19)
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Here, X̃q,Fcτ(FLO)(k) and δ̃(FLO)(k) are the state estimation error and fault estimation error,
respectively. Both are based on the fuzzy ARX-Laguerre feedback linearization observer. To improve
the robustness of the fuzzy ARX-Laguerre feedback linearization observer, the fuzzy ARX-Laguerre
extended feedback linearization observer based on the variable structure technique is recommended.
Based on previous work [18,23,26,27], the variable structure technique is a robust, stable, and reliable
method for fault estimation. Thus, to improve the reliability, robustness, and estimation accuracy, the
fuzzy ARX-Laguerre variable structure feedback linearization observer is a respectable candidate. The
variable structure fault estimation technique is represented by Equation (20).

.
δ̂VSO(k + 1) = (κVSO) × sgn(Yq(k) − Ŷq(FLO)(k)) (20)

Based on Equations (17), (18), and (20), the state-space and fault estimation of the fuzzy
ARX-Laguerre robust (variable structure) feedback linearization observer are represented by Equations
(21) and (22).

X̂q,Fcτ(RFLO)(k + 1) = [αXX̂q,Fcτ(RFLO) + αUUFcτ(k) + αYŶq(RFLO)(k) + αF f̂ f uzzy(RFLO)]

+δ̂(RFLO)(k) + αP(Yq(k) − Ŷq(RFLO)(k)) + f (X̂q,Fcτ(RFLO), U) + I−1(αP(Yq(k) − Ŷq(RFLO)(k)))
Ŷq(RFLO)(k + 1) = (κ)TX̂q,Fcτ(RFLO)(k)

(21)

δ̂(RFLO)(k + 1) = I−1(δ̂(FLO)(k) + αP(Yq(k) − Ŷq(RFLO)(k))) + (κVSO)‖(Yq(k) − Ŷq(RFLO)(k))‖
0.5
×

sgn(Yq(k) − Ŷq(RFLO)(k)) − δ̂(RFLO)(k)
(22)

The state and fault estimation errors in the fuzzy ARX-Laguerre robust feedback linearization
observer based on the variable structure algorithm are represented by Equation (23). X̃q,Fcτ(RFLO)(k) = Xq,Fcτ(k) − X̂q,Fcτ(RFLO)(k)

δ̃(RFLO)(k) = δ(k) − δ̂(RFLO)(k)
, (23)

where X̂q,Fcτ(RFLO)(k), Ŷq(RFLO)(k), δ̂(RFLO)(k),κVSO, X̃q,Fcτ(RFLO)(k), and δ̃(RFLO)(k) are state estimation,
the fuzzy ARX-Laguerre robust feedback linearization output estimation, fault estimation, the
observer coefficient, state estimation error, and fault estimation error, respectively, all based on
fuzzy ARX-Laguerre robust feedback linearization. The fuzzy ARX-Laguerre robust feedback
linearization observer based on the variable structure technique amended the robustness of the
fuzzy ARX-Laguerre feedback linearization observer; however, to improve fault estimation accuracy,
the fuzzy ARX-Laguerre T–S fuzzy robust feedback linearization technique is recommended. The T–S
fuzzy observer is represented by the following function [28].

IF ra(k) is THa and rs(k) is THsTHENδ̂ f uzzy(k + 1) = δ̂ f uzzy(k) + α f uzzy(Yq(k) − Ŷq(k)), (24)

Here, ra(k), rs(k), (THa, THs), δ̂ f uzzy(k), and α f uzzy are the residual signal for the actuator fault,
residual signal for the sensor fault, threshold values for the actuator and sensor faults, faulty signal
estimator based on the T–S fuzzy algorithm, and the fuzzy coefficient, respectively. Based on
Equation (24), the rule base for the T–S fuzzy technique to estimate the fault is represented by the
following Equation.

δ̂ f uzzy :


IF ra(k) is THa and rs(k) � 0 THEN δ̂ f uzzy(k + 1) = δ̂ f uzzy(k) + α1 f uzzy(Yq(k) − Ŷq(k))
IF ra(k) � 0 and rs(k) is THs THEN δ̂ f uzzy(k + 1) = δ̂ f uzzy(k) + α2 f uzzy(Yq(k) − Ŷq(k))
IF ra(k)is THa and rs(k) is THs THEN δ̂ f uzzy(k + 1) = δ̂ f uzzy(k) + α3 f uzzy(Yq(k) − Ŷq(k))

(25)
Here, (α1 f uzzy,α2 f uzzy,α3 f uzzy), THa and THs are fuzzy estimator coefficients for actuator fault,

sensor fault, and actuator-sensor fault and actuator and sensor thresholds, respectively. Concerning
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Equations (21), (22), and (25), the fuzzy ARX-Laguerre T–S fuzzy robust feedback linearization observer
is represented by Equations (26) and (27).

X̂q,Fcτ(p)(k + 1) = [αXX̂q,Fcτ(p) + αUUFcτ(k) + αYŶq(p)(k) + αF f̂ f uzzy(p)]

+δ̂(p)(k) + αP(Yq(k) − Ŷq(p)(k)) + f (X̂q,Fcτ(p), U) + I−1(αP(Yq(k) − Ŷq(p)(k)))
Ŷq(p)(k + 1) = (κ)TX̂q,Fcτ(p)(k)

(26)

δ̂(p)(k + 1) = I−1(δ̂(FLO)(k) + αP(Yq(k) − Ŷq(p)(k))) + (κVSO)‖(Yq(k) − Ŷq(p)(k))‖
0.5
×

sgn(Yq(k) − Ŷq(p)(k)) − δ̂(RFLO)(k) + δ̂( f uzzy)(k)
(27)

The state and fault estimation errors in the fuzzy ARX-Laguerre T–S fuzzy robust feedback
linearization observer are represented by Equation (28). X̃q,Fcτ(p)(k) = Xq,Fcτ(k) − X̂q,Fcτ(p)(k)

δ̃(p)(k) = δ(k) − δ̂(p)(k)
, (28)

where X̂q,Fcτ(p)(k), Ŷq(p)(k), δ̂(p)(k), X̃q,Fcτ(p)(k), and δ̃(p)(k) are the fuzzy ARX-Laguerre T–S fuzzy
robust feedback linearization (proposed) observer for state estimation and the proposed observers
for output estimation, fault estimation, state estimation error, and fault estimation error, respectively.
Figure 10 illustrates the fault estimation and fault estimation error for the fuzzy ARX-Laguerre feedback
linearization observer, fuzzy ARX-Laguerre robust feedback linearization observer based on the
variable structure technique, and proposed fuzzy ARX-Laguerre fuzzy robust feedback linearization
observer for normal and abnormal conditions for the surgical robot for the sinus. Regarding this
figure, the fault estimation accuracy and error of fault estimation based on the proposed algorithm
are more accurate than those of the fuzzy ARX-Laguerre feedback linearization observer and fuzzy
ARX-Laguerre robust feedback linearization observer.
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Figure 10. Results for the fuzzy ARX-Laguerre feedback linearization method, fuzzy ARX-Laguerre
robust feedback linearization method, and fuzzy ARX-Laguerre T–S fuzzy robust feedback linearization
method for the surgical robot for the sinus. (a) Position fault estimation accuracy. (b) Fault estimation
error of position estimation.

3.2. Fault Detection, Estimation, and Identification Technique

As identified in Figure 2, the fault detection, estimation, and identification blocks have two
sub-blocks: (g) residual and threshold generator and (h) residual bank and logic decision. The residual
signal is generated by Equation (29).

r = Y(q) − Ŷq(p) (29)
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Based on previous work [18,23,26,27], the robust sliding mode algorithm is used to generate the
threshold value. The sliding mode threshold value is generated by Equation (30).

THN = αN[sgn(λN × rN + (λN
2 )

2∑
rN +

.
rN)]

THa = αa[sgn(λa × ra + (λa
2 )

2∑
ra +

.
ra)]

THs = αs[sgn(λs × rs + (λs
2 )

2∑
rs +

.
rs)]

. (30)

Here, THN, THa, THs, (αN,αa,αs,λN,λa,λs), rN,
.
rN,
∑

rN,ra,
.
ra,
∑

ra, rs,
.
rs, and

∑
rs are the threshold

value for normal condition, threshold value for actuator fault, threshold value for sensor fault,
coefficients of the sliding mode algorithm in different states, residual signal for normal condition,
change of residual signal for normal condition, integral of residual signal for normal condition, residual
signal for actuator fault, change of residual signal for actuator fault, integral of residual signal for
actuator fault, residual signal for sensor fault, change of residual signal for sensor fault, and integral
of residual signal for sensor fault, respectively. Two different conditions have been defined for fault
detection in the surgical robot for the sinus: (a) normal condition (δ(k) = 0) and (b) abnormal condition
(δ(k) , 0). The fault detection in the manipulator of the surgical robot for the sinus is represented by
Equation (31). {

Normal Condition : r(k) < THN

abnormal Condition : r(k) ≥ THN
. (31)

Figure 11 illustrates the fault detection for the fuzzy ARX-Laguerre feedback linearization observer,
fuzzy ARX-Laguerre robust feedback linearization observer, and proposed algorithm. Based on the
fuzzy ARX-Laguerre fuzzy robust feedback linearization observer, the proposed high-accuracy fault
estimation technique is represented by Equation (27). Based on Equations (26)–(31), the following
equation is used for fault identification for the manipulator of the surgical robot for the sinus.

(Actuator) Fault : (ra(k) ≥ THa & THN ≤ rs(k) < THs)

(Sensor) Fault : (THN ≤ ra(k) < THa & rs(k) ≥ THs)

(Sensor − Actuator) Fault : (ra(k) ≥ THa & rs(k) ≥ THs)

. (32)
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several positive points of classical feedback linearization control algorithm, to improve the robustness 

Figure 11. Fault detection for the fuzzy ARX-Laguerre feedback linearization method, the fuzzy
ARX-Laguerre robust feedback linearization method, and the fuzzy ARX-Laguerre T–S fuzzy robust
feedback linearization method for the surgical robot for the sinus.

Figure 12 illustrates the fault identification in the manipulator of the surgical robot for the sinus
for the fuzzy ARX-Laguerre feedback linearization observer, fuzzy ARX-Laguerre robust feedback
linearization observer, and the proposed algorithm. Based on fault estimation accuracy, the proposed
algorithm has better performance for fault diagnosis time delay.
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Figure 12. Actuator fault identification residual signals: (a) position and (b) torque for the fuzzy
ARX-Laguerre feedback linearization method, the fuzzy ARX-Laguerre robust feedback linearization
method, and the fuzzy ARX-Laguerre T–S fuzzy robust feedback linearization method for the surgical
robot for the sinus.

3.3. Fault-Tolerant Control

A fault-tolerant controller is used to reduce or eliminate the effect of faults in the surgical robot for
the sinus. As shown in Figure 2, the fault-tolerant control section has two main subparts: (i) proposed
observation-based feedback linearization control; and (j) adaptive-fuzzy technique. The proposed
observation-based feedback linearization control has two main subparts: (1) the classical feedback
linearization control; and (2) the proposed observation algorithm designed in the previous section and
based on the fuzzy ARX-Laguerre T–S fuzzy robust feedback linearization observer. Based on Figures 5
and 6, four PC-based controllers are designed to control four motors located in the slave manipulator.
These motors are used to actuate the translation, rotation, deflection, and gripper of the surgical robot.
The conventional feedback linearization fault-tolerant control is represented in the following Equation: τFLC(k) = −I(q) × (

..
Xd + αPe(k) + αd

.
e(k) + αi

∑
e(k)) + f (X̂q,Fcτ(p), U)

e(k) = (Yq(k) − Ŷq(p)(k))
, (33)

Here, τFLC and (αp,αd,αi) are the controller output (torque) based on the conventional feedback
linearization control algorithm and controller coefficients, respectively. In addition to several positive
points of classical feedback linearization control algorithm, to improve the robustness and increase the
power of fault reduction, the proposed fuzzy ARX-Laguerre T–S fuzzy robust feedback linearization
observer is presented. The main advantage of this part is to estimate the unmeasured variable (Xq,Fcτ)

by observation. The proposed observer feedback linearization control is represented by the following
Equation: 

τOFLC(k) = τFLC(k) + Ŷq(p)(k)
Ŷq(p)(k + 1) = (κ)TX̂q,Fcτ(p)(k)
X̂q,Fcτ(p)(k + 1) = [αXX̂q,Fcτ(p) + αUUFcτ(k) + αYŶq(p)(k) + αF f̂ f uzzy(p)]

+δ̂(p)(k) + αP(Yq(k) − Ŷq(p)(k)) + f (X̂q,Fcτ(p), U) + I−1(αP(Yq(k) − Ŷq(p)(k)))

(34)

Here, τOFLC(k) is the controller output based on the proposed observation-based feedback
linearization controller. To improve the reliability of the proposed observation-based feedback
linearization fault-tolerant controller, online tuning based on the fuzzy algorithm is proposed. To
improve the power of fault reduction in the proposed fault-tolerant control algorithm, the controller
coefficients play important roles. Because faults are unknown with respect to various conditions and
are difficult to predict, calculating the optimal values for coefficients are complicated. If the controller’s
coefficients are changed with the condition of the surgical robot for the sinus, the fault could be reduced
and eliminated. Thus, for online tuning of the coefficient, a fuzzy algorithm is represented. Based on
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Equation (34), the adaptive fuzzy observation-based feedback linearization fault-tolerant controller
can be written as the following Equation:

τp(k) = τonlineFLC(k) + Ŷq(p−online)(k)
τonlineFLC(k) = −I(q) × (

..
Xd + αP−newe(k) + αd−new

.
e(k) + αi−new

∑
e(k)) + f (X̂q,Fcτ(p), U)

Ŷq(p)(k + 1) = (κ)TX̂q,Fcτ(p)(k)
X̂q,Fcτ(p)(k + 1) = [αXX̂q,Fcτ(p) + αUUFcτ(k) + αYŶq(p)(k) + αF f̂ f uzzy(p)]

+δ̂(p)(k) + αP−new(Yq(k) − Ŷq(p)(k)) + f (X̂q,Fcτ(p), U) + I−1(αP−new(Yq(k) − Ŷq(p)(k)))

(35)

Here, τp(k), τonlineFLC(k), Ŷq(p−online)(k), and (αP−new,αd−new,αi−new) are the proposed method for
fault-tolerant control in the surgical robot for the sinus, the online tuning part of the feedback
linearization controller, the online tuning part of the proposed fuzzy ARX-Laguerre T–S fuzzy robust
feedback linearization observer, and the online tuning coefficients, respectively. The online tuning
proportional, derivative, and integral coefficients are represented by Equation (36).

αP−new = αP × αonline
αd−new = αd × αonline
αi−new = αi × αonline

(36)

where αonline is fuzzy output for tuning the proportional, derivative, and integral coefficients. The fuzzy
algorithm has two inputs (error and change of error) and one output. The fuzzy membership functions
in the interval of [−0.1, 0.1] are Gaussian, and the fuzzy sets are defined as NB, NM, NS, Z, PS, PM, and
PB. The fuzzy membership functions for change of error in the interval of [−2, 2] are Gaussian, and the
fuzzy sets are defined as NB, NM, NS, Z, PS, PM, and PB. The fuzzy membership functions for fuzzy
output in the interval of [0.1, 2] are Gaussian, and the fuzzy sets are defined as PS, PM, and PB. The
rule table for online tuning the proposed fuzzy fault-tolerant controller is given in Table 4. Figure 13
illustrates the power of fault-tolerant control in the manipulator of the surgical robot for the sinus for
online tuning of the fuzzy observer feedback linearization controller (proposed method), observer-based
feedback linearization controller, and classical feedback linearization controller. Regarding the figure,
the power of fault reduction in the proposed method is significantly better than with the other two
methods. The proposed algorithm for fault diagnosis and the fault-tolerant controller of the surgical
robot for the sinus are summarized in Algorithm 1.

Table 4. Fuzzy rule table for online tuning of the proposed fault-tolerant control algorithm.

Error (e)

Change of Error (de)

NB NM NS Z PS PM PB
NB PB PB PB PB PM PS PS
NM PB PB PB PM PS PS PS
NS PB PB PM PS PS PS PS
Z PB PM PS PS PS PS PS

PS PB PB PB PB PM PS PS
PM PB PB PB PM PS PS PS
PB PB PB PM PS PS PS PS
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Figure 13. Fault-tolerant control for fuzzy feedback linearization method, observation-based feedback
linearization method, and proposed method for a surgical robot for the sinus.

Algorithm 1 Online tuning of the observation-based fuzzy ARX-Laguerre T–S fuzzy robust feedback
linearization observer for fault detection, estimation, identification, and tolerant control of a surgical robot
for the sinus.

1: Run the ARX technique for system modeling (11)
2: Run the extended ARX method using the ARX–Laguerre technique for system modeling (13)
3: Run the extended ARX-Laguerre technique based on fuzzy ARX-Laguerre system modeling (16)
4: Run the fuzzy ARX-Laguerre feedback linearization observer (17), (18)

5:
Run the fuzzy ARX-Laguerre robust feedback linearization observer based on the variable
structure technique (21), (22)

6: Run the fuzzy ARX-Laguerre T–S fuzzy robust feedback linearization observer (26), (27)
7: Run the residual signal generation (29)
8: Run the threshold generation based on the variable structure technique (30)
9: Run the proposed fault detection algorithm (31)
10: Run the proposed fault estimation technique (27)
11: Run the proposed fault identification method (32)
12: Run the feedback linearization technique (33)

13:
Run the extended feedback linearization method based on the observation technique for fault
tolerance (34)

14:
Run the extended observation-based feedback linearization technique and the adaptive fuzzy
observation-based feedback linearization technique for fault tolerance (35), (36)

4. Results and Analysis

Figure 2 presents the proposed algorithm for fault diagnosis and fault-tolerant control for the
surgical robot for the sinus. The effectiveness of the proposed fuzzy ARX-Laguerre T–S fuzzy robust
feedback linearization observer for fault estimation, detection, and identification was compared to
the fuzzy ARX-Laguerre robust feedback linearization observer and fuzzy ARX-Laguerre feedback
linearization observer.

4.1. Fault Detection, Estimation and Identification

Figure 14 illustrates the residual signal for the surgical robot for the sinus and force torque signals
in the normal condition. Based on Figure 14a, this system has a spike at various times, such as 5, 10, 12,
15, and 17 s. These signals are not errors, and the signal rise and fall times are very short.
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Based on Figure 15, the delay time for fault identification in the proposed algorithm is better 
than with the other techniques. Figure 16 shows the power of sensor fault identification by three 

Figure 14. Normal condition residual signals: (a) torque and (b) joint position variable.

Based on Figure 14, in the normal condition, the level of the position residual signal and the torque
residual signal should be lower than the normal threshold value. Figures 15–17 illustrate the fault
detection in actuator fault, sensor fault, and sensor-actuator fault for the proposed fuzzy ARX-Laguerre
T–S fuzzy robust feedback linearization observer, fuzzy ARX-Laguerre robust feedback linearization
observer, and fuzzy ARX-Laguerre feedback linearization observer. Based on Figure 16 and Equation
(32), in an actuator fault, the position residual signal should be higher than the normal, and the actuator
thresholds and torque residual signal should be higher than the normal threshold but lower than the
sensor threshold value.
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Figure 17. (a) Position residual signals and (b) torque residual signals for actuator-sensor fault
identification based on the fuzzy ARX-Laguerre feedback linearization method, fuzzy ARX-Laguerre
robust feedback linearization method, and fuzzy ARX-Laguerre T–S fuzzy robust feedback linearization
method for the surgical robot for the sinus.

Based on Figure 15, the delay time for fault identification in the proposed algorithm is better than
with the other techniques. Figure 16 shows the power of sensor fault identification by three methods
for the surgical robot for the sinus. Regarding Figure 16a, the classical feedback linearization observer
has drawbacks in fault identification in this type of fault. As shown in this figure, the proposed
and robust feedback linearization observers have reliable performance compared with the classical
feedback linearization observer. Figure 17 illustrates the actuator-sensor fault identification efficiency
for the surgical robot for the sinus based on three different algorithms. Regarding this figure, the delay
time to fault identification in the proposed method is less than with the other two methods.

4.2. Fault-Tolerant Control

The root mean square (RMS) error of the kinematics and the end-effector position for the surgical
robot for the sinus in the normal, actuator fault, sensor failure, and actuator-sensor fault conditions
are illustrated in Figures 18–21. Based on Figure 18, the RMS error in the normal condition for the
end-effector of the surgical robot for the sinus is close to zero. In Figures 19–21, the error rate is greater
than at the normal condition. Regarding these figures, the end-effector positions fluctuate similar
to in the normal condition. After fault detection, estimation, and identification based on the fuzzy
ARX-Laguerre T–S fuzzy robust feedback linearization (proposed) observer, the proposed fault-tolerant
control based on the adaptive fuzzy proposed observation-based feedback linearization controller
is tested. To test the proposed fault-tolerant controller, the proposed method is compared with the
observation-based feedback linearization controller and the classical feedback linearization control
algorithm. The main goal in this part is elimination or reduction of the effect of the fault to increase the
rate of successful surgery. Figure 22 shows the effects of the proposed algorithm, the observation-based
feedback linearization algorithm, and the classical feedback linearization fault-tolerant controller
to reduce/eliminate faults. Based on this figure, the adaptive fuzzy observation-based feedback
linearization controller is more reliable for the fault-tolerant controller than the other two methods.
The effect of the proposed fault-tolerant algorithm on the RMS error of kinematics end-effector and
position is illustrated in Figure 23. Regarding this figure, the proposed technique sharply reduces
the RMS error and fluctuation of the end-effector. According to Figures 18 and 23, it is clear that the
adaptive fuzzy observation-based feedback linearization control is an active and accurate technique
for fault-tolerant control in the surgical robot for the sinus.
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Figure 24 illustrates the fault-tolerant accuracy of the proposed fault-tolerant controller and
feedback linearization fault-tolerant controller in normal and abnormal conditions. This figure
illustrates that the minimum error, the average error, and the maximum error for the normal condition
with the proposed fault-tolerant controller are 1.8, 2.3, and 3.6 mm, respectively. For the faulty condition
using the proposed fault-tolerant algorithm, the errors are 0.8, 2.45, and 7.1 mm, respectively. For the
faulty condition using the observer feedback linearization fault-tolerant controller are 6, 8.4, and 20
mm, respectively, and those for the faulty condition with respect to the classical feedback linearization
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fault-tolerant controller are 7.3, 35, and 72 mm. According to Figures 22 and 24, the power of fault
reduction using the proposed fault-tolerant controller is better than the observer feedback linearization
fault-tolerant controller and feedback linearization fault-tolerant controller.
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5. Conclusions

This paper explored a highly accurate, reliable, and robust fault estimation, detection, isolation,
and tolerant control for the sinus surgical robot. The proposed method had three main steps: (a)
modeling of the surgical manipulator, (b) advanced observer for fault detection, estimation, and
isolation, and (c) an advance fault-tolerant controller. In the first step, the surgical manipulator
was modeled based on the robust and accurate fuzzy ARX-Laguerre technique. After modeling the
maxillary sinus surgical robot, the advanced observer was designed for fault diagnosis. To increase the
reliability, robustness, and fault estimation accuracy for fault diagnosis, the fuzzy ARX-Laguerre T–S
fuzzy robust feedback linearization observer was designed. After modeling and fault diagnosis for the
maxillary sinus surgical robot, the proposed fault-tolerant controller was proposed to reduce the effect
of a fault. To increase the robustness and accuracy, an adaptive fuzzy observation-based feedback
linearization technique was used in the last step. Regarding the results, the proposed algorithm
reduced the average position error from 35 mm to 2.45 mm in the faulty condition. In the future,
a hybrid higher-order observation technique will be designed to enhance the performance of fault
diagnosis and fault-tolerant control for a surgical robot.
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Nomenclature
i−1
i T Transformation matrix ai distance from Ẑi to Ẑi+1

αi Angle from Ẑi to Ẑi+1 di distance from X̂i−1 to X̂i
θi Angle from X̂i−1 to X̂i Fc force coefficient matrix
τ Torque I(q) inertial matrix

N(q)
Coefficients of the first-order generalized
coordinate matrix

G(q) gravity

δ Faults and uncertainties Xq,Fcτ(k) state function
UFcτ(k) State input Yq(k) state output
κ Fourier function (W(k− nW), H(k− nH)) system lag
W(k) Output H(k) input
(λW ,λH) Coefficients e(k) zero mean noise
ε Regressor variables ψ coefficient matrix
(αX,αU) Coefficients (αn,Y&αn,U) Fourier coefficients
(iY, iU) Robot manipulator order (λY,λU) function of the Laguerre orthonormal
∗ Product of the convolution χn,Y(k) filter system output
χn,U(k) Filter system input (ζa, ζb) orthonormal basis
f f uzzy Fuzzy function for system estimation em estimation error
(Hm

e , Hm
.
e

, Hm
f uzzy) Fuzzy sets

.
em estimation change of error

(αX,αU,αY,αF) Coefficients X̂q,Fcτ(FLO)(k) state estimation
Ŷq(FLO)(k) Output estimation f̂ f uzzy(FLO) fuzzy estimation function
δ̂(FLO)(k) Fault estimation αp coefficient
X̃q,Fcτ(FLO)(k) State estimation error δ̃(FLO)(k) fault estimation error

X̂q,Fcτ(RFLO)(k) State estimation Ŷq(RFLO)(k)
fuzzy ARX-Laguerre robust feedback
linearization output estimation

δ̂(RFLO)(k) Fault estimation κVSO observer coefficient
X̃q,Fcτ(RFLO)(k) State estimation error δ̃(RFLO)(k) fault estimation error
ra(k) Residual signal for the actuator fault rs(k) residual signal for the sensor fault

(THa, THs) Threshold values for the actuator and sensor faults δ̂ f uzzy(k)
faulty signal estimator based on the T–S
fuzzy algorithm

α f uzzy Fuzzy coefficient (α1 f uzzy,α2 f uzzy,α3 f uzzy)
estimator coefficients for actuator fault,
sensor fault, and actuator-sensor fault

X̂q,Fcτ(p)(k) Proposed observer for state estimation Ŷq(p)(k) proposed observers for output estimation
δ̂(p)(k) Proposed fault estimation X̃q,Fcτ(p)(k) proposed state estimation error
δ̃(p)(k) Proposed fault estimation error THN threshold value for normal condition

(αN ,αa,αs,λN ,λa,λs)
Coefficients of the sliding mode algorithm in
different states

rN residual signal for normal condition

.
rN Change of residual signal for normal condition

∑
rN

integral of residual signal for normal
condition

ra Residual signal for actuator fault
.
ra change of residual signal for actuator fault∑

ra Integral of residual signal for actuator fault rs residual signal for sensor fault
.
rs Change of residual signal for sensor fault

∑
rs integral of residual signal for sensor fault

τFLC
Controller’s torque based on the conventional
feedback linearization control

(αp,αd,αi) controller coefficients

τOFLC(k)
Controller output based on the proposed
observation-based feedback linearization controller

τp(k)
proposed method for fault-tolerant
control

τonlineFLC(k)
Online tuning part of the feedback
linearization controller

Ŷq(p−online)(k)
online tuning part of the proposed
method

(αP−new,αd−new,αi−new) Online tuning coefficients αonline
fuzzy output for tuning the proportional,
derivative, and integral coefficients
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