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Abstract: A Speaker Identification system for a personalized wearable device to combat gender-based
violence is presented in this paper. Speaker recognition systems exhibit a decrease in performance
when the user is under emotional or stress conditions, thus the objective of this paper is to measure the
effects of stress in speech to ultimately try to mitigate their consequences on a speaker identification
task, by using data augmentation techniques specifically tailored for this purpose given the lack of
data resources for this condition. An extensive experimentation has been carried out for assessing
the effectiveness of the proposed techniques. First, we conclude that the best performance is always
obtained when naturally stressed samples are included in the training set, and second, when these are
not available, their substitution and augmentation with synthetically generated stress-like samples
improves the performance of the system.

Keywords: speaker identification; emotions; stress conditions; data augmentation; synthetic stress

1. Introduction

In this paper, we analyze how stress affects speaker identification rates to determine if there is
a significant difference when comparing it to a speaker identification system operating in neutral
conditions. We aim at finding techniques to improve speaker identification systems when facing
stressed speech, either by neutralizing the effects of stress or by training the system to cope with it.
We propose data augmentation techniques both statistical and using synthetically generated speech
under stressed conditions together with an analysis of the best feature extraction methods to design
a stress-robust system [1].

The rest of the paper is organized as follows: Section 1 provides the context of this research
explaining our view on how technology can be used to combat gender violence and highlights its
motivation. Section 2 describes the state of the art on the subject of speaker identification and discusses
features and classifiers used in the literature. Section 3 explains the architecture of the proposed system,
Section 4 refers to the experimental set-up and results. Finally Section 5 outlines the conclusions and
future work.

1.1. Gender-Based Violence

Violence against women is one of the biggest social problems in the world. Its cultural origin has
made it an invisible phenomenon society is used to tolerate. In reality, one in three women globally
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have faced sexual violence and at least one in five women are assaulted in college campuses in the
United States alone [2].

Women, just because they are women, suffer from many different types of violence from their
partners or their environment, that can go from controlling their decisions to physical and sexual
aggressions. This violence affects, to a greater or lesser degree, women of any age, religion, economical
and social conditions; it takes place at their own homes, at the workplace and even in public places.

To eradicate violence against women we need to take action against it, such as providing help and
resources to women who suffer it, making prevention campaigns, training monitors and educating
future generations in schools. Despite the universal need for women’s safety, basic emergency reporting
and response networks do not exist in much of the world, many nations do not even have a universal
emergency access phone number that victims can call to report a crime.

A technological solution that allowed communities to rapidly respond to threats or assaults
against any of its members, would ensure that help is always available. The project this research paper
takes part in is born from the need to use technology to help finding a solution for this worldwide
problem, using speech technologies and machine learning—among other disciplines—, with the
ultimate goal of abolishing violence against women and achieving a fair and egalitarian society.

1.2. UC3M4Safety and Bindi

The research shown on this paper is part of a system called Bindi, a smart solution for women’s
safety by the UC3M4Safety group [3]. The UC3M4Safety is a multidisciplinary team for detecting,
preventing and combating violence against women from a technological point of view at University
Carlos III Madrid, Spain. The goal of this project is to develop a wearable solution for detecting
through physiological sensory data, speech and audio analysis, and machine-learning algorithms,
when a user is under an intense emotional state, such as panic, fear or stress, caused by a gender-based
violence situation [4].

As shown in Figure 1, the Bindi system consists of two wearable devices and a smartphone
application. One of the wearables, the bracelet, is in charge of measuring biometrics such as heart
rate, galvanic skin response and temperature [5,6] through physiological sensors. The second device
is a pendant, which incorporates a panic button and a microphone that records audio and speech,
presumably from the user who is wearing it but also from the environment and other speakers.
The bracelet is constantly registering and analyzing physiological data to identify any significant
deviations with respect to the basal state. When an abnormality is detected, a trigger is sent to the
pendant to start a microphone recording. This information is collected and sent via Bluetooth to the
smartphone equipped with a software application that after examining and interpreting the audio
signal—detecting sound events, voice levels, distinctive noises, etc.—under certain conditions, sends
an alert to a group of people, previously selected by the victim, or to emergency services in order to
alert of a threatening situation. The audio recorded is then stored in an only-read Cloud with several
encrypting processes and accessibility restrictions.

Figure 1. Conceptualization of the Bindi System.
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Regarding speech, there are two main tasks to be performed within Bindi, Stress Detection [7]
and Speaker Identification [1]. The former focuses in the detection of stress in the victim’s voice
whereas the latter relies on the proper identification of the victim despite the emotional conditions that
may be present in her voice. These two tasks are interdependent as one needs from the help of the
other. In this paper, we direct our attention to the latter, the development of a stress-robust speaker
identification system.

Developing a personalized speaker identification module would allow the system to identify
whether the voice belongs to the user or to someone else. Moreover, a system which is robust to stress
could be able to recognize more accurately the main speaker when her voice exhibits stress conditions.
Thus, this research is focused on speaker identification to recognize who does the voice captured by the
microphone belong to even under emotional or stress conditions. This is further used to allow speaker
adapted voice commands only obeying the victim but not the aggressor or even as judicial evidence.

1.3. Technological Challenges

In recent years, the interest in detecting and interpreting emotions in speech as well as synthesizing
emotional speech has grown in parallel for a variety of applications. The research work done
on emotions in speech is very extensive [8]. Speech Emotion Recognition (SER) consists of the
identification of the emotional content of speech signals, the task of recognizing human emotions and
affective states from speech. In the SER field, there are three important aspects being studied and
discussed in the literature: the choice of suitable acoustic features [9], the design of an appropriate
classifier [10] and the generation of an emotional speech database [11–13]. Some works propose
multimodal approaches combining visual and speech data to improve and strengthen emotion
recognition systems [14,15]. It is also well attested that speech recognition systems function less
efficiently when the speaker is in an emotional state [16]. On the other hand, some works synthesize
emotions in speech by systematically manipulating some of the parameters of human speech [17].
We can say then, that there is an important body of work about the effects of emotions in Automatic
Speech Recognition (ASR), classification of emotions from speech or emotional speech synthesis,
but the literature is scarce on the effects of emotions in Speaker Identification (SI) [18] and even less
abundant about the influence of stress specifically.

One of the problems in this type of systems is the availability of databases recorded with
emotional and neutral speech. Those existing are either recorded by actors simulating speech under
those emotions, or by people to whom different emotions have been induced. This last option is
truly complicated to implement—especially for negative emotions—and as a consequence, there are
very few databases in which stressed speech is either simulated or recorded under real conditions,
such as SUSAS [19], VOCE [20] or UT-Scope [21]. The main difficulty with these data relies on the
labelling process.

Moreover, stress is not considered a proper emotion, although it is intimately related to anxiety
and nervousness. It can be defined as a state of mental or emotional tension resulting from adverse
or demanding circumstances. Stress may be induced by external factors (workload, noise, vibration,
sleep loss, etc.) and by internal factors (emotion, fatigue, etc.). Among the physiological consequences
of stress are respiratory changes, increased heart rate, skin perspiration and increased muscle tension
of the vocal cords and vocal tract. All of these factors may, directly or indirectly, adversely affect the
quality of speech [22] and help us discriminate between stressed or neutral speech using machine
learning algorithms.

1.4. Contributions

The main contribution of this paper is the design of a Speaker Identification system robust to
stress conditions in speech, by means of data augmentation techniques, that takes into account Bindi’s
computational restrictions and audio input characteristics. As mentioned before, the problem of
detecting stress in speech is out of the scope of this paper.
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2. Speaker Identification Related Work

Speaker Recognition is the automatic detection of persons from the characteristics of their voices,
that is, by using voice biometrics [23]. Within SR, we can distinguish two tasks, Speaker Identification
(SI) and Speaker Verification (SV). The former refers to the recognition of a particular user among
a known number of users (a multiclass setting) and the latter aims to identify one specific user versus
the rest of speakers (binary setting). In this paper we are assessing the influence of stress on a speaker
identification system to further improve its performance with data augmentation techniques.

2.1. Feature Extraction

SI systems try to use acoustic features that differ between individuals to discriminate among them.
Some of the features that exhibit good performance when used in neutral or emotionless conditions
in speech-based systems are the Mel-Frequency Cepstral Coefficients (MFCC) [24]. Other prosodic
features are widely used as well, such as intonation, stressed syllables and rhythm; and phonetic
features, such as detection of the phones and their statistics. Finally, Linear Prediction is used in audio
and speech processing for representing the spectral envelope of speech signals in compressed form.
It is also a powerful speech analysis technique to provide estimates of speech parameters like pitch,
duration and energy [25].

In speech emotion recognition, the current state of the art focuses on the use of formant frequencies,
their bandwidths, pitch, log-energy and the so-called Normalized First-Order Autocorrelation
Coefficients [26], among other features. Although for speaker identification under stress conditions
there is hardly any previous work, MFCCs [27] together with prosodic features as the pitch, energy
and word duration [22] have been used with successful results [28].

Beyond the previously mentioned hand-crafted features, automatic features extracted from raw
data by DNN (Deep Neural Networks) is a successful trend achieving very innovative results [29,30].
Nevertheless, in our case, the use of complex DNN approaches is not currently possible due to their
high computational load, delay and the availability of sufficiently big training datasets, which are
three very important limitations within the Bindi system.

2.2. Data Augmentation

Data Augmentation (DA) is a key ingredient of the state of the art systems for image and speech
recognition as it is a common strategy adopted to increase the amount of training data. It can also
act as a regularizer to prevent overfitting [31] and to improve the performance in imbalanced class
problems [32], making the whole process more robust. Due to the scarcity of data we mentioned in
Section 1.3, this is a very good match for our case as the database we are using is quite small and has
a noticeable imbalance. By using DA, we can increase the amount of data available and deal with the
lack of balance between classes [33].

As for the SI system to be designed, it should be adapted to what we expect Bindi to find in a real
world situation: the goal of our system is to detect the users speaking even when their voices present
stressed conditions. For this reason, we would be facing a mismatch learning problem in which we
may only have neutral utterances available for training gathered in an initial Bindi setup—given that
the possibility of forcing the user to be stressed is difficult—whereas the real environment operating
conditions would contain both neutral and stressed samples together. Our approach to solve this
problem relies in the use of DA techniques to artificially synthesize stressed samples from neutral
speech by applying slight modifications, and then adding these new synthetically stressed samples of
speech to the training set, to ultimately build a stress-robust SI system.

2.3. Classifiers

Algorithms such as Gaussian Mixture Models (GMM) are generally employed for speaker
recognition [34] and Support Vector Machines (SVM) are also widely applied [35,36]. Other studies
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suggest the use of Deep Neural Networks (DNN) for speaker recognition [37,38]. However in this
research, we aim to keep a balance between computational complexity and accuracy due to the
hardware constraints of the device, where the battery consumption is critical and the scarse amount
of training data originally available. After some preliminary tests to compare GMM, SVM and
Multi-Layer Perceptron (MLP) classifiers for our task, the later—a precursor of Deep Neutral Networks
with only one hidden layer—was chosen due to its simplicity, speed and better performance.

3. Methods

The block diagram for the training phase of our system is represented in Figure 2.
The characteristics of the database employed, the automatic labelling process based on heart rate
measurement, the two stages feature extraction, the data augmentation techniques and the normalization
applied are described in detail in the next subsections. As for the test, the same methods are employed
with the exception of the Data Augmentation block.

Figure 2. Block diagram of the system.

3.1. Corpus Database

Due to the difficulties for obtaining labels for the stress vs neutral conditions with Bindi we
did not record audios using Bindi’s system and microphone for this research. We chose the VOCE
Corpus Database [20] instead which was not originally designed for speaker identification. There are
several reasons why this database was chosen: first, for having data taken in real stress conditions;
second, for offering data from sensors similar to those present in Bindi’s bracelet from which heart rate
measurements could be obtained; and third, due to the existence of previous studies [7] confirming the
feasibility of relating heart rate metrics with stress in speech.

The last updated version of this dataset includes a total of 135 voice recordings that result from
a set of 45 students (21 men, 17 women and 7 unidentified) from the University of Porto, with ages
between 19 and 49 years. These voice files correspond to three different recording settings: pre-baseline,
reading a standard text at least 24 h before the event in public (Public Speaking, PS); baseline, reading
the same text as in the pre-baseline setting approximately 30 min before the PS; and recording, free
speaking from a public event of free duration.

Figure 3. R peaks in ECG signal [39].
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Together with these audio files, 117 files containing 2 measured physiological variables are
provided and used to estimate the Heart Rate (HR). These measurements, taken with a Zephyr HxM
BT2 device, are (i) Zecg representing an averaged and filtered HR value with a sampling period of 1 s.
and (ii) Zts values that refer to the instants of time in which R peaks (shown in Figure 3) occur in the
electrocardiogram obtained with the device, measured with an internal clock of 16 bits. Each of these
values is accompanied by the Universal Time Coordinated (UTC) corresponding moment.

Furthermore, the database contains a metadata file that includes gender, age, health information,
experience in public speaking, STAI (State-Trait Anxiety Inventory) [40] test scores and information
about the quality of the recordings (energy level, saturation . . . ). Unfortunately, this is only provided
for 38 out of the 45 individuals in the database and the database only gathers complete information
(the 3 audio files and its corresponding HR values) from 21 individuals.

We decided to divide these 21 speakers into two sets, Set 1 was composed of 10 speakers whose
HR was coherent with the recordings in the sense that, when a speaker was reading the heart rate
remained stable, but on the public speaking setting the HR rose significantly. Set 2 was made out of
the other 11 remaining speakers.

As for our specific application, the emotional conditions perceived in speech during an assault
situation to be detected by Bindi—such as panic, anxiety or fear—, are not the same to stress conditions
caused by public speech, but it seems to a recognizable prior condition that can lead to more intense
emotions. As further work, we aim at using data specifically captured in these kinds of situations in
the future.

3.2. Data Preprocessing

The audio recordings from VOCE were converted from stereo to mono signals to ease their
handling. Also, we performed a downsampling from 44,100 Hz to 16,000 Hz to reduce the battery
consumption since the transmission of audio from the bracelet to the smartphone is very costly in
these terms. We continue by normalizing the signals to have zero mean and fall withing the [−1, 1]
range. As a final step, the signals went through a Voice Activity Detector module (VAD) [41]. This VAD
algorithm is designed for improving speech detection robustness in noisy environments, by removing
one-second length chunks of non-speech audio from which no decision about stress or speaker can be
taken. Each of these transformations are performed for speech audio processing in Bindi as well.

As for the Heart Rate measures collected in the database, the original signed Zecg values were
converted to unsigned ones from 0 to 255. The Zts sequences were discarded since they were considered
too noisy and Zecg already provided the HR information needed with a reasonable temporal resolution.

3.3. Automatic Stress Labelling

In this paper we work with two types of labels for each audio utterance: boolean stress labels that
indicate the presence of stress and speaker labels, taking values from 1 to n, representing the speaker id
of each the audio sample, being n the total number of speakers.

Labelling a speech signal to determine stress presence is a delicate matter, since there is not
a prescribed way to do so, stress is non binary and its determination subjective. Instead of the labels
included in the original VOCE Corpus to each recording situation (0 for the full pre-baseline or baseline
sequences and 1 for recording) we generated the labels from the HR sequences. Every one-second long
audio frame is labelled as stressed or neutral using a speaker dependent HR threshold established
for each of the speakers using their respective pre-baseline recordings. Two different HR thresholds
were compared: the pre-baseline HR average plus the standard deviation and the 75% percentile of the
HR values.

Following the work done by A. Mínguez-Sánchez [7] we used the latter, given the automatic
stressed classifiers implemented gave better results. Table 1 provides the number of samples per
recording condition. Each sample represents one-second length audio frames with approximately 3.5 h
of non-silent speech.
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Table 1. Number of samples.

Set Label Neutral Stressed Total

Set 1 1389 3989 5378
Set 2 1716 4858 6574
Total 3105 8847 11,952

3.4. Feature Extraction

After the speech pre-processing block, the signal is ready for feature extraction. The acoustic
features of speech extracted from audio signals should reflect both anatomy (e.g., size and shape of
the throat and mouth) and learned behavioral patterns (e.g., voice pitch, speaking style). For each of
them, a window of 20 ms with 50% overlapping is used. The reason these are the values chosen it is
because they fall within the range of standard values used to analyze the temporal evolution of the
signals [9]. To convert the feature vectors into one second resolution values alignable with the labels
explained in the previous subsection, the mean and standard deviation of the acoustic characteristics
over segments of one second length are computed, achieving one feature vector per second of audio.
These features are summarized in Table 2 and were selected according to the literature for emotions
and speaker recognition [9,42].

Table 2. Components of the feature vectors.

Row Index Feature

0–12 Mean MFCC
13–25 Standard Deviation MFCC
26–28 Mean first three formants
29–31 Standard Deviation first three formants

32 Mean Pitch
33 Standard Deviation Pitch

3.5. Data Augmentation

Although in real speech we may encounter different emotional conditions, attitudes or behaviours
in the speaker that may affect the produced speech, we only focus on the existence of neutral and
stressed utterances in this study for simplicity purposes due to its preliminary character.

Due to the low number of samples of the database and the fact that the user registration would
presumably lack stressed speech, we considered the generation of a synthetically stressed database of
utterances using data augmentation. To be able to produce stressed speech out of neutral utterances
we carried out an informal analysis by listening the audio signals provided in the database, which
were initially classified as stressed and neutral speech signals and took note of the differences that
could be appreciated between them. Secondly, we measured objectively those differences between
stressed and neutral utterances of the same speakers in terms of locution speed and pitch.

As a first outcome, we realized that the locution speed may reflect the stress of a person, as people
tend to pronounce more words per second and produce longer pauses when they are stressed.
In stressed conditions there is also a tendency to rise the pitch. Therefore, the speaking rate and
pitch of the speaker are two variables to be modified in order to artificially simulate speech under
stress conditions. The Python SOX library was used for this purpose [43].

3.6. Normalization

A standard zero mean and variance normalization is performed to avoid attributes with greater
numeric ranges to dominate those in smaller numeric ranges.
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4. Experiments

In this section, we detail the experimentation carried out along with the results to evaluate the
performance of the speaker identification under stress conditions.

4.1. Balanced Data

The fact that the data instances were not balanced, i.e., there are speakers with significantly more
samples than others, led us to perform an adjustment for each set and condition to get consistent
estimates, give all classes—in this case, speakers—need to be seen as equally important from the point
of view of the classifier and minimize loss in the training phase. Nevertheless, the use of a purely
statistical over-sampling technique would have a big drawback in our case since the imbalance is very
severe and the amount of artificial data created would be too large. To cope with this problem, we
first under-sampled the set of neutral data admitting a maximum of 120 samples per speaker in both
sets (1 and 2) as well as the stressed set using a threshold of 300 samples. Applying an over-sampling
technique (in particular, SMOTE for Python) [32] to the under-sampled data resulted in sufficient
new samples achieving a balanced data set but without including a disproportionate amount of
artificial data.

4.2. Match and Mismatch Conditions

Originally, for an initial experimental set-up we used the data available for Sets 1 and 2
together (21 speakers). This preliminary experiment is made to observe the behaviour of the speaker
identification rate in mismatch conditions. First of all, we divided the data into Neutral (N) and
Stressed (S) speech and experimented training with one type of speech, testing with the other and
then mixing both types. The results in terms of accuracy—the percentage of audio segments correctly
classified—can be found in Table 3. In order to get reliable results these experiments were repeated
50 times, where in each repetition the data used for testing was chosen randomly, excluding samples
used for training.

Table 3. Results for matched and mismatched settings.

Training Set Test Set Mean (%) Std (%)

Neutral
Neutral
Stressed

96.73
79.21

0.33
0.90

Stressed
Stressed
Neutral

95.87
90.89

0.28
0.49

Mixed Mixed 96.05 0.12

As a first conclusion, matched settings are better than mismatched ones as expected.
When training with neutral utterances and testing with stressed ones, accuracy decreases in more
than a 15% with respect to match settings, so it seems proved that stressed speech does have different
characteristics compared to neutral speech that affect SI. On the contrary, when training with stressed
utterances of speech and testing with neutral ones, the decrease in accuracy with respect to the matched
setting is not that important (5%) comparing it to the reversed case, leading us to think that stressed
speech could be sparse data in which neutral speech could be contained but not vice versa. About
the mixed conditions experiments, the accuracy reached a 96.05%, achieving a good result for this
particular task.

4.3. Pitch and Speed Modifications

The pitch and the elocution speed were two variables we informally observed to be changing
between neutral and stressed speech. As a consequence, we performed an analysis to measure
the differences between the mean pitch from neutral to stressed audio frames for each speaker
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using VoiceBox [41]. An estimation of the average elocution speed for each user was calculated
as well, computing the mean number of words per second of each speaker by obtaining an automatic
transcription of each of the recordings using Google Speech Recognition [44] and dividing it over the
length of the audio signals after having removed silent audio frames with the VAD module.

The differences in pitch from neutral to stressed speech were in a range between a relative
percentage of −2% and +7% for all speakers, increasing on average 2.2%. In regard to the elocution
speed, subjectively, it seems to rise in stressed speech, however our analysis gave us the opposite
conclusion. The number of words per second was higher when the user was reading a text, 2.2 words/s
on average, in comparison with when the speaker was performing an oral presentation, 1.85 words/s.
By listening to the signals, we determined that the words were pronounced faster but there were many
short pauses and pause fillers—words like ‘ehm’, ‘um’, ‘ah’—in between them, that did not count as
words for the transcription but were not removed by the VAD either. Those causes lead to an overall
lower elocution rate.

Thus, we applied modifications in the locution speed and the pitch on the original database,
to produce synthetically stressed samples of speech. The pitch was modified by the following relative
percentages [−6%, −3%, +3%, +6%] and the speech signals were slowed down—with the aim of
extending the duration—by the following percentages [−20%, −15%, −10%, −5%]. All of these
modifications were applied to the original audio signals and resulted—in what we would name—a
new synthetically stressed set per modification. In this manner, we augmented our data by a factor
of 9, the original dataset plus 8 modifications. Figure 4 presents a block schematic of the original
data and the synthesized one. Synthetic Stress (SS) and Synthetic Super Stressed (SSS) represent the
synthetically stressed collections obtained from N and S sets respectively.

Figure 4. Schematic of Original and Modified Datasets. On the left side, we represent in a block
basis the original dataset, composed by neutral and stressed samples. In this case, we used the 30%
of the examples of the the stressed collection as the Test set for later experiments. On the right, we
represent a diagram of one of the synthetically stressed sets, where the 30% of data used before
as Test was removed to obtain more reliable results. There are several synthetic datsets, one per
modification applied.

4.4. Preliminary Experiments

In the next experimental set-up, we aim at measuring the accuracy achieved by the system
when training with the different pitch and speed modified sets and testing with originally stressed
utterances for the first set of speakers, Set 1. The results achieved in these experiments should
reflect which modification imitates best the original stressed samples. We kept the test set fixed for
these experiments, a 30% of the samples of original stressed speech. Additionally, the same 30%
in every synthetic super-stressed set was removed to achieve a more accurate comparison between
experiments and guarantee that the test samples were never present in the training set even if they
had been modified by our augmenting procedure. In Figures 5 and 6 we present the results obtained,
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we enumerate the data used for the training step on the X axis, the Y axis represents the accuracy
achieved and each colour bar indicates the modified set used for training.

Figure 5. Results for synthetic datasets, Set 1 Pitch modifications.

Figure 6. Results for synthetic datasets, Set 1 Speed modifications.

In Figure 5 we can observe that the modifications that obtain the highest accuracies are Pitch +3%
and Pitch −3%. When it comes to Figure 6, although the speed results are very similar, the alteration
that in general works worse is Speed −20%. As for the training sets used, the SSS set works better than
the SS in both cases.

4.5. Synthetic Stress Combinations

For the next set of experiments we decided to perform the modifications to the audio recordings
of Set 2 that had achieved higher accuracy rates in Set 1. These were pitch [−3%, +3%] and signal speed
[−15%, −10%, −5%] as mentioned. We joined Sets 1 and 2, transforming the problem in a 21-speaker
SI task and combined all the synthetic stress data into one dataset, augmenting in a factor of 6 the
original data size, 5 modifications plus the original dataset. The same analysis were done for Set 1 and
Sets 1 + 2.

The equivalence between each training set used and case number is shown in Figure 7. On this
figure, we can appreciate the different combinations of configurations of the original and modified
datasets used for training. These compositions were grouped forming different combinations in
order to acknowledge the differences in accuracy for each particular setting used in the training stage.
These experiments were repeated 20 times for reliability with the outcome shown in Table 4.

Figure 7. Equivalence between training data used and case of experiment in Section 4.5.

In Table 4 we can appreciate two types of experiments, some in which we substitute data
and others where we augment data on the training stage. As for substituting the original set by
a synthetically stressed one, we have experiments 6 and 7 to be compared with experiments 1 and 2
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respectively. Data substitution achieves similar results to those with original data when using synthetic
data converted out of neutral speech for training (case 1 vs. case 6) as well as better identification rates
when using synthetic data obtained from stressed speech (case 2 vs. case 7).

Table 4. Extensive experimentation results.

Case Set 1 Mean Set 1 Std Set 1 + 2 Mean Set 1 + 2 Std

1 89.71 0.56 78.55 0.60
2 98.59 0.16 97.37 0.21
3 98.48 0.23 97.21 0.26
4 89.97 0.39 80.46 0.53
5 99.93 0.05 99.16 0.11
6 89.72 0.53 78.19 0.71
7 99.88 0.07 99.21 0.13
8 99.91 0.07 99.45 0.08
9 99.94 0.06 99.22 0.11
10 99.91 0.07 98.97 0.14

Data augmentation experiments are 3, 4, 5, 8, 9 and 10. The outcome is indeed positive, the best
results are achieved in experiment 8 with a 99.45% of accuracy for Sets 1 + 2. These results show us
that augmenting the data with synthetically stressed utterances of speech boosts the SI rate.

One of the objectives of these experiments was to determine wether experiment 4 could
outperform experiment 2. This would mean that we had accomplished the task of generating
appropriate synthetically stressed speech out of neutral utterances. However, we can see that the
procedure we employed was not enough to be used as a substitute. Nevertheless, in Table 4 one can
see that case 4 performs better than case 6, which in turn outperforms case 1. This shows that stressing
speech synthetically and using it as training data alongside with original stressed data increases the
performance of the SI system.

5. Conclusions and Future Work

In this research, our goal was to analyze how stressed speech influences the Speaker Identification
systems performance. We have identified a problem, stressed speech in the testing stage affects
negatively when SI systems are trained only with neutral speech.

As for the case of match and mismatch conditions, in the mixed setting—using neutral and
stressed original utterances—the SI system achieves a 96.05% of accuracy, a satisfactory rate for this
type of tasks, demonstrating that the set of features chosen for the task is adequate.

In the preliminary experiments for data substitution, depending on the difference between the
synthetic data and the original one used for training, some substitutions outperform the results
achieved by original data. Besides, the modifications over the pitch of the speaker work better when
we include synthetically stressed samples for training, than when we include the modifications in
speech speed. However, when we use super synthetic stressed samples for training, the sets modified
by changes in speed achieve better results.

Regarding the experiments for augmenting the database with artificial stress, we can conclude
that the generation of different synthetically stressed utterances of speech by modifications in pitch and
speed, and their addition to the database, enlarges meaningfully the instances to work with, improving
substantially the results achieved by the Speaker Identification system with a 99.45% of accuracy.

5.1. Future Work

Several experiments and methods remained unexplored and were left for future work:

• Our target in this research is a Speaker Identification task, a multiclass problem. However,
the objective of the device to be built in Bindi is a Speaker Verification system, thus the next



Appl. Sci. 2019, 9, 2298 12 of 14

step would be to transform the system into a binary setting. These two approaches are not
straightforwardly comparable but we believe that the problems and solutions can be translated to
one another.

• Although stress seems to be an emotional condition that usually precedes more intense emotions,
we aim to find or record a database that includes emotions in speech during an assault
situation—such as panic, anxiety or fear—to work with.

• Finding techniques to strengthen the system by degrading audios as if they had been recorded
in a real environment. Perhaps to simulate real world situations in which the recorded voice is
not clean, we could add noise to the same database used and analyze its effect, either by sounds
recorded at outdoors and indoors atmospheres or with white/pink noise.

• Further analyzing the differences between neutral and stressed speech to find new modifications
to be applied to neutral speech to transform it into appropriate synthetically stressed speech.

• Implementing new methods for recording stressed speech in the training phase using Bindi, such
as Stroop Effect games [45] in which the speaker should experiment stress, would be a way to
count with originally stressed samples in the training stage.

• Heart Rate Variability (HRV) is known to have a strong relationship with stress. To deepen into
this question and further investigating, we could try to find correlations between HRV and stress,
adding this other biometric feature to the stress-robust SI system.

• With the use of data augmentation techniques we have collected a much larger database and we
could therefore employ more powerful Deep Learning algorithms in the future, provided the
device employed is able to cope with it in real time.
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