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Abstract: In recent decades, solving complex real-life optimization problems has attracted the
full attention of researchers. Dam and reservoir operation rules are considered one of the most
complicated optimization engineering problems. In fact, the operation rules of dams and reservoirs
are multisystematic and highly stochastic and have highly nonlinear system constraints due to the
direct influence of environmental conditions: Therefore, these rules are considered highly complex
optimization problems. Recently, metaheuristic methods inferred from nature have been broadly
utilized to elucidate the way optimal solutions are provided for several complex optimization
engineering applications, and these methods have achieved interesting results. The major advantage
of these metaheuristic methods over conventional methods is the unnecessity to identify a particular
initial condition, convexity, continuity, or differentiability. The present study investigated the
potential of using a new metaheuristic method (i.e., the crow algorithm (CA)) to provide optimal
operations for multireservoir systems, with the aim of optimally improving hydropower generation.
A multireservoir system in China was considered to examine the performance of the proposed
optimization algorithm for several operation scenarios. The results obtained the average hydropower
generation by considering all examined operation scenarios based on the operation rule achieved
using the CA, which outperformed the other metaheuristic methods. In addition, compared to
other metaheuristic methods, the proposed CA lessened the time required to search for the optimal
solution. In conclusion, the proposed CA has high potential for achieving optimal solutions to
complex optimization problems associated with dam and reservoir operations.

Keywords: metaheuristic methods; optimization algorithms; crow algorithm; multireservoir operation;
hydropower generation
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1. Introduction

Increased population growth and industrial demands have caused an urgent need for not only
the better planning of energy resources but also optimal generation rules [1]. Hydropower energy
production is one of the real challenges for decision-makers and policymakers. Generated hydropower
from hydropower plants attached to dams and reservoirs should be operated to supply the electrical
hydropower required for population and industrial demands [2]. Electrical hydropower generation
becomes a more vital problem when deficit events occur due to inappropriate operation rules: Thus,
developing optimal operations for dams and reservoirs is essential [3].

One of the most important resources in the field of hydropower generation is that hydropower
can be generated from water flow via hydropower plants attached to dams. A reservoir’s water
storage upstream of the dam is operated based on different demands, such as irrigation and domestic,
industrial, and environmental hydropower demands. Therefore, there is a need to develop operation
rules for dam and reservoir systems to ensure the reliable production of hydropower generation.
On the other hand, the upper bound of hydropower generation is limited to the full capacity of
the hydropower plant. An operation rule that could achieve reliable and less probable risk to the
hydropower generation pattern near full capacity is considered optimal [4].

Recently, researchers have applied several mathematical models to improve operation rules for
the planning and management of hydropower production in dam and reservoir systems. The optimal
generation of hydropower could be defined within the framework of an optimization problem [3].
Therefore, optimization algorithms, such as metaheuristic and evolutionary algorithms, could be
used to search for the better operation of dam and reservoir systems to maximize the generation of
hydropower. In fact, one or some objective functions are defined for these problems with the aim
of increasing hydropower generation in hydropower plants based on released water from upstream
dams [5]. Thus, released water from upstream dams is considered to be an unknown variable or decision
variable, where the accurate determination of this variable has an effect on hydropower generation [6,7].
A real problem based on a multireservoir system with the aim of increasing hydropower generation
is defined in this study with many complex constraints: This type of problem can be attractive for
decision- and policymakers. This multireservoir system is in a chain sequence: In addition, three
different scenarios are considered in this study to examine the proposed crow algorithm (CA) as
an optimizer. The aim of the problem is maximizing hydropower generation based on the decision
variable (i.e., reservoir capacity) during dry years (1963–1964), wet years (1951–1952), and normal
years (1985–1986).

2. Review and Motivation

Hydropower production based on a multireservoir system is a complex problem when considering
nonlinear objective functions and different constraints. Therefore, the extraction of an optimal solution
and hydropower management based on released water from upstream dams are real challenges. Thus,
solving such problems causes other researchers to try and understand different strategies for these
complex problems. Several efforts have been developed to achieve optimal hydropower generation by
utilizing different metaheuristic algorithms.

An optimization model has been developed to achieve reservoir operations with the aim of
increasing hydropower generation while considering the environmental demand supply. The improved
genetic algorithm (GA) was used for reservoir operations, and different flows in river regimes were
considered for the optimization process. Nonlinear rule curves based on the GA were extracted
for hydropower production, and the improved algorithm based on the elitism concept achieved
more hydropower generation without trapping local optimal solutions [8–10]. Then, Arunkumar
and Jothiprakash [11] used the improved particle swarm optimization (PSO) to increase hydropower
production in multireservoir systems. The new PSO was generated based on the modification of
acceleration coefficients in the PSO. The minimum required water amount for environmental demands
was supplied, and the hydropower generated reached hydropower plant capacity based on the
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new PSO. In addition, an improved PSO was used for maximizing hydropower production and
minimizing irrigation deficits at a large scale in China. The results indicated that the improved PSO
based on the correction of the inertia coefficient had faster convergence over other versions of the
PSO. Additionally, hydropower production based on an improved PSO reached hydropower plant
capacity [12]. Furthermore, multireservoir operations based on a hybrid PSO and GA optimized
performance with the aim of increasing hydropower production. The results indicated that the new
hybrid algorithm could achieve more hydropower generation and faster convergence by covering the
weak points of the GA and PSO based on increasing the diversity in the population [13,14].

The Bat algorithm has been used for increasing the annual benefit based on hydropower production
in multireservoir systems and hydropower plants [15]. Released water was considered to be the
decision variable, and the results indicated that the generated benefit based on hydropower production
via the Bat algorithm had more value than the benefits via the GA and PSO. The Bat algorithm was
performed based on the echolocation ability during a Bat’s life.

In recent years, Haddad et al. [16] have used the water cycle algorithm (WCA) for a 10-reservoir
system, and the results indicated that the new algorithm decreased computation time with the inception
of water-drop movement into the environment: Additionally, released water was considered to be
the decision variable, and storage was considered to be the state decision. The position of water
drops in rivers and seas was considered the decision variable for this algorithm. The biography-based
optimization algorithm (BBA) has been used for the optimization of a four-reservoir system, and
the aim of the problem was increasing the generated benefit based on generated hydropower [17].
Moreover, the firefly algorithm (FA) has been applied to multireservoir systems with the aim of
increasing hydropower production [18]. In addition, the monarch butterfly (MBF) algorithm and
krill algorithm (KA) have been applied for optimized hydropower generation based on the optimal
operation rule for either single or multiple dam and reservoir systems [7,19].

The inception of swarm intelligence has caused algorithms to be directed toward the best solution
to a problem with a minimum computation time. Problems with one or several objective functions
can be simultaneously solved with such algorithms. For example, an increase in the reliability index,
as a percent of the hydropower supply, and a decrease in the vulnerability index, as a percent of
the shortage in hydropower production, can be simultaneously defined as two objective functions.
These algorithms are highly adopted, which allows all effective variables influencing the system,
such as hydraulic or hydrological constraints, to be defined within these algorithms. In other words,
the algorithms can be adapted based on the system problem with a specific condition. The convergence
procedure and global solution achieved within the optimization process are very important for the
system under study. To some extent, the system is required to be operated in real-time: Therefore,
a fast convergence rate is needed. In addition, when the system is highly nonlinear and stochastic
in nature, a searching procedure for the optimal solution might be trapped in a suboptimal solution.
Accordingly, there is a need to look for an optimization algorithm that could have the potential to
encounter a high convergence rate and stochastic search procedure within its mathematical process.
In addition, the algorithm should encounter advanced operators that could have a high chance of
achieving a global solution within the searching domain.

In optimization theory, crows are the searchers: The environment can be considered the search
space, and random storing positions can be taken as feasible solutions. The source that is best among
all food sources is taken as the global solution, and the objective function is defined by the quality of
the food source. By simulating the intelligence behavior of crows, the crow algorithm (CA) attempts to
find the optimal solution to various optimization problems.

The novelty of the current research paper is not only the investigation of the potential of a new
optimization algorithm, but also the application of the algorithm in a relatively complex reservoir
system with multidimensional features for multireservoir systems under different climate condition
scenarios. In fact, most of the previous research efforts have focused on the optimization algorithms’
performance, considering single reservoirs under single scenarios of climate change [10–17]: In addition,
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the evaluation of those optimization algorithms was basically based on common performance indices
that might provide improper judgment on the real model performance. In fact, there are a few statistical
indices that are usually used for evaluating the performance of optimization algorithms, such as
reliability, resilience, and vulnerability. Reliability is the probability that the reservoir can supply the
volume of water specified by the demand target in any given year. Resilience, on the other hand,
is taken to be the conditional probability of experiencing a period of no failure (no water deficit) given
that a failure occurred in the previous time period. The use of the resiliency measure allows the concept
of resilience, which is the ability of the system to recover from a failure, to be more fully expressed.
The final measure of performance is the vulnerability of the system. Vulnerability is the maximum
deficit experienced in any one year. Meanwhile, in the current research, different indexes for comparing
different algorithms have been proposed.

In this context, the present study attempts to investigate multireservoir performance under different
climate conditions considering different reservoirs’ inflow scenarios (dry, wet, and normal conditions).
Most of the existing research works have shown the superiority of the proposed optimization algorithms
for single reservoir systems under a normal scenario only, which might be insufficient and inadequate
for generalization to all cases of reservoir systems and under different scenarios of climate conditions.

3. Crow Algorithm

The CA, as a new evolutionary algorithm, is used in studies as a proposed optimization algorithm
for dam and reservoir operations. Askarzadeh [20] has applied the CA to different benchmark functions
and engineering optimization problems. The results indicated that the CA, based on two important
parameters (flight length and awareness probability), could avoid trapping in the local solution, and
the convergence rate was higher compared to those in other algorithms. Furthermore, Oliva et al. [21]
applied the CA to an image processing application and achieved results that indicated that the CA
outperformed other algorithms by obtaining a better image quality. However, the algorithm has some
random parameters for which an accurate determination of these parameters is needed for accurate
sensitivity, and the algorithm also has successful applications in the optimization of mathematical
functions and structural engineering, but with some issues in power engineering.

The main advantage of the crow algorithm is that the updating mechanism employs a
multidirectional search that advances and improves the diversity of solutions and can lead to avoiding
being stuck in a local solution to enhance the possibility of achieving a global solution. This is often a
prefect and optimal alternative among the available optimization algorithms in use, especially when
dealing with more complex nonlinear and multimodal problems. The crow algorithm has been applied
in several fields, such as civil engineering [22,23], medical science [24], and environmental science [25].

On the other hand, in the crow algorithm, a crucial influence on algorithm performance refers to
the calculation of the hiding places of a crow. A basic implementation of this metaheuristic technique
assumes a fixed value of the flight length that cannot be changed during iterations. As a result, the main
drawback of this technique appears in the flight length value that the algorithm needs to cover the
overall search space in finding the optimal solution. A small value of the flight length explores the
solutions inside the line segment, and a large value of the flight length explores the solutions outside
the line segment. Thus, this leads to using trial and error in assuming the initialization parameters.

Crows are known as being one of the largest bird species: Therefore, the ratio of their brain size to
their body size is significant. The self-awareness of crows has been proven in different experiments [20].
Their powerful memories of different locations and faces is one of the most important characteristics of
crows. Crows observe and follow other crows and birds to find their food and steal the food when
given a good opportunity. The following assumptions are considered for crows:

1. Flock life is considered for crows;
2. Crows use powerful memories to recall hidden food by other birds or crows;
3. Crows follow each other to steal hidden food;
4. Crows hide their food based on their awareness of the probability of theft.
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The position of crows in each iteration is represented by xi,iter, which is calculated by xi,iter =

xi,iter
1 , xiter

2 , . . . xiter
d . Thus, each position can include the number of decision variables (d). The hidden

location of food is memorized by the powerful memory of crows. Each hidden position is represented
by mi,iter. In fact, this is the best position for the ith crow during the process of finding food.
This assumption considers that the jth crow wants to see the hidden location of the food itself, and the
ith crow follows the jth crow. One assumption related to this form is that the jth crow does not know it
is being followed by the ith crow. Thus, the ith crow can find the hidden food place of the ith crow,
and the new position for the ith crow is updated based on the following equation:

xi,iter+1 = xi,iter + ri × f li,iter
×

(
mi,iter

− xi,iter
)
, (1)

where ri is a random number, f li,iter is the flight length, xi,iter is the new position of the crow, and mi,iter

is the hidden place for food. The small value of the flight length causes the crows to continue the
search process at a local scale, and a large value of this parameter causes the crows to continue the
search process at a global scale.

The second assumption is that the jth crow knows that the ith crow is following it. Thus, the jth
crow attempts to deceive the ith crow by not finding the food of the jth crow. Thus, the new position
for the ith crow is updated based on the following equation:

xi,iter+1 =

 xi,iter + ri × f li,iter
×

(
mi,iter

− xi,iter
)
← r j ≥ APi,iter

a(random)position← otherwise

, (2)

where APi,iter is the awareness probability. A small value of the awareness probability causes the search
process to act based on the local search around the best solution: Thus, the intensification ability for
the algorithm increases. A large value of this parameter causes the search process to act based on the
global search: Thus, the diversification ability for the algorithm increases. Therefore, the following
levels for the CA are considered:

1. The population CA is inserted into the algorithm, and the sensitivity analysis is used to compute
the initial random parameters for the algorithm;

2. The crow position for the hiding of food is considered to be the decision variable (Equation (3)).
The best places for the hiding of food are saved in the archive and matrix. The initial position
of crows for the hiding of food is the same as the best place for the hiding of food for the first
iteration (initialization step), as shown in the equations bellow:

Crows =


x1

1, x1
2, . . . , x1

d

x2
1, x2

2, . . . , x2
d

. . . . . . . . . . . . . . .

xN
1 , xN

2 , . . . , xN
d

, (3)

Crows =


m1

1, m1
2, . . . , m1

d

m2
1, m2

2, . . . , m2
d

. . . . . . . . . . . . . . .

mN
1 , mN

2 , . . . , mN
d

; (4)

3. The objective function for the problem is defined, and the decision variables are inserted into the
objective function to compute the objective function value;

4. Equations (1) and (2) are used to update the positions for the crows or decision variables;
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5. The computed new position is obtained based on previous levels and hence compared to the
previous position for each crow. If the new position is better, the crow moves to the new position:
Otherwise, the crow stays in the current position;

6. The objective function is computed for the new positions;
7. The memory of the crows is updated based on the following equation:

mi,iter+1 =

 xi,iter+1
← f

(
xi,iter+1

)
is(better)than

(
f
(
mi,iter

))
mi,iter

← otherwise

; (5)

8. The convergence criteria are checked, and if they are satisfied, the algorithm finishes. Otherwise,
the algorithm returns to the second step. It should be noted here that the CA has fewer numbers
of initial random parameters compared to the PSO and GA, which means that the CA has less of
a possibility of experiencing uncertainty compared to other algorithms as well (Figure 1).

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 21 

 

( ) ( ) ( )( ), 1 , 1 ,

, 1

,

i iter i iter i iter

i iter

i iter

x f x is better than f m
m

m otherwise

+ +

+
 
 =
   ; 

(5) 

8. The convergence criteria are checked, and if they are satisfied, the algorithm finishes. Otherwise, 

the algorithm returns to the second step. It should be noted here that the CA has fewer numbers 

of initial random parameters compared to the PSO and GA, which means that the CA has less 

of a possibility of experiencing uncertainty compared to other algorithms as well (Figure 1). 

 

Figure 1. Crow flowchart algorithm. 

4. Case Study 

The Wujiang multireservoir system is in the Wujiang Basin, and the Wujiang River is in 

southwest China. The area of this basin is 87,900 km2, and the precipitation rate for this basin varies 

from 900 to 1400 mm. This system is one of 13 global systems that produce hydropower, and there 

are four hydropower reservoirs in this system. The water level reflects the reservoir storage, and thus 

the variation of outflow is affected by the fluctuation of the water level. When the water level was 

determined, the storage capacity could be calculated, and hence the outflow (water release) from the 

reservoir could be computed by continuity and the state equation. Figure 2 shows the multireservoir 

system where q1, q2, and q3 represent the inflow for each reservoir. 

 

Figure 2. The Wujiang multi-hydropower reservoirs (HJD, DF, SFY, and WJD). 

Figure 1. Crow flowchart algorithm.

4. Case Study

The Wujiang multireservoir system is in the Wujiang Basin, and the Wujiang River is in southwest
China. The area of this basin is 87,900 km2, and the precipitation rate for this basin varies from
900 to 1400 mm. This system is one of 13 global systems that produce hydropower, and there are
four hydropower reservoirs in this system. The water level reflects the reservoir storage, and thus
the variation of outflow is affected by the fluctuation of the water level. When the water level was
determined, the storage capacity could be calculated, and hence the outflow (water release) from the
reservoir could be computed by continuity and the state equation. Figure 2 shows the multireservoir
system where q1, q2, and q3 represent the inflow for each reservoir.
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The SFY reservoir has small regulatory storage. Thus, the optimization process was implemented
on other reservoirs. Table 1 presents various characteristics for all reservoirs in this study, such as
the normal water level, dead water level, total storage, regulation storage, and power efficiency. It is
noticeable that there is different regulation storage in the presented reservoirs: SFY has daily regulation,
DF and WJD are regulated seasonally, while there is multiyear regulation for HJD. The main duty of
the DF reservoir is hydropower generation, where the normal water level is 345 m, and the dead water
level is 936 m. The efficiency of this hydropower plant is 8.35. The SFY reservoir has a storage of
approximately 0.2 billion m3 and is downstream of the DF reservoir: The hydraulic head of the DYF is
936 m due to low storage in the reservoir. The capacity for the WJD hydropower plant is 1250 MW:
The normal water level for this reservoir is 502 m, and the dead water level for this reservoir is 720 m.
The total hydropower output from the system should be 680 MW to guarantee downstream demands.
The inflow value for the reservoirs and the interzone for different climate conditions (wet, normal, and
dry) are mentioned in Table 2. Additionally, the outflow for the WJD reservoir should be more than
100 m3/s due to navigation safety. The power coefficient in Table 1 was used to determine the efficiency
of the entire turbine power system.

Table 1. Futures of the multireservoir system.

Reservoir Item Unit SFY HJD DF WJD

Normal water level m 385 150 345 502
Dead-storage water level m 822 1076 936 720

Total storage billion m3 0.2 4.5 0.9 2.1
Regulation storage - daily multiyear seasonal seasonal
Power coefficient - 8.5 8.5 8.35 8.17

Table 2. Inflow to reservoir for different climate conditions.

Interval
Wet Year (m3/s) Normal Year (m3/s) Dry Year (ms/s)

HJD H-D D-S S-W HJD H-D D-S S-W HJD H-D D-S S-W

1 140 179 89 50 88 159 111 57 143 331 93 137
2 291 393 113 196 482 538 240 230 123 256 61 82
3 438 602 150 250 444 616 180 320 330 720 290 210
4 467 643 60 190 154 149 53 25 171 230 35 60
5 198 182 34 45 206 204 40 63 86 146 18 23
6 186 191 106 65 84 86 14 16 143 136 16 72
7 94 72 37 79 74 75 20 37 81 123 62 33
8 76 59 30 51 46 47 11 39 58 100 46 39
9 58 37 18 26 37 39 10 6 47 44 19 39

10 45 30 13 15 41 34 9 34 52 44 19 43
11 39 25 11 11 42 31 5 12 46 39 14 48
12 51 27 10 12 48 44 9 24 114 136 102 135

Average 173 203 56 82 146 168 58 72 116 192 65 77

Notes: H-D represents the interzone flow between the HJD reservoir and DF reservoir, D-S represents the interzone
flow between the DF reservoir and SYF reservoir, and S-W represents the interzone flow between SYF and WJD.
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Dry years (May 1963–April 1964), wet years (May 1951–April 1952), and normal years
(May 1985–April 1986) were considered different scenarios in the operation of the multireservoir
system. The aim of the problem was to maximize hydropower production for the multireservoir
system. Three years for each scenario were considered to examine the performance of the proposed
algorithm for different conditions, because it was important that the method could manage the basin
for the years with a scarcity of water resources.

The generated hydropower is dependent on the hydraulic head and turbine release, and both
parameters were computed by determining the water level of the reservoirs. The outflows for the
reservoirs were computed when the upstream water level was determined, and Equation (6) was used
for computing the outflow when considering the spillway and turbine release. The outflow from each
reservoir was considered to be the inflow into the downstream reservoir: When the outflow increased,
the water level increased downstream, which caused a lower hydraulic head. The objective function
was computed based on Equation (7) [26]:

Vm,t+1 = Vm,t + η(Im,t −Qm,t)

Im+1,t = IQm+1,t + Qm,t−τm

(6)

Equation (9) is a continuity equation, where Vm,t+1 is storage for the mth reservoir at time t + 1, Qm,t is
the outflow of the mth reservoir, which includes the turbine release and spillway release, IQm+1,t is the
internal inflow into the m + 1 reservoir, τm is the routed outflow from the mth reservoir into the m + 1
reservoir downstream, η is the conversion coefficient, and Im+1,t is the inflow into the m + 1 reservoir.
Equation (7) is

F = max
T∑

t−1

M∑
m−1

Nm,t∆T

Nm,t = kmqmhm,t

(7)

where F is an objective function (kwh), T is the number of operational periods, M is the number of
hydropower plants, Nm,t is the output hydropower for the mth hydropower plant (MW), ∆T is the
time interval, km is the hydropower plant coefficient, qm is the release passing turbines, and hm,t is the
hydraulic head. The following constraints are considered for this problem [26]:

Nm,t ≤ Nm,t ≤ Nm,t. (8)

Equation (8) represents the constraint for each hydropower plant, where Nm,t is the lower and

Nm,t is the upper output for the mth hydropower plant. Equation (9) is

N−t ≤ Nm,t ≤ Nt. (9)

Equation (9) represents the constraint related to the total output of the system, where Nt and Nt

represent the lower and upper outputs of the system, respectively. Equation (10) is

Z−mt ≤ Zm,t ≤ Zmt. (10)

Equation (10) is related to the water level of each reservoir, where Zm,t and Zm,t represent the
lower and upper levels of the reservoirs, respectively. Equation (11) is

Q−mt ≤ Qm,t ≤ Qmt (11)

Equation (11) is considered to be one constraint for the outflow, where Q
m,t

and Qm,t represent the
lower and upper outflows of the reservoirs, respectively. Equation (12) is

Zm,1 = Zm,b, Zm,T+1 = Zm,e (12)
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Equation (12) is considered to be the boundary constraint, where Zm,b is the water level at the
beginning of the operation period, and Zm,e is the water level at the end of the operation period.

If the constraints are not satisfied, penalty functions are added to the objective function:

F = −
T∑

t=1

 M∑
m=1

Nm,t − δ

Nt −

M∑
m=1

Nm,t


2∆t, (13)

where δ =


1,

M∑
m=1

Nm,t ≤ Nt

0,
M∑

m=1
Nm,t ≥ Nt

. Equation (14) is

Nm,t =


p1

(
qm,t − q

m,t

)
, qm,t ∈

(
−∞, q

m,t

)
kmqm,thm,t, qm,t ∈

(
q

m,t
, qm,t

)
p2

(
qm,t− qm,t

)
, qm,t ∈

(
qm,t,+∞

)
. (14)

Nm,t represents the hydropower output for each period, and p1 and p2 are penalty coefficients.
The following indexes are used to evaluate the hydropower output based on the CA [6]:

1. The temporal reliability index. This index shows the number of periods where the generated
hydropower is greater than the hydropower plant capacity. A high percentage for this index
is suitable:

TR =
NT

t=1(Nm,t ≥ PPCm)

T
× 100, (15)

where TR is the temporal reliability index, NT
t=1(Nm,t ≥ PPCm) is the number of periods where the

generated hydropower is greater than the hydropower plant capacity, PPCm is the hydropower
plant capacity, and T is the total number of operational periods;

2. Volumetric reliability index. This index shows the percentage of generated hydropower compared
to the producible maximum hydropower at each hydropower plant. A high percentage of
this index shows that the algorithm could generate the required hydropower for downstream
demands [6]:

VR =
NT

t=1

(
(Nm,t

∣∣∣Nm,t < PPCm)∨ (PPCm
∣∣∣Nm,t+1 ≥ PPCm)

)
T.PPC

× 100, (16)

where VR is the volumetric reliability index, NT
t=1

(
(Nm,t

∣∣∣Nm,t < PPCm)∨ (PPCm
∣∣∣Nm,t+1 < PPCm)

)
is the total generated hydropower during the operational periods, and T.PPC is the maximum
generated hydropower;

3. Vulnerability index. The average amount of failure occurrences in the system is measured by the
vulnerability index. The average hydropower deficits are measured by the vulnerability index:

V =

T∑
t=1

[
(PPCm −Nm,t

∣∣∣Nm,t < PPCm)∨ (0
∣∣∣Nm,t ≥ PPC)

]
T

, (17)

where
T∑

t=1

[
(PPCm −Nm,t

∣∣∣Nm,t < PPCm)∨ (0
∣∣∣Nm,t ≥ PPC)

]
is the total hydropower deficit;
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4. RMSE (root mean square error). The root mean square error between the generated hydropower
and hydropower point capacity, as shown by Equation (18). A low value for this index represents
better performance of the algorithm based on more generated hydropower:

RMSE =

√√√ T∑
t=1

(PPCm −Nm,t)
2

T
; (18)

5. MAE (mean absolute error). The mean absolute error between the generated hydropower and
hydropower plant capacity, which is measured based on the following equations. A low value for
this index is suitable and shows a reduced deficit:

MAE =
T∑

t=1

∣∣∣PPCm −Nm,t
∣∣∣

T
. (19)

The mathematical model for multireservoir operation is considered based on the following criteria:

1. The water level for the multireservoir system is considered to be the decision variable, and the
initial position of the crows is considered based on the water level;

2. The continuity equation is used to compute the outflow based on Equation (9);
3. Different constraints are checked: If these constraints are not satisfied, the penalty functions

are used;
4. The objective function is computed for each member based on Equation (13);
5. The number of operational periods (m) is compared to the total number of periods (M). If this is

satisfied, go to the next level. Otherwise, return to the second step;
6. The decision variables or crow positions are updated based on Equations (1) and (2);
7. The memories of crows are updated based on Equation (5);
8. The convergence criterion is checked. If it is satisfied, the algorithm finishes. Otherwise, the

algorithm returns to the second step.

5. Results and Discussion

5.1. Sensitivity Analysis

The evolutionary algorithms had random parameters, with values that had to be initialized at the
beginning before applying them to the real case study. Therefore, a sensitivity analysis was considered
for the near-accurate determination of these parameters. In fact, the sensitivity analysis could be
carried out to study the variation in the objective function of the system versus the variation in the
initial values of the algorithm’s parameters. Several trial and error procedures were carried out to
examine the proper initial values for the algorithm’s parameters. For example, in cases where the
main target was used to maximize hydropower production, the procedure was identifying a particular
range for the domain of the parameter values. In this research, several trial and error procedures were
performed. First, the population was changed for the constant values of two other parameters. Second,
the other values of other parameters were changed versus constant population size.

As seen in Table 3, a normal year was considered, and changes in the population size ranging
from 20 to 80 were considered. It could be found that when the population size was 60, the objective
function had a maximum value. In other words, to achieve an optimal value of the objective function,
it was recommended to initialize the value of the population size to be equal to 60. In the same fashion,
the flight length ( f li,iter) for the normal year changed from 1 to 4, and the maximum value for the
objective function was 106.23 (108 kwh). From Table 3, the best initialization value for the flight length
might have been equal to 3. The range of changes in the awareness probability (APi,iter) was selected to
be between 0.10 and 0.40. The maximum value for the objective function, 106.24 (108 kwh), occurred
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when the initial value of this parameter might have been equal to 0.30. A complete sensitivity analysis
for all other cases of dry and wet years were carried out in a similar sequence, and all of the best initial
values for the algorithm’s parameters are presented in Table 3.

Table 3. Sensitivity analysis for different algorithms for dry years, normal years, and wet years.

Dry Year

Population
Size

Objective Function
(108 kwh) f li,iter Objective Function

(108 kwh) APi,iter Objective Function
(108 kwh)

20 101.78 1 100.45 0.10 100.67
40 102.54 2 101.23 0.20 101.11
60 101.99 3 102.54 0.30 102.54
80 101.01 4 101.01 0.40 100.02

Normal Year

Population
Size

Objective Function
(108 kwh) f li,iter Objective Function

(108 kwh) APi,iter Objective Function
(108 kwh)

20 104.54 1 104.89 0.10 104.57
40 105.59 2 105.12 0.20 105.58
60 106.20 3 106.23 0.30 106.24
80 105.57 4 104.45 0.40 105.59

Wet Year

Population
Size

Objective Function
(108 kwh) f li,iter Objective Function

(108 kwh) APi,iter Objective Function
(108 kwh)

20 124.45 1 123.69 0.10 123.67
40 125.78 2 124.58 0.20 125.78
60 124.69 3 125.78 0.30 124.58
80 123.12 4 124.49 0.40 124.49

5.2. Ten Random Results for Different Algorithms

Table 4 shows the 10 random results for the different evolutionary algorithms based on normal
years, wet years, and dry years. The average generated hydropower energy for the CA based on
normal years was 106.20 (108 kwh), with values of 105.23, 103.98, and 104.22 (108 kwh) via the MBF,
GA, and PSO, respectively. The average generated energy for normal years based on the CA was 0.94%,
2.09%, and 1.8% greater than via the MBF, GA, and PSO, respectively. Additionally, the computational
time for the CA based on normal years was 24 s, which was 17%, 25%, and 31% less than via the MBF,
PSO, and GA, respectively. It can be observed that the results for the dry and wet years assured that
the CA could achieve a better value for the objective function with a minimal computational time.
The computational time for the CA based on dry years was 23 s, which was 11.5%, 20%, and 28% less
than via the MBF, GA, and PSO, respectively. The lowest computation time consumed refers to fast
convergence: Also, this reduction occurred when the number of evaluations for the CA was less than
other algorithms.

The variation coefficient for the CA for all years was a small value, which proved that one
computer run was reliable and proved the solution to be of high quality. The used computerized
system for this research and the one used in Reference [26] by the authors are similar systems (PCs
with i5 CPU 2.4 GHz, ram/500 GB HDD).
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Table 4. Power production for dry years, normal years, and wet years. CA: Crow algorithm; MBF:
Monarch butterfly; GA: Genetic algorithm; PSO: Particle swarm optimization.

Dry Year

Run CA (108 kwh) MBF (108 kwh)
[26]

GA (108 kwh)
[26]

PSO (108 kwh)
[26]

1 102.54 101.45 97.84 100.20

2 102.53 101.44 98.45 100.24

3 102.53 101.45 98.72 100.18
4 102.54 101.45 98.37 100.26
5 102.54 101.45 98.97 100.23
6 102.54 101.45 99.19 100.23
7 102.54 101.45 99.29 100.33
8 102.54 101.45 99.04 100.22
9 102.54 101.45 99.10 100.21

10 102.54 101.45 99.07 100.19

Average 102.54 101.45 98.06 100.18

Variation coefficient 0.0003 0.00003 0.716 0.065

Time (s) 23 26 32 29

Normal Year

Run CA (108 kwh) MBF (108 kwh)
Ehteram et al. [26]

GA (108 kwh)
Ehteram et al. [26]

PSO (108 kwh)
[26]

1 106.20 105.22 104.15 104.16
2 106.19 105.22 104.15 104.16
3 106.20 105.23 104.07 104.25
4 106.20 105.23 104.15 104.18
5 106.20 105.23 103.58 104.22
6 106.20 105.23 103.87 104.24
7 106.20 105.23 104.71 104.07
8 106.20 105.23 103.11 104.34
9 106.20 105.23 103.99 104.32

10 106.20 105.23 104.16 104.12

Average 106.20 105.23 103.98 104.22

Variation coefficient 0.0002 0.0003 0.201 0.083

Time (s) 24 29 35 32

Wet Year

Run CA (108 kwh) MBF (108 kwh)
[26]

GA (108 kwh)
[26]

PSO (108 kwh)
[26]

1 125.77 124.12 122.58 123.11
2 125.77 124.11 122.58 123.11
3 125.78 124.11 122.20 123.11
4 125.78 124.12 122.61 123.11
5 125.78 124.12 122.57 122.67
6 125.78 124.12 122.18 123.11
7 125.78 124.12 122.46 122.95
8 125.78 124.12 122.69 122.91
9 125.78 124.12 122.65 123.11

10 125.78 124.12 122.53 123.11

Average 125.78 124.12 122.47 123.01

Variation coefficient 0.00003 0.00003 0.195 0.147

Time (s) 23 25 31 29
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5.3. Evaluation of Different Algorithms Based on Computed Indexes

Table 5 shows the comparison between generated hydropower and producible maximum
hydropower (i.e., power plant capacity). The dry years were the most critical years, and the HJD
hydropower plant was selected to analyze the results to avoid repetition. Thus, all of the mentioned
analysis is for the HJD reservoir, hydropower plant, and dry years, and the results were the same for
other years and hydropower plants.

Table 5. Computed indexes for generated power for dry years, normal years, and wet years. RMSE:
Root mean square error; MAE: Mean absolute error.

HJD (Dry Year)

Method Temporal
Reliability Index

Volumetric
Reliability Index

Vulnerability
Index

RMSE
MW

MAE
MW

CA 38% 91% 20% 1.4 MW 1.2 MW
MBF 25% 83% 34% 2.3 MW 2.1 MW
PSO 18% 76% 39% 3.4 MW 3.2 MW
GA 14% 65% 41% 3.9 MW 3.6 MW

SFY (Dry Year)

CA 32% 90% 22% 1.6 MW 1.2 MW
MBF 29% 82% 36% 2.5 MW 2.3 MW
PSO 27% 75% 41% 3.6 MW 3.4 MW
GA 24% 63% 43% 4.1 MW 4.0 MW

DF (Dry Year)

CA 39% 92% 19% 1.2 MW 1.1 MW
MBF 27% 83% 32% 2.3 MW 2.1 MW
PSO 22% 77% 41% 3.1 MW 3.0 MW
GA 16% 67% 43% 3.9 MW 3.7 MW

WJD (Dry Year)

CA 41% 91% 19% 1.4 MW 1.2 MW
MBF 29% 84% 32% 2.1 MW 2.0 MW
PSO 19% 77% 40% 3.1 MW 3.0 MW
GA 16% 66% 42% 3.6 MW 3.4 MW

HJD (Normal Year)

Method Temporal
Reliability Index

Volumetric
Reliability Index

Vulnerability
Index

RMSE
MW

MAE
MW

CA 42% 92% 17% 1.2 MW 9.0 MW
MBF 39% 91% 22% 1.5 MW 1.3 MW
PSO 27% 85% 28% 2.4 MW 2.0 MW
GA 29% 76% 31% 2.9 MW 2.6 MW

SFY (Normal Year)

CA 41% 91% 21% 1.3 MW 1.2 MW
MBF 38% 84% 29% 1.9 MW 1.4 MW
PSO 27% 82% 32% 2.8 MW 2.6 MW
GA 24% 75% 35% 2.6 MW 2.1 MW

DF (Normal Year)

CA 41% 92% 20% 1.3 MW 1.0 MW
MBF 35% 87% 24% 1.5 MW 1.4 MW
PSO 29% 81% 29% 2.3 MW 2.1 MW
GA 28% 79% 32% 2.9 MW 2.6 MW

WJD (Normal Year)

CA 42% 93% 17% 1.2 MW 1.2 MW
MBF 33% 92% 22% 1.6 MW 1.5 MW
PSO 26% 85% 26% 2.1 MW 1.9 MW
GA 30% 79% 28% 2.6 MW 2.4 MW
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Table 5. Cont.

HJD (Wet Year)

Method Temporal
Reliability Index

Volumetric
Reliability Index

Vulnerability
Index

RMSE
MW

MAE
MW

CA 46% 95% 15% 0.90
MW 1.0 MW

MBF 42% 93% 16% 1.3 MW 1.2 MW
PSO 35% 89% 18% 1.6 MW 2.1 MW
GA 32% 80% 20% 1.8 MW 2.7 MW

SFY (Wet Year)

CA 42% 93% 22% 1.2 MW 1.1 MW
MBF 40% 85% 28% 1.6 MW 1.4 MW
PSO 29% 84% 30% 2.5 MW 2.3 MW
GA 26% 77% 34% 2.2 MW 2.0 MW

DF (Wet Year)

CA 47% 96% 19% 0.80
MW

0.95
MW

MBF 43% 94% 21% 1.1 MW 1.0 MW
PSO 36% 92% 20% 1.5 MW 1.4 MW
GA 34% 90% 24% 1.9 MW 1.8 MW

The temporal reliability index (TRI) for the CA based on dry years was 38%, which was
13%, 20%, and 24% more than via the MBF, PSO, and GA, respectively. The percent of this index
represents the number of periods where the hydropower exceeded the set threshold (i.e., power
plant capacity). Thus, there were no hydropower deficits during these periods due to a surplus of
hydropower generation.

When the TRI had a higher value, the system could generate hydropower for more periods, with a
surplus capacity comparable to the hydropower plant capacity. Additionally, the volumetric reliability
index (VRI) based on the CA during dry years was 91%, which was 8%, 15%, and 26% more than via
the MBF, PSO, and GA, respectively. This result showed that the generated hydropower via the CA for
more periods was closer to the hydropower plant capacity compared to via the MBF, GA, and PSO.

The vulnerability index for the CA based on dry years was 20%, which was 14%, 19%, and 21%
less than via the MBF (monarch butterfly algorithm), PSO, and GA, respectively. In fact, a smaller
value for this index based on the CA during dry years showed that the intensities of failure occurrences
or hydropower deficits via the CA were less than via the MBF, PSO, and GA. The RMSE for the CA
based on dry years was 1.4 MW, which was 39%, 58%, and 64% less than via the MBF, PSO, and GA,
respectively, when the generated hydropower was compared to hydropower plant capacity.

Additionally, the MAE for the CA based on dry years was 1.2 MW, which was 42%, 62.5%, and
66% less than via the MBF, PSO, and GA, respectively. Thus, the MAE and RMSE showed that the CA
could generate hydropower similar to the hydropower plant capacity. The comparison of results for
the CA and other algorithms during other years also affirmed the improved performance of the CA.
Another point was related to the values of different indexes during different years. For example, the
TRI and VRI for wet years had the greatest values compared to other years.

The VRI was 95% based on wet years for the HJA reservoir via the CA, and it was 92% and 91%
for normal and dry years, respectively. All indexes during wet years had more acceptable values
based on all algorithms when compared to the same algorithms during normal and dry years for all
hydropower plants, which was due to more water resources for the multireservoir system during
wet years. The conditions for the MBF, PSO, and GA based on dry years for all hydropower plants
were more critical compared to during wet and normal years. Therefore, the values of the TRI and
VRI decreased, and the RMSE and MAE increased significantly during dry years compared to during
other years.
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For example, the TRI via the CA during dry years for the HJD hydropower plant decreased by
4% and 6% compared to normal and wet years, respectively, while it decreased during dry years
at the HJD hydropower plant via the GA when compared to normal and wet years (15% and 18%,
respectively). Additionally, other indexes, such as the MBF, GA, and PSO (based on dry years), had the
same conditions. Thus, the PSO, GA, and MBF were more vulnerable compared to the CA when there
were limited water resources during some years. Although the GA and PSO algorithms have shown a
relatively good performance in previous research, the CA in this research achieved an outstanding
performance better than them. This might have been due to the fact that PSO and GAs have been
examined for single reservoir water systems with single objectives and have been evaluated using
traditional performance indexes. In addition, the major difference in exploring the weaknesses of the
GA and PSO algorithms compared to the CA is that both algorithms (GA and PSO) have been applied
only for normal average climate conditions, without paying attention to the possibility of experiencing
wet and dry climate conditions.

Comprehensive evaluations were carried out. In fact, several multicriteria decision models could
be used for the selection of the best method. If xij is considered the value of the index in Table 4 for
each method, a multicriteria decision model can predicate the ranks for different methods based on the
following steps: (1) The consideration and definition of the suitable indexes for evaluating different
methods; (2) the allocation of weight to the index, where the vulnerability, reliability, RMSE, and
MAE based on the same importance have the same weight for this study; and (3) the prioritization of
different methods based on different indexes.

The dry year as a critical condition was selected, and compromise programming (CP) was used as
a multidecision model for four reservoirs to select the best model based on the mentioned indexes in
Table 4 [9]:

Lp(Si) =

 n∑
j=1

x+j − xi j

x+j − x−j


p

1
p

, (20)

where Lp(Si) is the distance of a solution from the ideal solution; and x+j and x−j are, respectively, the
ideal solution (the most value for maximizing criteria or lowest value for minimizing criteria) and
the negative ideal (the most value for minimizing criteria or lowest value for maximizing criteria).
Three values for p were selected for this model to evaluate distances (p = 1, p = 2, and p = ∞) as black
distance, Euclidean distance, and Tchebycheff distance [26]. The multicriteria decision gave ranks to
the method for different reservoirs based on the mentioned values of indexes. The results indicated
that the CA method based on RMSE, MAE, the reliability index, and the vulnerability index received
the first rank, and MBF, PSO, and GA received other ranks. The ranks showed that the CA based on all
indexes had the best rank, and the MBF acted based on the next alternative.

5.4. Rationality of Operating the Multireservoir System

A dry year was selected as the critical year for the hydraulic and logical analyses to avoid repeating
the results of this section. Figure 3 shows that the water levels for WJD, DF, and HJD varied based on
the CA during different periods. The inflow into the HJD reservoir during dry years had an initial
interval of 88 m3/s (Table 2): This value was small, and if the system wants to meet the minimum
required hydropower (680 MW), the outflow from the HJD reservoir should increase, which would
allow the downstream reservoirs to have enough inflow for hydropower generation.

Thus, the water level decreased in this reservoir, and the water level for the other reservoirs
increased to reach a normal level (Figure 3). In fact, the value of the inflow into the HJD reservoir was
small during the initial time interval, and the value of the inflow into the HJD reservoir increased
to reach a normal water level (1140 m). The outflow from the HJD reservoir increased, which did
not cause a real shortage for the downstream reservoirs: Thus, the water level decreased in the HJD
reservoir to keep the water level under normal conditions for the downstream reservoirs. The water
level for the reservoirs after the HJD reservoir did not decrease until the final period (Figure 3). Table 6
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shows more details for the reservoirs and hydropower plants based on the CA. The outflow for the
WJD during all periods was more than 100 m3/s based on Table 6: Thus, navigation security was
considered for the WJD reservoir. The total hydropower output for all periods was more than 680 MW:
Thus, the smallest amount of required hydropower was well supplied. Additionally, the variation
in hydraulic heads during the wet seasons had an increasing trend, and it had a decreasing trend
during the dry seasons, which is consistent with Figure 3. Additionally, the hydropower outputs for
HJD were close to zero, because the inflow value for the HJD reservoir during these two periods was
considerable: Thus, the reservoir should increase the storage value during critical periods, such as dry
seasons. Therefore, the outflow of hydropower generation for the HJD reservoir decreased during
these periods. Finally, the hydraulic head increased, and there was enough storage for critical periods.Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 21 
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Figure 3. Water level for (a) HJD reservoir, (b) DF reservoir, and (c) WJD.
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Table 6. Outflow, hydraulic head, and power output, optimized by CA, for the studied reservoirs.

Interval
Outflow (m3/s) Hydraulic Head (m) Power Output (MW) Total Power (MW)

HJD DF SFY WJD HJD DF SFY WJD HJD DF SFY WJD -

1 118.6 277.9 389.4 100.12 121.4 102.3 69 112.4 120.4 235.3 226.3 90.4 725.7
2 0.0 351.4 592.3 675.2 132.5 114.22 69 122.2 0.0 332.4 344.2 690.4 1367.10
3 0.20 612.2 795.3 1084.2 145.7 125.46 69 130.5 0.5 652.4 463.7 1161.3 2277.9
4 111.0 254.2 312.2 333.1 161.3 127.23 69 125.2 151.2 275.8 181.3 367.7 976.40
5 201.2 406.9 447.6 511.4 155.2 126.22 69 132.2 275.34 434.9 259.3 552.3 1521.84
6 107.4 195.3 209.3 224.1 161.2 127.31 69 134.7 145.21 211.2 121.3 244.66 722.37
7 145.21 222.3 243.1 277.11 157.4 125.30 69 134.2 200.22 221.7 139.1 305.4 866.40
8 205.54 251.1 265.2 303.3 154.22 129.12 69 132.2 261.31 261.4 156.2 331.22 1010.13
9 227.11 265.3 276.2 275.2 145.21 127.12 69 129.4 275.31 286.3 154.2 308.14 1023.95
10 242.65 281.2 289.1 322.2 137.76 124.12 69 126.2 290.21 301.1 166.3 350.12 1107.73
11 301.11 331.1 337.2 351.1 122.1 125.4 69 124.2 302.12 355.6 197.3 380.23 1238.23
12 60.28 293.2 302.1 841.2 124.2 122.4 69 116.3 65.21 278.2 172.3 808.6 1331.60
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5.5. Convergence Curves

Figure 4 shows the convergence for three years. The results indicate that the CA converged toward
more energy produced than other algorithms based on a smaller number of iterations. For example,
the CA converged to 106.20 (108 kwh) after 400 iterations during normal years, while the PSO, GA,
and MBF converged after 500 iterations. Thus, the CA could achieve an optimal performance goal
based on a smaller number of iterations during the optimization process. The parameters for the other
methods computed were based on sensitivity analysis, such as CA. For example, the population size
for PSO, CA, and MBF was 80, 60, and 30. The mutation probability for the GA was 0.10, and the
crossover probability for the GA was 0.5. The inertia coefficient for PSO was 0.8, and the acceleration
coefficient for PSO was 2.
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parameters for the other methods computed were based on sensitivity analysis, such as CA. For 
example, the population size for PSO, CA, and MBF was 80, 60, and 30. The mutation probability for 
the GA was 0.10, and the crossover probability for the GA was 0.5. The inertia coefficient for PSO was 
0.8, and the acceleration coefficient for PSO was 2. 
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Figure 4. The convergence curve for (a) wet years, (b) normal years, and (c) dry years.
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6. Conclusions

The present study considered the operation of a multireservoir system with the aim of increasing
hydropower generation based on a new, evolutionary CA. Based on the proposed model, the average
generated energy for normal years was 0.94%, 2.09%, and 1.8% more than via the MBF, GA, and PSO,
respectively. The average generated energy for wet years based on the CA was 1.3%, 2.6%, and 2.2%
more than via the MBF, GA, and PSO, respectively. The computational time based on the CA over
three years was less than via the GA, PSO, and MBF. The results indicated that the CA could supply the
required hydropower for downstream demand based on high values of the TRI and VRI. For example,
the VRI via the CA for the HJA reservoir was 91%, while it was 83%, 76%, and 65% via the MBF, PSO,
and GA, respectively. Additionally, the CA decreased the vulnerability index compared to the MBF,
PSO, and GA for all reservoirs. The results indicated that the HJD reservoir had an important role in the
process of hydropower generation: Therefore, the inflow volume into this reservoir had considerable
value when storing flow during critical periods. Additionally, the reservoir with an increase in outflow
attempted to transfer the necessary inflow toward downstream reservoirs for hydropower generation.
Thus, the CA has high potential for water resource and energy management based on the computed
results: Also, future studies can be related to the operation of a multireservoir system under climate
change conditions based on the CA to determine the ability of the CA under climate change conditions
when managing and planning in water resource and energy fields.
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