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Abstract: An analysis is carried out to evaluate the effects of heat and mass transfer in an electro-osmotic
flow of third order fluid via peristaltic pumping. Solutions are derived for small wave number and Peclet
number. The emerging non-linear mathematical model is solved analytically and compared numerically
by the built-in scheme of working software. The table is inserted for shear stress distribution and a
graph for comparison of solution techniques and accuracy of obtained results. The effects of various
parameters of interest on pumping, trapping, temperature, heat transfer coefficient, and concentration
distribution have been studied graphically. Electro-osmotic exchange of energy and mass has a role in
reservoir engineering, chemical industry, and in micro-fabrication technologies.

Keywords: electroosmosis; peristalsis; third order fluid; heat and mass transfer; perturbation;
pumping and trapping

1. Introduction

In the past few decades, electroosmosis has found rich applications. The first microfluidic
devices were developed in the 1980s with the name Micro-Electro-Mechanical Systems (MEMS). These
devices have broad application prospects in a variety of fields including biological and medical-related
industries, where microfluidic devices are referred to as Lab-on-chip (LOC) devices. LOC can be used
in many applications including clinical diagnostics, and biological or chemical contamination. Today,
the need for the reliable, fast and well-organized performance of the microfluidic system has created a
rigorous demand for small, easy-to-operate and cheap systematic apparatus for drug delivery and
DNA analysis.

Microfluidic devices typically use electroosmosis to pump fluid into the entire device. Electroosmosis
describes the flow of electrolyte through a channel having a charged boundary due to an applied voltage.
Electro-osmosis occurs in many biological, medical and industrial processes such as porous membranes,
tubule/canalicular flow, botanical processes, fluid dialysis, transport in human skin and separation
techniques. Haung et al. [1] explained the Electroosmotic flow (EOF) in capillaries by monitoring
method. Gravesen et al. [2] reviewed the detailed applications of microfluidics. Haswell [3] scrutinized
the developmental features of micro-flows on EOF basis. Patankar and Hu [4] predicted the simulation
of EOF. Also, Kang et al. [5] examined the EOF in the annulus of capillaries.

The dynamics of peristaltic flow are triggered by its emergence of physiology (intestines, ureters,
esophagus, bile ducts, catheters, granules, etc.) and industry (blood pumps, transport of corrosive
liquids and hygienic fluid transport). Most of the research on this topic has been conducted on
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Newtonian fluids. Non-Newtonian fluids cannot be elucidated by a single constitutive relation. Hence,
several constitutive relations of these fluids have been proposed. The impact of viscosity in peristalsis
for third-grade fluid was explored by Hayat and Abbasi [6]. Noreen [7] proposed the physiological
motion of the third order fluid with a magnetic field and mixed convection. Moreover, Noreen [8]
considered the peristaltic motion of MHD couple-stress fluid. Prakash et al. [9] worked on peristaltically
induced third-grade fluid via the asymmetric conduit. Mallick and Misra [10] discussed Erying–Powell
fluid with the electromagnetic field.

Mathematical simulations of peristaltic distribution in microfluidic devices have newly attracted
attention. Peristaltic motion can be controlled by adding and resisting external electric fields. One
such example is the addition in peristaltic flow by electroosmosis [11]. Tang et al. [12] explored
the electroosmosis in the power-law fluid. Hadigol et al. [13] considered the microscopic mixing
characteristics of the power-law fluid in electroosmosis. Yavari et al. [14] demonstrated an increase in EOF
temperature of bio-fluids (non-Newtonian) via microchannel. Furthermore, Bandopadhyay et al. [15]
studied electroosmosis and peristalsis in microchannels. Likewise, Jiang et al. [16] investigated the effect
of electroosmosis for Oldroyd-B fluid and wall slip. Jhorar et al. [17] expounded the biomechanical
transfer through asymmetric microconduit. Similarly, Tripathi et al. [18] inspected the microvascular
blood transport via EOF. Francesko et al. [19] observed the progress of LOC and microfluidics in detail.
Javavel et al. [20] illustrated the EOF of pseudoplastic nano liquids through peristaltic pumping. However,
the above studies did not examine the electroosmotic effects in peristaltically flowing third order fluid.

Heat transfer in microfluidic devices is of great importance in cancerous tissues destruction,
portable kits for diseases diagnostics, the examination of dilution techniques in blood flow and the
micro-fabrication technologies. Sadeghi et al. [21] examined the effect of heat exchange in EOF for
viscoelastic fluids. Babaie et al. [22] noticed the impact of heat flow for Power-law fluid in the
microchannel. Further, Chen et al. [23] analyzed heat exchange for Non-Newtonian fluid suspension
in the microchannel. Thermal exchange in blood through capillaries was incorporated by Sinha and
Shit [24]. Shit et al. [25] also showed the EOF for heat exchange and MHD. Moreover, in medical
operations, it is considered that the wavy walls in electroosmotic flow increase the mass transfer.
Therefore, Bhatti et al. [26] described the heat and mass transmission through EDL effects. Also,
Reddy et al. [27] revealed the heat transport in peristaltic pumping for Casson fluid through the
microchannel. Peristaltic pumping with EDL was studied by Yadav et al. [28]. Narla et al. [29] examined
the effect of heat in EOF through time. Moreover, Yang et al. [30] also depicted the transportation of
heat in magneto-hydrodynamic EOF.

To our knowledge, there is currently no report on heat and mass transfer in EOF of third-order
fluid altered by peristalsis. The present study fills the gap. The main purpose of the present
investigation is to analyze the effect of heat transfer and mass transfer for EOF of a third order fluid
with viscous dissipation in a microchannel. Note, third order fluid has outstanding significance for
shear thickening and shear thinning properties. This investigation has been carried out by using
lubrication approximation and Debye Hückel linearization. The non-linear governing equations are
solved through perturbation method. Pressure rise and heat transfer coefficient at channel walls
have been calculated numerically. Finally, the graphical results for physical quantities are drawn and
discussed in detail.

2. Mathematical Model

2.1. Flow Analysis

Consider 2D electroosmotic flow (EOF) of third order fluid in a microfluidic channel having a
width 2a, presented in Figure 1. A peristaltic wave at velocity c propagates along the microchannel
wall. The temperature and concentration fields of the lower channel wall are maintained at T0 and C0

whereas upper at T1 and C1, respectively.



Appl. Sci. 2019, 9, 2164 3 of 20

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 21 

wall. The temperature and concentration fields of the lower channel wall are maintained at �� and 

�� whereas upper at �� and ��, respectively. 

Mathematically, microchannel geometry is expressed as: 

�� = ℎ����, �̃�  = �� + � sin �2�
(������)

�
�� (1) 

Here ��, �, �, �, �  and �̃  are the axial coordinate, channel’s half width, wave amplitude, wave 

speed, wavelength and time respectively. 

 

Figure 1. Schematic of the geometry of electro-osmotically modulated peristaltic flow. 

2.2. Governing Equations 

In the laboratory frame, governing equations for flow of third order fluid in 

electrohydrodynamic (EHD) environment are [17]: 

Continuity Equation: 

���

���
+

���

���
= 0, (2) 

Equation of motion: 

� �
�

���
+ ��

�

���
+ ��

�

���
� �� = −

���

���
+ �

����� ��

���
+

����� ��

���
� + ����, (3) 

� �
�

���
+ ��

�

���
+ ��

�

���
� �� = −

���

���
+ �

�������

���
+

�������

���
�. (4) 

Energy equation with viscous dissipation [9]: 

��� �
�

���
+ ��

�

���
+ ��

�

���
� �� = � �

��

��� � +
��

��� �� �� + �
���

���
������ +

���

���
������ + (

���

���
+

���

���
)�������. (5) 

Concentration equation: 

�
�

���
+ ��

�

���
+ ��

�

���
� �� = �� �

��

��� � +
��

��� �� �� +
�� ��

��
�

��

��� � +
��

��� �� �� . (6) 

Here ��  is the velocity along ��  direction, ��  along ��  direction, ��  is electrical charge 

density, �� is pressure, � is density of fluid, �� is axial electric field, �� is the specific heat, � is 

thermal conductivity, ��  is ratio of thermal diffusion, ��  is mass diffusivity coefficient, ��  is 

average temperature, ��  is temperature and �� is concentration field, which are dimensional. 

Stress tensor for fluid [6] is defined as 

�� = �� + �� �� ����
�

�� ��� + ����� + �����
�

+ ����� + ��������� + ������� (7) 

where �, ��, ��, ��, �� and �� are the material constants. Similarly, Revilin Erickson tensors ��� are 

��� = �∇��� + �∇���
�

, for  �� = [��( ��, ��, �̃), �� ( ��, ��, �̃), 0]  

Figure 1. Schematic of the geometry of electro-osmotically modulated peristaltic flow.

Mathematically, microchannel geometry is expressed as:

Ỹ = h̃
(
X̃, t̃

)
=

a + b sin

2π

(
X̃ − c̃t

)
λ


 (1)

Here X̃, a, b, c,λ and t̃ are the axial coordinate, channel’s half width, wave amplitude, wave
speed, wavelength and time respectively.

2.2. Governing Equations

In the laboratory frame, governing equations for flow of third order fluid in electrohydrodynamic
(EHD) environment are [17]:

Continuity Equation:
∂Ũ

∂X̃
+
∂Ṽ

∂Ỹ
= 0, (2)

Equation of motion:

ρ
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+ Ũ
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∂Ỹ
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+
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∂Ỹ
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∂
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. (4)

Energy equation with viscous dissipation [9]:

ρcp

(
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+ Ũ

∂

∂X̃
+ Ṽ

∂

∂Ỹ

)
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(
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Concentration equation:(
∂

∂̃t
+ Ũ

∂
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+ Ṽ

∂

∂Ỹ

)
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(
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kt Dm
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∂2

∂Ỹ2

)
T̃. (6)

Here Ũ is the velocity along X̃ direction, Ṽ along Ỹ direction, ρe is electrical charge density, P̃ is
pressure, ρ is density of fluid, Ex is axial electric field, cp is the specific heat, k is thermal conductivity,
kt is ratio of thermal diffusion, Dm is mass diffusivity coefficient, Tm is average temperature, T̃ is
temperature and C̃ is concentration field, which are dimensional.
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Stress tensor for fluid [6] is defined as

S̃ =
(
µ+ β3 tr

(
Ã1

2
))

Ã1 + α1Ã2 + α2Ã1
2 + β1Ã3 + β2

(
Ã1Ã2 + Ã2Ã1

)
(7)

where µ, α1,α2, β1, β2 and β3 are the material constants. Similarly, Revilin Erickson tensors Ãn are

Ã1 =
(
∇Ṽ

)
+

(
∇Ṽ

)T
, for Ṽ = [Ũ( X̃, Ỹ, t̃), Ṽ(X̃, Ỹ, t̃), 0]

Ãn =
∂Ãn−1

∂̃t
+ Ãn−1

(
∇Ṽ

)
+

(
∇Ṽ

)T
Ãn−1,n > 1 (8)

The thermodynamic analysis of the model [7] shows that if all the fluid motion is
thermodynamically compatible, then these motions must satisfy the Clausius–Duhem inequality.
Moreover, it is also supposed that the specific Helmholtz free energy be minimal in equilibrium, then

µ ≥ 0, α1 ≥ 0, |α1 + α2| ≤
√

24µβ3 , β1 = β2 = 0, β3 ≥ 0. (9)

In the present investigation, we assume that fluid is thermodynamically compatible, so Equation (7)
reduces to the form

S̃ =
(
µ+ β3 tr

(
Ã1

2
))

Ã1 + α1Ã2 + α2Ã1
2 (10)

2.3. Electrohydrodynamics (EHD)

The Poisson equation [11] in a microchannel is described as:

∇
2Φ̃ = −

ρe

∈
(11)

Here ρe,∈ and Φ̃ represents total charge density, dielectric permittivity, and electric potential.

2.4. Potential Distribution

The net charge density ρe follows the Boltzmann distribution [12], given as

ρe = −zve
(̃
n− − ñ+

)
, (12)

here the anions (̃n−) and cat-ions (̃n+) are defined through ρe of the Boltzmann Equation:

ñ± = ñ0e(±
ezv

TavKB
Φ̃), (13)

where n0 represents bulk concentration, zv the charge balance, KB the Boltzmann constant, e the
electronic charge and Tav is the average temperature.

Applying Debye-H
..
uckel linearization approxiamtion [12], Equation (11) becomes

d2Φ
dy2 = me

2Φ. (14)

Here me is the electroosmotic parameter. The analytical solution of above Equation (14) subject to
boundary conditions ∂Φ

∂y = 0, at y = 0 and Φ = 1, at y = h(x) is obtained as;

Φ(y) =
cosh(mey)
cosh(meh)

. (15)
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2.5. Non-Dimensionlization, Lubrication Approach and Boundary Conditions

In the stationary frame (X̃, Ỹ), the motion is unsteady due to the moving boundary. But, if
viewed in a moving frame (x̃, ỹ), it can be considered as steady due to static boundary. Therefore, the
translational transformation between two frames is [7]:

x̃ = X̃ − ct̃, ỹ = Ỹ, ũ(x̃, ỹ) = Ũ(X̃, Ỹ, t̃) − c, ṽ(x̃, ỹ) = Ṽ(X̃, Ỹ, t̃),
p̃(x̃, ỹ) = P̃(X̃, Ỹ, t̃), T(x̃, ỹ) = T̃(X̃, Ỹ, t̃)

(16)

The above transformations is used in Equations (2)–(6) and then introducing the
non-dimensional variables:

x = 2πx̃
λ , y =

ỹ
a , t = 2πc̃t

λ , u = ũ
c , v = ṽ

c , p = 2πa2

λcµ p̃,α = 2πa
λ , h = h̃

a , Φ = Φ̃
a ,

Pe = cλ
D , me = a

λD
, n = ñ

n0
, ε = b

a , θ = T̃−T0
T0

, Ω = C̃−C0
C0

,λD = 1
ezv

√
T0∈KB

2n0
,

Ec = c2

cpT0
, Φ = ezv

TavKB
Φ̃, Uhs = −Ex∈

cµ , S = a
cµ S̃, λ1 = α1c

aµ ,λ2 = α2c
aµ ,γ1 =

β1c2

a2µ
,

Sc = ν
Dm

, γ2 =
β2c2

a2µ
, γ3 =

β3c2

a2µ
, ψ = ψ̃

ca , u = ∂ψ
∂y , v = −α∂ψ∂x , Re =

ρca
µ ,

Pr =
µcp

k , Br = Ec.Pr, Γ = γ3 + γ2, f =
q̃
ca , Θ = Q̃

ca , Sr = T0 kt Dm
ν Tm C0

.

(17)

Here, x and y are the axial and transverse coordinate, me is electroosmotic parameter, p is
dimensionless pressure, λD is Debye length, α is peristaltic wave number, Θ is dimensionless
volume flow rate, θ is dimensionless temperature, Ω is dimensionless concentration, Uhs is
Helmholtz–Smoluchowski velocity, ψ is non-dimensional stream function, Pe is ionic Peclet number,
Br is Brinkman, Re is Reynolds number, Pr is Prandtl, Γ is Deborah number, ε is amplitude ratio, S is
non-dimensional shear stress, Sr is non-dimensional Soret number, Sc is Schmidt number and Ec is
Eckert number.

The relation of velocity and stream function ψ is defined as

u =
∂ψ
∂y

, v = −α
∂ψ
∂x

. (18)

After introducing Equations (17) and (18), Equation (2) is satisfied identically and Equations
(3)–(6) becomes

Reα

(
∂ψ
∂y

∂
∂x
−
∂ψ
∂x

∂
∂y

)
∂ψ
∂y

= −
∂p
∂x

+

(
α
∂Sxx

∂x
+
∂Sxy

∂y

)
+ me

2UhsΦ, (19)

−Reα
3
(
∂ψ
∂y

∂
∂x
−
∂ψ
∂x

∂
∂y

)
∂ψ
∂x

= −
∂p
∂y

+ α

(
α
∂Sxy

∂x
+
∂Syy

∂y

)
, (20)

Reα

(
∂ψ
∂y

∂
∂x
−
∂ψ
∂x

∂
∂y

)
θ =

1
Pr

(
α2 ∂

2

∂x2 +
∂2

∂y2

)
θ+ Ec

[
α2 ∂
∂x

(
∂ψ
∂y

)
Sxx − α

∂
∂y

(
∂ψ
∂x

)
Syy +

(
∂2ψ

∂y2 − α
2 ∂

2ψ

∂x2

)
Sxy

]
, (21)

Reα

(
∂ψ
∂y

∂
∂x
−
∂ψ
∂x

∂
∂y

)
Ω =

1
Sc

(
α2 ∂

2

∂x2 +
∂2

∂y2

)
Ω + Sr

(
α2 ∂

2

∂x2 +
∂2

∂y2

)
θ (22)

Now subject to long-wavelength assumption [10] on Equations (19)–(22), ignoring higher powers
of α, we get;

∂p
∂x

=
∂
∂y

∂2ψ

∂y2 + 2Γ
(
∂2ψ

∂y2

)3+ me
2UhsΦ, (23)

∂p
∂y

= 0 (24)
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∂2θ

∂y2 + Br

(∂2ψ

∂y2

)2

+ 2Γ
(
∂2ψ

∂y2

)4 = 0 (25)

∂2Ω
∂y2 + Sc.Sr

(
∂2θ

∂y2

)
= 0 (26)

where Sxy = ∂2ψ

∂y2 + 2Γ
(
∂2ψ

∂y2

)3
.

Eliminating pressure from Equations (23) and (24), we get

∂2

∂y2

∂2ψ

∂y2 + 2Γ
(
∂2ψ

∂y2

)3+ me
2UHS

∂Φ
∂y

= 0 (27)

The dimensionless boundary conditions are:

∂2ψ

∂y2 = 0, ψ = 0,
∂θ
∂y

= 0,
∂Ω
∂y

= 0, at y = 0, (28)

∂ψ
∂y

= −1, ψ = f, θ = 0, Ω = 0, at y = h(x) = 1 + ε sin x (29)

here f is dimensionless mean flow rate in moving frame and Θ is dimensionless mean flow rate in
fixed frame. Furthermore, f in the moving frame is connected to the Θ in the fixed frame as:

Θ = f + 1. (30)

here f =
∫ h(x)

0
∂ψ
∂y dy = ψ(h(x)) −ψ(0).

3. Solution Methodology

3.1. Series Solutions

The governing differential system given in Equations (23)–(27) subject to boundary conditions
(28,29) consists of highly non-linear and coupled equations. Exact solution of the governing system
of equations is impossible. Therefore, analytical solution of the system is presented through the
perturbation technique by taking Deborah number Γ as a perturbation parameter. So, we expand ψ, θ,
Ω,. dp/dx and f as in [8]:

ψ = ψ0 + Γψ1 + O(Γ)2 (31)

θ = θ0 + Γθ1 + O(Γ)2 (32)

Ω = Ω0 + ΓΩ1 + O(Γ)2 (33)

dp/dx = dp0/dx + Γdp1/dx + O(Γ)2 (34)

f = f0 + Γf1 + (Γ)2 (35)

3.2. Zero Order System (Γ)0

∂4ψ0

∂y4
+ me

2UHS
∂Φ
∂y

= 0, (36)

∂2θ0

∂y2 + Br

(
∂2ψ0

∂y2

)2

= 0 (37)

∂2Ω0

∂y2 + Sc.Sr

(
∂2θ0

∂y2

)
= 0 (38)
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∂p0

∂x
=

∂3Ψ0

∂y3 + me
2UHSΦ, (39)

subject to

ψ0 = 0, ∂2ψ0
∂y2 = 0, ∂θ0

∂y = 0, ∂Ω0
∂y = 0, at y = 0

ψ0 = f0, ∂ψ0
∂y = −1, θ0 = 0, Ω0 = 0, at y = h

(40)

3.3. First Order System (Γ)1

∂4ψ1

∂y4
+ 6

(
∂2ψ0

∂y2

)2
∂4ψ0

∂y4
+ 12

(
∂3ψ0

∂y3

)2
∂2ψ0

∂y2 = 0, (41)

∂2θ1

∂y2 + 2Br

(∂2ψ0

∂y2

)(
∂2ψ1

∂y2

)
+

(
∂2ψ0

∂y2

)4 = 0 (42)

∂2Ω1

∂y2 + Sc.Sr

(
∂2θ1

∂y2

)
= 0 (43)

∂p1

∂x
=

∂3ψ1

∂y3 + 6
(
∂2ψ0

∂y2

)2
∂3ψ0

∂y3 , (44)

subject to

ψ1 = 0, ∂2ψ1
∂y2 = 0, ∂θ1

∂y = 0, ∂Ω1
∂y = 0, at y = 0,

ψ1 = f1, ∂ψ1
∂y = 0, θ1 = 0, Ω1 = 0, at y = h

(45)

The solution for zero and first order system is defined in the appendix. By substituting the zero
and first order solution in the Equations (32)–(35) we get the final first order solution for ψ, θ, Ω and
dp/dx.

The dimensionless pressure rises per wavelength ∆Pλ is as follows:

∆Pλ =

∫ 1

0

∂p
∂x

dx. (46)

The heat transfer coefficient Z is defined as:

Z = hx
∂θ
∂y

∣∣∣∣∣y = h(x). (47)

The shear stress Sxy at the wall y = h(x) is defined as

Sxy =

∂2ψ

∂y2 + 2Γ
(
∂2ψ

∂y2

)3
∣∣∣∣∣∣∣y = h(x). (48)

4. Computational Discussion of Results

This section deals with the impacts of different parameters (i.e., Deborah number Γ, electroosmotic
parameter me, Helmholtz–Smoluchowski/maximum electroosmotic velocity Uhs, Brinkman number
Br, volume flow rate Θ, Soret number Sr and Schmidt number Sc) on the pressure rise ∆Pλ, pressure
gradient dp/dx, velocity distribution u, temperature distribution θ, concentration distribution Ω, heat
transfer coefficient Z and streamlines ψ. Figures 2–11 are plotted to serve the purpose.
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4.1. Comparative Analysis

Figure 2 reveals the overlapping comparison between the analytical and numerical solution of
velocity. Note that the analytical solution is obtained through perturbation technique and numerical
solution is from built-in scheme NDsolve of working software. It is concluded that our results through
perturbation (i.e., truncated up to first order of third-order fluid parameter) are in good agreement
with the numerical scheme.
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Figure 2. Comparative analysis between Perturbation solution and Numerical solution for axial velocity,
while other parameters areГ = 0.01, x = π,ε = 0.2, Θ = 1, me = 2, Uhs = −1, Br = 1, Sc = 1, Sr = 1.

4.2. Flow Characteristics

The axial velocity deserves to provide the main features of flow behavior in the microchannel
for microfluidic applications. Figure 3a–c is portrayed to inspect the evolutions in the velocity profile
across the microchannel for various values of Deborah number Γ, electroosmotic parameter me and
maximum electroosmotic velocity Uhs. Figure 3a shows the variation of axial velocity for various
values of Γ. It is demonstrated that the magnitude of velocity u decreases as Γ increases at y = 0.
The reason behind this trend is EDL (electric double layer). It means flow of fluid resists in the presence
of EDL. But opposite behavior is witnessed near the channel wall y = h(x). Figure 3b predicts that me

boosts the magnitude of u i.e., magnitude of u increases as me increases at the central region of the
channel and reduces near the walls of the channel. Since me is the ratio of the channel height to the
Debye length λD, it specifies that λD is inversely proportional to EDL. Hence, more fluid flows in
the central region y = 0. Figure 3c depicts that u decent as Uhs ascents in y = 0, whereas opposite
movement is noticed at y = h(x). As Uhs physically concludes that velocity of fluid decreases when
thickness of EDL increases. Therefore, fluid flow decreases in EDL presence.

4.3. Pumping Characteristics

Peristalsis is characterized by pushing the fluid forward against the pressure rise ∆Pλ.
The characteristic of pumping can be analyzed in the form of ∆Pλ versus Θ, shown in Figure 4a–c
Pumping action divides the whole region into the four segments: pumping region (adverse pressure
gradient ∆Pλ > 0, Positive pumping Θ > 0, backward/retrograde pumping (∆Pλ > 0, Θ < 0),
augmented pumping (favorable pressure gradient ∆Pλ < 0, Positive pumping Θ > 0) and free pumping
(∆Pλ = 0). Figure 4a portrays the ∆Pλ against Θ for different values of Γ. It is perceived that
pumping increases as Γ increases in pumping region (∆Pλ > 0). But in co-pumping (∆Pλ < 0), pumping
decreases as Γ increases. It means that pumping rate is high for third order fluid under parameter Γ in
comparison to viscous fluid Γ = 0. For free pumping (∆Pλ = 0), curves coincide i.e., there is no
difference between third-grade fluid and Newtonian fluid within the domain of −0.4 to 0.4. Figure 4b
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describes that ∆Pλ decreases as me increases. This means additional pressure is needed to drive the
third-grade fluid for maximum thickness of EDL. It physically declares that formation of EDL on
charged surface opposes the third-grade fluid flow. Furthermore, Figure 4c illustrates ∆Pλ decreases
as Uhs increases. Here pumping is controlled through an electric field. Note that there is a linear
relationship between ∆Pλ against Θ, because of Uhs.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 21 
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Figure 3. Axial velocity u profile for (a). Г (b) me (c) Uhs, while other parameters are
Г = 0.01, x = π, ε = 0.358, Θ = 0.8, me = 5, Uhs = −1.

The distribution of pressure gradient dp/dx is plotted through Figure 5a–d for Deborah number Γ,
electroosmotic parameter me, maximum electroosmotic velocity Uhs and volume flow rate Θ. Figure 5a
portrays that by increasing the Γ, magnitude of pressure gradient dp/dx increase. Γ being a physical
parameter showing the Non-Newtonian nature, one can observe pressure gradients are higher for
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third order in comparison to Newtonian fluids. Figure 5b illustrates that by increasing the values of Θ,.
dp/dx decreases. Because there is an inverse relationship between dp/dx and Θ. Figure 5c highlights
that by raising the values of me,. dp/dx decreases. It means that EDL presence in charged surface
resists the flow of third grade fluid. Similarly, it is important that the characteristics of pumping can be
modified by EDL mechanism and process of pumping can be systematized by thinning and thickening
EDL width. Also, Figure 5d presents that the magnitude of dp/dx increases as Uhs increases.
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Figure 4. Pressure rise ∆Pλ profile for (a). Г (b). me (c). Uhs, while other parameters are
Г = 0.1, ε = 0.258, me = 2, Uhs = −1.
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Figure 5. Pressure gradient profile for (a). Г (b). Θ(c). me (d). Uhs, while other parameters are
Г = 0.01, ε = 0.4, Θ = 0.1, me = 2, Uhs = −1, Br = 1.

4.4. Trapping Characteristics

Trapping for different values of Deborah number Γ, electroosmotic parameter me and maximum
electroosmotic velocity Uhs are shown in Figures 6–8. Figure 6a–d reveal a streamline structure for
various values of Γ. The size of the enclosed bolus decreases as Γ increases. It means that size of
trapped bolus is strongly affected by changing the fluid. Similarly, Figure 7a–d visualize that the
number of enclosed bolus increases with rise in electroosmotic parameter me. It scrutinizes that as the
me increases, the enclosed bolus strongly appears in EDL. It means that more fluid can be trapped in
the presence of more electric field. Figure 8a–d illustrate streamline makeup for Uhs. It demonstrates
that the accumulation of streamline reduces with rise in Uhs. Thus, stronger Uhs means stronger the
external electric field, the number of enclosed significantly decreases for large values of bolus Uhs.

4.5. Temperature Characteristics

In the present subsection, we examined the effect of Deborah number Γ, electroosmotic parameter
me, maximum electroosmotic velocity Uhs and Brinkman number Br on heat transfer characteristics.
Figure 9a reveals the various values of Γ, for temperature distribution θ. It examines that θ enhances
for more values of Γ. Also, Figure 9b displays that θ increases by increasing me. Therefore, the decrease
in EDL produces a rise in θ remarkably. Figure 9c, disclose the effects of maximum electroosmotic
velocity Uhs on θ. It signifies that for more values of Uhs, θ declines. Figure 9d exemplifies the variation
of Br on θ i.e., θ increases for more values of Br. The main fact in Br is the viscosity, which creates
resistance. This resistance is responsible for the collision of fluid particles and the resulting collision
causes an increase in temperature.
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Figure 6. Streamline distribution for (a). Г = 0.00 (b). Г = 0.02 (c). Г = 0.04 (d). Г = 0.06, while
other parameters are ε = 0.258, Θ = 0.8, me = 2, Uhs = −1.
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Figure 7. Streamline distribution for (a). me → 0 (b). me = 2 (c). me = 5 (d). me = 10 , while other
parameters are ε = 0.358, Θ = 0.7, Г = 0.01, Uhs = −1.
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Figure 8. Streamline distribution for (a). Uhs = −1.0 (b). Uhs = 0.0 (c). Uhs = 1.0, while other
parameters are ε = 0.758, Θ = 0.7, Г = 0.01, me = 2.
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Figure 9. Temperature profile for (a). Г (b). me (c). Uhs (d). Br, while other parameters are
Г = 0.01, x = 1, ε = 0.2, Θ = 1, me = 2, Uhs = −1, Br = 1.
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Figure 10. Cont.
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Figure 10. Concentration profile for (a). Г (b). me (c). Uhs (d). Br. (e). Sc(f). Sr, while other parameters
are Г = 0.01, x = π, ε = 0.2, Θ = 1, me = 2, Uhs = −1, Br = 1, Sc = 1, Sr = 1.
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Figure 11. Heat transfer coefficient for (a). Г (b). me (c). Uhs (d). Br, while other parameters are
Г = 0.01, ε = 0.2, Θ = 1.2, me = 10, Uhs = −1, Br = 1.

4.6. Concentration Characteristics

Here, we observed the impact of Deborah number Γ, electroosmotic parameter me, maximum
electroosmotic velocity Uhs, Brinkman number Br, Schmidt number Sc and Soret number Sr on mass
transfer characteristics. Figure 10a reveals the various values of Γ, for temperature distribution θ. It
examines that Ω decreases for more values of Γ. Figure 10b displays that Ω decreases by increasing me.
Figure 10c discloses the effects of Uhs on Ω. It signifies that for more values of Uhs, θ rises. Figure 10d
exemplifies the variation of Br on Ω i.e., Ω decreases for more values of Br. Figure 10e discloses the
effects of Sc on Ω. It implies that Ω decreases for more values of Sc. Also, Figure 10f shows that Ω
decreases for more values of Sr.
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4.7. Heat Transfer Coefficient

Figure 11a–d demonstrates the changes in heat transfer coefficient Z for various values of Deborah
number Γ, electroosmotic parameter me, maximum electroosmotic velocity Uhs, and Brinkman number
Br. This reveals that the various values of Γ, Br and me, the heat transfer coefficient increases. On
contrary Z is decreased for different values of Uhs.

4.8. Shear Stress Distribution

Distribution of shear stress provides very useful information about the nature of dissipation at
walls. Table 1a–c show the distribution of axial shear stress for different values of Deborah number Γ,
maximum electroosmotic velocity Uhs and electroosmotic parameter me. Table 1a explains that the
magnitude of shear stress decreases in the axial direction while it decreases (near the channel wall) then
increases (away from channel wall) for different values of Γ. Here, it is obvious that the third-grade
fluid act as a shear thinning and shear thickening fluid. Similarly, Table 1b displays the variation of
shear stress for Uhs. It is found that the axial distribution of shear stress enhances for increasing values
of Uhs. Table 1c presents the shear stress distribution for different values of me. It is concluded that the
same behavior is observed as of Γ. Therefore, we say that the presence of electroosmotic parameter
strongly infers the characteristics of third order fluid parameter.

Table 1. Numerical values of shear stress at the wall y = 1 + ε sin x for different values of Deborah
number Γ, Helmholtz–Smoluchowski velocity Uhs and electroosmotic parameter me.

(a) ε=0.385,Θ=1.0,me=2,Uhs=−1.0.

x Γ

0.0 0.2 0.4

0.1 −2.4917 −3.0742 −0.8223
0.2 −2.3669 −3.8790 −2.2711
0.3 −2.6497 −4.5689 −4.3309

(b) ε=0.385,Θ=1.0,me=2,Γ=0.1.

x Uhs

−1.0 0.0 1.0

0.1 −3.6869 −1.1370 0.5727
0.2 −3.7974 −1.2903 0.4311
0.3 −3.8395 −1.4188 0.3188

(c) ε=0.385,Θ=1.0,Γ=0.1,Uhs=−1.0

x me

2 4 6

0.1 −3.6869 −10.778 −6.3530
0.2 −3.7974 −8.7149 −4.7301
0.3 −3.8395 −7.0505 −3.6590

5. Concluding Remarks

From current analysis, we conclude that:

• The axial velocity of third-grade fluid in the microchannel is enhanced due to an increase in
electroosmotic parameter.

• For higher values of Schmidt or Soret number, concentration profile decreases.
• The magnitude of pressure rise decreases in the pumping region with the increase of

electroosmotic parameter.
• Pressure gradient is more for EOF of third order fluid in comparison to peristaltically flowing fluid.
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• Axial distribution of shear stress enhances for increasing values of maximum electroosmotic velocity.
• Volume of trapped bolus is strongly dependent upon the electroosmotic parameter whereas it is

suppressed for Deborah number and maximum electroosmotic velocity.
• Temperature distribution in microchannel is crucial for electroosmotic parameter, Deborah number

and Brinkman number.

Electro-osmotic exchange of energy and mass has a role in reservoir engineering. The outcomes of
the present model may be used by engineers in chemical industry and in micro-fabrication technologies.
In the future, this model accompanying porosity will help in understanding the hydrodynamics of
rheological fluids in a typical channel employed in a LOC system. This course requires promotion,
being of significance in factual life applications.
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Nomenclature

Symbols Meaning Dimensions
a Channel’s half width [L]
Ãn Revilin Erickson tensor [M/LT2]
b Wave amplitude [L]
Br Brinkman number [-]
c Wave speed [L/T]
C̃ Dimensional concentration field [N/L3]
C0,C1 Concentration field at upper and lower wall [N/L3]
D Diffusivity of chemical species [-]
Dm Mass diffusivity coefficient [L2/T]
Ec Eckert number [-]
Ex Axial electric field [ML/AT3]
e Electron charge [AT]
f Non-dimensional mean flow rate in moving frame [-]
h̃ Dimensional upper wall [L]
h Non-dimensional upper wall [-]
k Thermal conductivity [ML/KT3]
kt Ratio of thermal diffusion [N/L3]
KB Boltzmaan constant [ML2/T2K]
me Electroosmotic parameter [-]
ñ± Positive and negative ions [AT]

n0 Bulk concentration [AT]
P̃ Dimensional pressure field [ML/T2]
p Non-dimensional pressure field [-]
Pe Peclet number [-]
Pr Prandtl number [-]
Q̃ Dimensional volume flow rate in fixed frame [L3/T]
Re Reynolds number [-]
S̃ Dimensional shear stress [M/LT2]
S Non-dimensional shear stress [-]
Sc Schmidt number [-]
Sr Soret number [-]
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t̃ Dimensional time [T]
t Non-dimensional time [-]
T̃ Dimensional temperature field [K]
T0,T1 Temperature field at upper and lower wall [K]
Tm Mean temperature [K]
Ũ Dimensional velocity along X̃ direction [L/T]
u Non-dimensional velocity along x direction [-]

Uhs Helmholtz–Smoluchowski velocity [L/T]
Ṽ Dimensional velocity along Ỹ direction [L/T]
v Non-dimensional velocity along y direction [-]
X̃ Dimensional axial coordinate in fixed frame [L]
x Non-dimensional axial coordinate in moving frame [-]
Ỹ Dimensional transverse coordinate in fixed frame [L]
y Non-dimensional transverse coordinate in moving frame [-]
Z heat transfer coefficient [-]
zv Valence of ions [-]
α Peristaltic wave number [-]
α1,α2 Material constants [-]
β1, β2,β3 Material constants [-]
γ1,γ2,γ3 Material coefficients [-]
λ Wavelength [L]
λ1,λ2 Material coefficients [-]
λD Debye length [L]
∈ Dielectric permittivity [-]
ρe Toatl charge density [AT/L3]
ρ Density of fluid [M/L3]
Φ̃ Dimensional electric potential [ML2/T2]
Φ Non-dimensional electric potential [-]
Γ Non-dimensional Deborah number [-]
ε Amplitude ratio [-]
Θ Non-dimensional volume flow rate [-]
θ Non-dimensional temperature field [-]
Ω Non-dimensional concentration field [-]
ψ̃ Dimensional stream function [L2/T]
ψ Non-dmensional stream function [-]

Appendix A

ψ0 = A1y + A2y3 + A3sinh(mey),

u0 = A1 + 3A2y2 + A3me cosh(mey)

∂p0

∂x
= 3A4 + A5 cosh(mey),

θ0 = B1 + B2y2 + B3y4 + B4y cosh(mey) + B5y cosh(mey)3 + B6y sinh(mey)+
B7ysinh(mey)3 + B8y cosh(mey)2sinh(mey) + B9y cosh(mey)sinh(mey)2+

B10sinh(mey)+B11sinh(2mey)+B12sinh(mey)3+B13sinh(2mey)3+

B14 cosh(2mey)2sinh(2mey)+B15 cosh(mey)sinh(mey)2

Ω0 = C1 + C2y2 + C3y4 + C4y cosh(mey) + C5y cosh(mey)3 + C6y sinh(mey)+
C7ysinh(mey)3 + C8y cosh(mey)2sinh(mey) + C9y cosh(mey)sinh(mey)2+

C10 cosh(mey)+C11 cosh(2mey)+C12sinh(mey)+C13sinh(2mey)+C14 cosh(mey)3+

C15 cosh(2mey)3+C16sinh(mey)3+C17sinh(2mey)3+C18 cosh(mey)2sinh(mey)+
C19 cosh(mey)sinh(mey)2+C20 cosh(2mey)2sinh(2mey)+ C21sinh(2mey)2 cosh(2mey).
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ψ1 = D1y + D2y3 + D3y5 + D4y2sinh(mey) + D5y cosh(mey) + D6y cosh(2mey)
+D7sinh(mey) + D8sinh(2mey) + D9sinh(3mey)

u1 = 3D2y2 + 5D3y4 + meD4y2 cosh(mey) + 2D4ysinh(mey) + meD5ysinh(mey)
+D5 cosh(mey) + 2meD6y1sinh(2mey) + D6 cosh(2mey)

+meD7 cosh(mey) + 2D8me cosh(2mey) + 3D9me cosh(3mey)

∂p1

∂x = D11 + D12y2 + D13y2 cosh(mey) + D14ysinh(mey) + D15ysinh(2mey)
+D16y cosh(mey)sinh(mey) + D17 cosh(mey) + D18 cosh(2mey)
+D19 cosh(3mey) + D20 cosh(mey)sinh(mey)2 + D21sinh(mey)2

θ1 = E1 + E2y2 + E3y4 + E4y6 + E5y3sinh(mey) + E6y2 cosh(mey)
+E7y2 cosh(2mey) + E8ysinh(mey) + E9ysinh(2mey)
+E10ysinh(3mey) + E11 cosh(mey) + E12 cosh(2mey)

+E13 cosh(3mey) + E14 cosh(4mey)

Ω1 = F1 + F2y2 + F3y4 + F4y6 + F5y3sinh(mey) + F6y2 cosh(mey)
+F7y2 cosh(2mey) + F8 + F8ysinh(mey) + F9ysinh(2mey)

+F10ysinh(3mey) + F11 cosh(mey) + F12 cosh(2mey)
+F13 cosh(3mey) + F14 cosh(4mey)

where A1 − A5, B1 − B15, C1 − C21, D1 − D21, E1 − E14 and F1 − F14 are evaluated through Mathematica
software package.
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