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Abstract: Accurate QRS detection is an important first step for almost all automatic electrocardiogram
(ECG) analyzing systems. However, QRS detection is difficult, not only because of the wide variety
of ECG waveforms but also because of the interferences caused by various types of noise. This study
proposes an improved QRS complex detection algorithm based on a four-level biorthogonal spline
wavelet transform. A noise evaluation method is proposed to quantify the noise amount and to select a
lower-noise wavelet detail signal instead of removing high-frequency components in the preprocessing
stage. The QRS peaks can be detected by the extremum pairs in the selected wavelet detail signal
and the proposed decision rules. The results show the high accuracy of the proposed algorithm,
which achieves a 0.25% detection error rate, 99.84% sensitivity, and 99.92% positive prediction value,
evaluated using the MIT-BIT arrhythmia database. The proposed algorithm improves the accuracy of
QRS detection in comparison with several wavelet-based and non-wavelet-based approaches.

Keywords: electrocardiogram (ECG); QRS detection; noise evaluation; biorthogonal
wavelet transform

1. Introduction

The signal processing and analysis of the electrocardiogram (ECG) is an important and noninvasive
tool for identifying abnormal heart function. The QRS complex associated with the ventricular
contractions is the most significant signal within an ECG cycle. The accurate detection of QRS is a
crucial issue for an automatic ECG analysis system. Though a typical ECG waveform consists of P, Q,
R, S, and T waves, the measured ECG may have different waveforms due to abnormal rhythms, and its
waveform is also easily contaminated by several noise sources, such as 50 or 60 Hz power line noises,
muscle contractions, baseline drift, and motion artifacts. A wide variety of ECG waveforms make it
difficult to detect QRS accurately.

Previous studies have proposed numerous QRS detection methods, which can be divided into
two stages: The ECG signal preprocessing and QRS peak decision. The purpose of the ECG signal
preprocessing is to remove the low-frequency baseline drift and high-frequency noise. Many previous
studies have designed linear or non-linear filters to remove additive noise and interferences, such as
moving averaging filters [1], low-pass filters [2], bandpass filters [2–5], non-linear filters [6], quadratic
filters [7], and Savitzky–Golay (SG) smoothing filters [8]. The methods for noise removal based on the
wavelet transform have also appeared in the previous works by removing part of the approximation and
detail wavelet coefficients to filter out high frequency noise and baseline drift effects, respectively [9–14].
Other studies have proposed noise removal methods based on mathematical morphology [15] and
artificial neural networks [16].

Appl. Sci. 2019, 9, 2142; doi:10.3390/app9102142 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/10/2142?type=check_update&version=1
http://dx.doi.org/10.3390/app9102142
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 2142 2 of 19

The QRS peak decision is to find the position of the most prominent peak within a QRS complex.
The real time detection of QRS peaks proposed by Christov [1] is based on a comparison of the absolute
values of the summed differentiated ECG signals and the adaptive threshold. The threshold combines
three parameters: An adaptive slew-rate value, a second value which rises when high-frequency
noise occurs, and a third one intended to avoid missing low amplitude beats. Manikandana and
Soman [3] developed an R-peak detector based on the Shannon energy envelope (SEE) estimator.
Their method is better at detecting R-peaks in the case of wider and small QRS complexes, negative
QRS polarities, and sudden changes in QRS amplitudes. The approach proposed by Karimipour and
Homaeinezhad [11] used the first-order derivative of the ECG signal and combined adaptive threshold.
The detection and delineation of P- and T-waves were achieved by a correlation analysis conducted
between signals and their templates. Castells-Rufas and Carrabina [6] designed a simple real-time
QRS detector using the MaMeMi (Maximum Mean Minimum) filter, which can detect the QRS signal
in a simple way with minimal computational cost and resource needs using a non-linear filter. The
MaMeMi filter is a high-pass non-linear filter which can effectively remove the baseline drift and also
reduce the effect of the T wave. Phukpattaranont [7] developed a QRS detection algorithm based on
the quadratic filter which can enhance the QRS-to-noise ratio and then allow us to use a single fixed
threshold to detect the QRS. Farashi [13] proposed a method based on the analysis of multiresolution
time-dependent entropy. It calculates the entropy of the ECG signal at different temporal resolutions
and can improve the accuracy for the detection of various QRS morphologies. The decision rule
proposed by Sharma and Sunkaria [8] is based on the root-mean-square of the signal. Their techniques
include a novel approach for isoelectric line detection and a kurtosis-based false positive correction
method. Yazdani and Vesin [17] proposed an adaptive mathematical morphology scheme for extracting
QRS complexes and fiducial points. An adaptive structuring element in mathematical morphology
operators is updated after the detection of each heartbeat for a more robust and precise detection. Chen
and Chuang [5] developed an R-peak recognition method for wearable single-lead ECG devices. An
ECG signal transformation was proposed to enhance QRS segments and restrain P and T waves. The
QRS fiducial point is determined based on the detected crests and troughs of the transformed signal,
and the R point can be recognized based on four QRS waveform templates.

Moreover, several studies have proposed wavelet-based methods for the detection of QRS peaks.
Merah et al. [12] proposed an R-peaks detection method based on a stationary wavelet transform (SWT).
Their algorithm used the information of local maxima, minima, and zero crossings of the fourth level
detail coefficients to identify the significant points for detection and delineation of the QRS complexes,
as well as the detection and identification of the QRS individual wave peaks. Berwal et al. [14]
introduced a QRS complex detector based on a biorthogonal spline wavelet transform for wearable
healthcare devices. The wavelet detail coefficients of the third and fourth levels are multiplied using
the Booth multiplier, and a soft threshold method is applied to get the QRS peaks by the QRS peak
detector block. The method proposed by Zidelmal et al. [18] used the product of the wavelet detail
coefficients of the fourth and fifth levels to localize QRS complexes after a preliminary investigation of
QRS spectral parameters. Bouaziz et al. [19] developed a method based on the power spectrum of the
combination of the wavelet detail coefficients at the fourth and fifth levels. A moving window with
specific width (160 ms) is used to investigate the positions of the maximum amplitude points in each
window location, defining the QRS complex positions.

All of the above-mentioned techniques have demonstrated their superiority in the detection of
QRS peaks. However, if we consider the requirements of hardware complexity and detection accuracy
together, wavelet-based approaches can play a trade-off role [14,20]. Providing a noise-free ECG signal
is important for the QRS peak decision. However, noise is usually broadband and overlaps with the
QRS complex. It is not easy to accurately separate the noise from the ECG signal without destroying
the QRS waveform. The pre-filtering out of the high-frequency components not only reduces the
noise level but also causes a reduction in the amplitudes of the QRS peaks and thus reduces their the
detection accuracy. This study therefore proposes a novel wavelet-based algorithm for the detection
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of QRS complex peaks. A four-level biorthogonal spline wavelet transform is introduced for the
decomposition of ECG signals. The wavelet detail signals of the second, third, and fourth levels are
employed in the proposed QRS peak detection algorithm. A noise evaluation method is proposed to
quantify the amount of noise and to select a lower-noise signal between the third and fourth wavelet
detail signals for detection of QRS peaks instead of pre-filtering out the high-frequency noise in the
preprocessing stage.

The rest of this paper is organized as follows. Section 2 describes the ECG recordings obtained
from the MIT-BIH arrhythmia database. Section 3 presents the proposed wavelet-based algorithm for
detection of the QRS complex peaks. Results and discussion are given in Section 4. Finally, Section 5
concludes this study.

2. ECG Recordings

All of the ECG data used in this study were obtained from the MIT-BIH arrhythmia database [21],
which contains common and life-threatening arrhythmic heartbeats. This database contains 48
recordings of two-channel ambulatory ECG recordings with a length of 30 min, a sampling frequency
of 360 Hz, and 11-bit resolution over a 10 mV range. In most recordings, the upper lead is a modified
limb lead II (MLII), and the lower lead is usually a modified lead V1 (occasionally V2 or V5, and in one
instance V4). Each recording was independently annotated by two or more cardiologists. There are a
total of 109,488 beats included in this study that were annotated as one of 15 possible heartbeat classes.

3. Methodology

Figure 1 is a block diagram of the proposed wavelet-based algorithm for the detection of the QRS
complex. The purpose of the signal preprocessing is to segment the ECG recording and remove the
baseline drift. The proposed wavelet-based algorithm includes signal preprocessing, a four-level dyadic
wavelet transform, a search of candidate extreme points, a determination of candidate extremum pairs,
an evaluation of noise, a calculation of candidate QRS peak positions, and a determination of QRS
Peaks. The details are described in the following sections.
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3.1. Signal Preprocessing

Each ECG recording was segmented by a sliding window of 4096 samples. Figure 2 illustrates
the segmentation of the ECG recording. There is an overlap of 150 samples between two adjacent
windows. The design of the 150-sample overlap is for those incomplete QRS complexes located at
the end of the 4096-sample segments, which would be misidentified as Not QRS peaks. They can be
completely included in the beginning of the next 4096-sample segment because of the overlap of 150
samples. Two median filters were then applied to remove the low-frequency baseline drift [22]. Each
ECG segment was first filtered by a median filter with a width of 200 ms (i.e., 72 samples at a sampling
rate of 360 Hz) to remove the QRS and P waves; each segment was then filtered by a median filter
with a width of 600 ms to remove the T waves. Hence, the baseline drift signal can be extracted by the
output of the second median filter, and the baseline drift eliminated ECG recording can be obtained by
subtracting the estimated baseline drift from the original ECG signal. Figure 3 shows the illustration of
removing the low-frequency baseline drift, where the original ECG is the input signal, M1 and M2 are
the outputs of the first and second median filters, respectively, and the filtered ECG is the baseline
drift eliminated ECG. It is shown that most of the baseline drift can be removed. The high frequency
components of the QRS wave were not pre-filtered out in the preprocessing stage.
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3.2. Four-Level Dyadic Wavelet Transform

The dyadic wavelet transform was applied in this study to decompose ECG signals into different
frequency bands for detection of QRS peaks. The dyadic wavelet transform for a continuous signal x(t)
is defined as follows:

Wx(u, 2 j) =

∫ +∞

−∞

x(t)
1
√

2 j
ψ(

t− u
2 j )dt (1)
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where u and 2 j denote the translation and dyadic scaling parameters, respectively. The selected
prototype wavelet ψ(t) is a biorthogonal spline which has been applied to ECG signals in a previous
study [14]. Biorthogonal wavelets built with splines are especially attractive because of their short
support and regularity [23]. The corresponding low-pass filter H(z) and high-pass filter G(z) of the
biorthogonal spline wavelet are given as follows [14]:

H(z) = (1 + 3z−1 + 3z−2 + z−3)/4 (2)

G(z) = (−1− 3z−1 + 3z−2 + z−3)/4 (3)

which have the following impulse responses:

h(n) =
1
4
+

3
4
δ(n− 1) +

3
4
δ(n− 2) +

1
4
δ(n− 3) (4)

g(n) =
−1
4

+
−3
4
δ(n− 1) +

3
4
δ(n− 2) +

1
4
δ(n− 3) (5)

The four-level dyadic wavelet transform in this study was implemented by the Mallat
algorithm [24], as shown in Figure 4, which uses a two-channel filter bank to decompose ECG
signals by the low-pass filter H(z) and high-pass filter G(z). a1, a2, a3, and a4 denote the low-frequency
approximation signals of the first, second, third, and fourth levels, respectively, and d1, d2, d3, and d4
are the high-frequency detail signals of different levels. Figure 5 demonstrates several common QRS
waves and their high-frequency detail signals d1, d2, d3, and d4, where N, V, L, and Q denote normal
beat, ventricular premature contraction beat (VPC), left bundle branch block beat, and unclassifiable
beat, respectively. Figure 6 further plots the extreme detail signals, including only the extreme values
of the wavelet detail signals, named d1’, d2’, d3’, and d4’ according to d1, d2, d3, and d4 in Figure 5,
respectively. It can be observed that the rising and falling segments of a QRS peak produce a negative
and a positive extreme point, respectively, indicated by arrows. The pair of a negative and a positive
extreme point is defined as an extremum pair in the study. The sharper the QRS peak, the larger the
extreme value produced. Hence, we can detect the QRS peak by finding the largest extremum pair in
the wavelet detail signals. The frequency ranges of the wavelet detail signals for d1, d2, d3, and d4
are from 90 Hz to 180 Hz, from 45 Hz to 90 Hz, from 22.5 Hz to 45Hz, and from 11.25 Hz to 22.5 Hz,
respectively. Usually, the frequency range of the QRS complex wave is from 10 to 45 Hz [14]. Hence,
the detection of QRS peaks in this study is mainly based on the extreme detail signals of the third or
fourth level, d3’ or d4’, according to the evaluation of noise amount. The d2’ helps in identifying P-
or T-peaks.
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3.3. Search of Candidate Extreme Points

Based on the wavelet detail signals, d2, d3, and d4, the following steps are developed for searching
the candidate extreme points.

Step 1: Find the extreme detail signals, d2’, d3’, and d4’, consisting of all the positive or negative
extreme points which have sudden changes in slope in d2, d3, and d4, respectively.
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Step 2: Divide the extreme detail signals with a length of 4096 samples into four subsections
with lengths of 1024 samples and then calculate the positive and negative thresholds, TH+ and TH−,
respectively, as follows.

TH+ =
1
4
×
(MMax,1 + MMax,2 + MMax,3 + MMax,4)

4
(6)

TH− =
1
4
×
(MMin,1 + MMin,2 + MMin,3 + MMin,4)

4
(7)

where MMax,i and MMin, i, i = 1, 2, 3, 4, denote the largest values of the positive extreme points and
the smallest values of the negative extreme points for the four subsections. Each subsection is about
2.84 s at a sampling rate of 360 Hz and, hence, can at least include one QRS peak if the heartrate is
greater than 21 bps. Before the detection of QRS peaks, it is easy to find the largest and smallest values
of the extreme points produced by the QRS peaks in each subsection. The thresholds are defined by
one fourth of the average values of four extreme values. The use of four extreme values is to avoid the
thresholds being dominated by an extreme value that is too large or too small.

Step 3: Search the candidate extreme points with values larger than the positive threshold, TH+,
or smaller than the negative threshold, TH−. A too-large positive or a too-small negative threshold
may lose the extreme points produced by the true QRS peaks with smaller amplitudes. On the contrary,
a too-small positive or a too-large negative threshold may include the extreme points produced by the
noise peaks. The proposed TH+ and TH− are a compromise of the two.

3.4. Determination of Candidate Extremum Pairs

Figure 7 illustrates an extremum pair that is produced by a QRS peak in d3’. It includes a positive
and a negative extreme point. Let the coordinates of the first and second extreme points, M1 and M2,
be (x1, y1) and (x2, y2), respectively. A candidate extremum pair corresponding to a possible QRS
peak should meet the following conditions.
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Condition 1: An extremum pair consists of a positive extreme point followed by a negative
extreme point or a negative one followed by a positive one. This condition makes an extremum pair
represent a positive or negative peak in the QRS wave.

Condition 2: The positive and negative extreme values, y1 and y2, of a candidate extremum pair
are larger and smaller than the positive and negative thresholds defined in Equations (6) and (7),
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respectively. This condition makes a candidate extremum pair represent a peak with a large enough
amplitude in the QRS wave.

Condition 3: The distance between the first and second extreme points of a candidate extremum
pair, x2 − x1, is less than 45 samples. This condition makes a candidate extremum pair represent a
sharp enough peak in the QRS wave. This distance ranges from about 5 to 20 samples for narrower R
waves produced by normal, paced, atrial premature beats, etc., and ranges from about 21 to 44 samples
for wider R waves mostly produced by ventricular premature contraction beats.

According to the above three conditions, we can determine the candidate extremum pairs in d2’,
d3’, and d4’.

3.5. Evaluation of Noise Amount

The detection of QRS peaks in this study is based on the candidate extremum pairs in d3’ or d4’
to find the positions of the corresponding candidate QRS peaks in the original ECG signal and to
further identify the true QRS peaks. The selection of d3’ or d4’ is based on their noise amount. A noise
evaluation method is proposed to quantify the amount of noise in d3’ and d4’. We remove the extreme
points which are greater than or smaller than 1.6 times the positive or negative thresholds in d3’ and
d4’. These removed extreme points represent the components possibly contributed by the QRS peaks,
not by the noise. The remaining extreme points are applied to evaluate the amount of noise, which is
defined as the sum of the square values of the remaining extreme points. If the noise amount in d3’ is
smaller than that in d4’, the detection of QRS peaks is based on d3’; otherwise it is based on d4’.

3.6. Calculation of the Positions of the Candidate QRS Peaks in the Time-Domain

According to the candidate extremum pairs in d3’ or d4’, we define the following equation to
calculate the positions of the corresponding candidate QRS peaks in the original ECG signal:

xp = x1

∣∣∣y2
∣∣∣∣∣∣y1

∣∣∣+ ∣∣∣y2
∣∣∣ + x2

∣∣∣y1
∣∣∣∣∣∣y1

∣∣∣+ ∣∣∣y2
∣∣∣ − β (8)

where β denotes the time delay produced by the filtering of the wavelet filter banks. The values of β in
d3’ and d4’ are 9 and 12 samples, respectively. If

∣∣∣y1
∣∣∣ = ∣∣∣y2

∣∣∣, xp is located in the middle of x1 and x2,
then subtract β. If

∣∣∣y1
∣∣∣ > ∣∣∣y2

∣∣∣. If xp is closer to x2, then subtract β. If
∣∣∣y1

∣∣∣ < ∣∣∣y2
∣∣∣, xp is closer to x1, then

subtract β.

3.7. Identification of QRS Peaks

Because it is possible that multiple candidate QRS peaks present within the same QRS complex and
the candidate QRS peaks also include sharp P- and T-peaks, we propose the following decision rules to
identify the most prominent QRS peak. The distance thresholds of 130 and 100 samples to define the
following Cases 1, 2, and 3 are determined by pre-analyzing the relationships between the positions of
all candidate QRS peaks and true QRS peaks annotated by the MIT-BIH arrhythmia database.

Case 1: The distance between the current candidate QRS peak and the previous QRS peak is
greater than 130 samples. In this case, it is considered that the current candidate QRS peak is far
enough from the previous QRS peak and, hence, is identified as a new QRS peak. This identified QRS
peak may also be replaced by the next candidate QRS peak, according to the following Cases, 2.3 and 3.

Case 2: The distance between the current candidate QRS peak and the previous QRS peak is
greater than 100 samples and less than 130 samples. In this case, it is considered that the current
candidate QRS peak may be a new peak or a sharp T-peak.

Case 2.1: The current candidate QRS peak and the previous QRS peak both have a candidate
extremum pair in the higher frequency d2’. In this case, the current candidate QRS peak is identified as
a new QRS peak.
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Case 2.2: The current candidate QRS peak does not have a candidate extremum pair in the higher
frequency d2’, but the previous QRS peak has one. In this case, the current candidate QRS peak is
considered as a lower frequency T peak, not a QRS peak.

Case 2.3: The current candidate QRS peak has a candidate extremum pair in the higher frequency
d2’, but the previous QRS peak does not have one. In this case, the current candidate QRS peak is
identified as a new QRS peak and the previous QRS peak is identified as a lower frequency P peak, not
a QRS peak.

Case 3: The distance between the current candidate QRS peak and the previous QRS peak is less
than 100 samples. In this case, it is considered that the two peaks are located in the same QRS wave
and only a sharper peak remains. A sharpness parameter α of a peak based on the corresponding
extremum pair is defined as follows:

α =

∣∣∣y1y2
∣∣∣

x2 − x1
(9)

The larger the extreme values, or the shorter the distance between the first and second extremum
points, the larger the sharpness parameter α. If the sharpness of the current candidate QRS peak is
larger than that of the previous QRS peak, we remove the previous QRS peak and identify the current
candidate QRS peak as a new QRS peak. Otherwise, we remove the current candidate QRS peak and
reserve the previous QRS peak.

4. Results and Discussion

4.1. Illustrations of the Identifications of QRS Peaks

The detection of QRS peaks is based on a lower-noise wavelet detail signal between d3’ and d4’
according to the evaluation of the amount of noise. Figure 8a,b demonstrate the QRS detection results
for a high-noise ECG signal from recording 104 using d3’ and d4’, respectively. The top figures in
Figure 8a,b are the same ECG signal. The red circles denote the detected QRS peaks. FP denotes
a false positive peak. The bottom figures in Figure 8a,b are d3’ and d4’. The candidate extremum
pairs marked as a red circle followed by a green one are determined using the conditions defined in
Section 3.4. Two red solid lines indicate the positive and negative thresholds defined in Equations (6)
and (7) to search for candidate extreme points. Two red dashed lines indicate the positive and negative
thresholds of 1.6 times. The extreme points between two red dashed lines are applied to evaluate the
amount of noise. It is obvious that the noise amount of d3’ is larger than that of d4’ for this noisy ECG
signal. If the detection of QRS peaks is based on d3’, several peaks are misidentified as QRS peaks, as
shown in the top figure of Figure 8a. If the detection of QRS peaks is based on d4’, all QRS peaks are
identified accurately, as shown in the top figure of Figure 8b. Hence, the lower-noise d4’ is selected in
the detection of QRS peaks for noisy ECG signals.

Figures 9–11 illustrate the identifications of QRS peaks for Cases 1, 2, and 3 defined in Section 3.7.
Figure 9 illustrates the identifications of QRS peaks for Case 1. The top and bottom figures plot the ECG
signal and d3’, respectively. The detected QRS peaks are marked as red circles in the ECG signal, and
the candidate extremum pairs are marked as a red circle followed by a green one in d3’. The candidate
extremum pairs in d3’ are used to calculate the positions of the candidate QRS peaks using Equation
(8) in Section 3.6. All of their corresponding candidate QRS peaks are from Case 1 in Section 3.7 and
are identified as QRS peaks because all the distances between the two successive candidate QRS peaks
are about 280 samples, which are greater than the defined 130 samples.

Figure 10 demonstrates the identifications of QRS peaks for Case 2.1 and shows the waveforms of
the ECG signal (top), d3’ (middle), and d2’ (bottom). The positions of the candidate QRS peaks are
calculated by the candidate extremum pairs in d3’, and d2’ is applied to provide assistance with the
identification of the P- or T-peaks. There are three candidate extremum pairs marked as pairs 1, 2, and
3 in d3’ and d2’, and their corresponding candidate QRS peaks are P1, P2, and P3 in the ECG signal.
All of the candidate QRS peaks are identified as QRS peaks and marked as red circles in the ECG signal.
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In addition to P2 and P3, the identifications of other QRS peaks are Case 1 in Section 3.7 because the
distances between two successive QRS peaks are greater than 130 samples. The previous QRS peaks of
P2 and P3 are P1 and P2, respectively. Because P2, P3, and their previous QRS peaks have candidate
extremum pairs in d2’, P2 and P3 are identified as QRS peaks according to Case 2.1 in Section 3.7.
Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 19 

 
(a) 

 
(b) 

Figure 8. Illustration of the QRS detection results for a noisy ECG signal using (a) d3’ and (b) d4’. 

Figure 10 demonstrates the identifications of QRS peaks for Case 2.1 and shows the waveforms 
of the ECG signal (top), d3’ (middle), and d2’ (bottom). The positions of the candidate QRS peaks are 
calculated by the candidate extremum pairs in d3’, and d2’ is applied to provide assistance with the 
identification of the P- or T-peaks. There are three candidate extremum pairs marked as pairs 1, 2, 
and 3 in d3’ and d2’, and their corresponding candidate QRS peaks are P1, P2, and P3 in the ECG 
signal. All of the candidate QRS peaks are identified as QRS peaks and marked as red circles in the 
ECG signal. In addition to P2 and P3, the identifications of other QRS peaks are Case 1 in Section 3.7 
because the distances between two successive QRS peaks are greater than 130 samples. The previous 
QRS peaks of P2 and P3 are P1 and P2, respectively. Because P2, P3, and their previous QRS peaks 

Figure 8. Illustration of the QRS detection results for a noisy ECG signal using (a) d3’ and (b) d4’.



Appl. Sci. 2019, 9, 2142 11 of 19

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 19 

have candidate extremum pairs in d2’, P2 and P3 are identified as QRS peaks according to Case 2.1 
in Section 3.7. 

 
Figure 9. Illustration of the identifications of QRS peaks for Case 1. 

 
Figure 10. Illustration of the identifications of QRS peaks for Case 2.1. 

Figure 11 shows the identifications of QRS peaks for Case 2.2 and Case 3. The candidate 
extremum pairs in d3’ are used to calculate the positions of the candidate QRS peaks. P1, marked as 
a red circle, is identified as a QRS peak. P2 and P3, marked as black squares, are identified as not a 
QRS peak. There are three candidate extremum pairs marked as pairs 1, 2, and 3 in d3’, and only one 
candidate extremum pair marked as pair 1 in d2’ for the first QRS complex. The identification of P2 
is Case 3 in Section 3.7 because the distance between P1 and P2 is only 31 samples and is less than 
100 samples. Based on the evaluation of the sharpness of P1 and P2 using Equation (9), P2 is identified 

P1 

P2 
P3 

Pair 1 Pair 2 Pair 3 

Pair 1 Pair 2 Pair 3 

Figure 9. Illustration of the identifications of QRS peaks for Case 1.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 19 

have candidate extremum pairs in d2’, P2 and P3 are identified as QRS peaks according to Case 2.1 
in Section 3.7. 

 
Figure 9. Illustration of the identifications of QRS peaks for Case 1. 

 
Figure 10. Illustration of the identifications of QRS peaks for Case 2.1. 

Figure 11 shows the identifications of QRS peaks for Case 2.2 and Case 3. The candidate 
extremum pairs in d3’ are used to calculate the positions of the candidate QRS peaks. P1, marked as 
a red circle, is identified as a QRS peak. P2 and P3, marked as black squares, are identified as not a 
QRS peak. There are three candidate extremum pairs marked as pairs 1, 2, and 3 in d3’, and only one 
candidate extremum pair marked as pair 1 in d2’ for the first QRS complex. The identification of P2 
is Case 3 in Section 3.7 because the distance between P1 and P2 is only 31 samples and is less than 
100 samples. Based on the evaluation of the sharpness of P1 and P2 using Equation (9), P2 is identified 

P1 

P2 
P3 

Pair 1 Pair 2 Pair 3 

Pair 1 Pair 2 Pair 3 

Figure 10. Illustration of the identifications of QRS peaks for Case 2.1.

Figure 11 shows the identifications of QRS peaks for Case 2.2 and Case 3. The candidate extremum
pairs in d3’ are used to calculate the positions of the candidate QRS peaks. P1, marked as a red circle,
is identified as a QRS peak. P2 and P3, marked as black squares, are identified as not a QRS peak.
There are three candidate extremum pairs marked as pairs 1, 2, and 3 in d3’, and only one candidate
extremum pair marked as pair 1 in d2’ for the first QRS complex. The identification of P2 is Case 3 in
Section 3.7 because the distance between P1 and P2 is only 31 samples and is less than 100 samples.
Based on the evaluation of the sharpness of P1 and P2 using Equation (9), P2 is identified as not a QRS
peak because the sharpness parameter of P1 is larger than that of P2. The identification of P3 is Case 2.2
in Section 3.7 because the distance between P1 and P3 is 126 samples, is greater than 100 samples, and
is less than 130 samples. It is obvious that the current candidate QRS peak, P3, has no extremum pair



Appl. Sci. 2019, 9, 2142 12 of 19

in the higher frequency d2’, but the previous QRS peak, P1, has one. Hence, P3 is identified as not a
QRS peak. It is considered as a T-peak.
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4.2. Performance Evaluation of the Proposed QRS Peak Detection System and Comparison with the
Previous Studies

The MIT-BIH arrhythmia database containing 48 ECG recordings was used to evaluate the
performance of the proposed QRS peak detection system in order to compare with some previous
specific studies which used the same database. An identified QRS peak is recorded as a true peak if it
is located within 100 ms (i.e., 36 samples at sampling rate of 360 Hz) of the annotation time [12]. The
commonly used performance parameters for the QRS peak detection system are defined as follows:

Sensitivity (Se):

Se(%) =
TP

TP + FN
× 100% (10)

Positive prediction value (+P):

+ P(%) =
TP

TP + FP
× 100% (11)

Detection error rate (DER):

DER(%) =
FP + FN

Total No. of QRS Beats
× 100% (12)

where TP is the number of true positive peaks (QRS peaks detected as QRS peaks), FN is the number
of false negative peaks (QRS peaks detected as Not QRS peaks), and FP is the number of false positive
peaks (Not QRS peaks detected as QRS peaks).

Table 1 lists the summary performance of the proposed QRS detection algorithm using the first
channel of the MIT-BIH arrhythmia database. Most of the QRS peaks can be accurately detected
by the proposed algorithm even if the ECG signals include severe baseline drifts, abrupt changes,
high-frequency noise, low-amplitude QRS complexes, sharp P and T waves, or wide ventricular
premature contractions. There are a total of 271 detection failures including 180 false negative beats
and 91 false positive beats. The highest number of detection failures is 46 failures for recording 203,
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followed by 31 failures for recording 105, 23 failures for recording 108, 21 failures for recording 228,
and 20 failures for recording 116. The individual sensitivity, positive prediction value, and detection
error rate range from 98.89% to 100%, from 98.96% to 100%, and from 0% to 1.54%, respectively. The
total sensitivity, positive prediction value, and detection error rate are 99.84%, 99.92%, and 0.25%.

Table 1. Summary performance of the proposed QRS peak detection system using the first channel of
the MIT-BIH arrhythmia database.

No. Total Beats TP FN FP FP+FN Se (%) +P (%) DER (%)

100 2273 2273 0 0 0 100 100 0
101 1865 1865 0 0 0 100 100 0
102 2187 2187 0 0 0 100 100 0
103 2084 2084 0 0 0 100 100 0
104 2229 2228 1 1 2 99.96 99.96 0.09
105 2572 2568 4 27 31 99.84 98.96 1.21
106 2027 2022 5 0 5 99.75 100 0.25
107 2137 2136 1 0 1 99.95 100 0.05
108 1763 1750 13 10 23 99.26 99.43 1.3
109 2532 2532 0 0 0 100 100 0
111 2124 2123 1 0 1 99.95 100 0.05
112 2539 2539 0 0 0 100 100 0
113 1789 1789 0 6 6 100 99.67 0.34
114 1879 1871 8 1 9 99.57 99.95 0.48
115 1953 1953 0 0 0 100 100 0
116 2412 2392 20 0 20 99.17 100 0.83
117 1535 1535 0 0 0 100 100 0
118 2278 2278 0 0 0 100 100 0
119 1987 1987 0 0 0 100 100 0
121 1863 1862 1 0 1 99.95 100 0.05
122 2476 2476 0 0 0 100 100 0
123 1518 1518 0 0 0 100 100 0
124 1619 1619 0 0 0 100 100 0
200 2601 2596 5 2 7 99.81 99.92 0.27
201 1963 1961 2 6 8 99.9 99.69 0.41
202 2136 2133 3 0 3 99.86 100 0.14
203 2980 2947 33 13 46 98.89 99.56 1.54
205 2656 2650 6 0 6 99.77 100 0.23
207 1860 1842 18 1 19 99.03 99.95 1.02
208 2955 2939 16 2 18 99.46 99.93 0.61
209 3005 3003 2 0 2 99.93 100 0.07
210 2650 2642 8 4 12 99.7 99.85 0.45
212 2748 2748 0 0 0 100 100 0
213 3251 3251 0 0 0 100 100 0
214 2262 2259 3 1 4 99.87 99.96 0.18
215 3363 3362 1 0 1 99.97 100 0.03
217 2208 2201 7 3 10 99.68 99.86 0.45
219 2154 2154 0 0 0 100 100 0
220 2048 2048 0 0 0 100 100 0
221 2427 2425 2 0 2 99.92 100 0.08
222 2483 2481 2 1 3 99.92 99.96 0.12
223 2605 2602 3 0 3 99.88 100 0.12
228 2053 2040 13 8 21 99.37 99.61 1.02
230 2256 2256 0 1 1 100 99.96 0.04
231 1571 1571 0 0 0 100 100 0
232 1780 1780 0 4 4 100 99.78 0.22
233 3079 3077 2 0 2 99.94 100 0.06
234 2753 2753 0 0 0 100 100 0

Total 109,488 109,308 180 91 271 99.84 99.92 0.25
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Table 2 shows the performance comparison of the proposed QRS peak detection system with
the previous studies. In addition to Berwal et al. [14] only providing the results of one-minute signal
per ECG recording, other studies have the results of complete 30-minute signal per ECG recording.
Though the FN and FP of Berwal et al. [14] have only 22 and 26, respectively, its DER of 1.49% is the
highest among the studies in Table 2. Comparing the proposed algorithm with wavelet-based methods
using 30-minute ECG signals, the minimum FN is 140 for Bouaziz et al. [19], followed by 178 for
Merah et al. [12] and 180 for the proposed algorithm, and the proposed method has the minimum FP
of 91 and FP+FN of 271. The proposed algorithm has the best DER of 0.25% and +P of 99.92% among
the wavelet-based methods in Table 2. The Se of the proposed method is 99.84%, which is slightly
lower than 99.87% of Bouaziz et al. [14]. The results show that the proposed method improves the QRS
detection accuracy of the wavelet-based methods.

Table 2. Performance comparison of the proposed QRS peak detection system with the previous studies.

Methods TP FN FP FP+FN DER% Se% +P%

Wavelet-Based Methods
Proposed 109,308 180 91 271 0.25 99.84 99.92

Zidelmal et al., 2012 [18] 109,101 393 193 586 0.54 99.64 99.82
Bouaziz et al., 2014 [19] 109,354 140 232 372 0.34 99.87 99.79
Merah et al., 2015 [12] 109,316 178 126 304 0.28 99.84 99.88
Berwal et al., 2018 [14] 3186 22 26 48 1.49 99.31 99.19

Non-Wavelet-Based Methods
Christov, 2004 [1] 109,615 240 239 479 0.44 99.78 99.78

Manikandan and Soman, 2012 [3] 109,417 79 140 219 0.20 99.93 99.87
Karimipour and Homaeinezhad,

2014 [11] 115,945 192 308 500 0.43 99.81 99.70

Castells-Rufas and Carrabina,
2015 [6] 108,880 614 353 967 0.88 99.43 99.67

Phukpattaranont, 2015 [7] 109,281 202 210 412 0.38 99.82 99.81
Farashi, 2016 [13] 109,692 273 163 436 0.40 99.75 99.85

Sharma and Sunkaria, 2016 [8] 108,979 509 428 937 0.93 99.50 99.56
Yazdani and Vesin, 2016 [17] 109,357 137 108 245 0.22 99.87 99.90
Chen and Chuang, 2017, [5] 109,250 193 203 396 0.36 99.82 99.81

Most of the previous studies removed the high-frequency noise to increase the signal-to-noise ratio
and reduce the interference of noise. However, the pre-filtering out of the high-frequency components
would not only reduce the noise level, but also cause a reduction in the amplitudes of the QRS peaks
and a decrease in the detection accuracy of the QRS peaks. Instead of removing the high-frequency
components in the preprocessing stage, this study selects a lower-noise wavelet detail signal according
to the results of the noise amount evaluation to reduce the interference of noise. For low-noise ECG
signals, the higher-frequency d3’ is usually selected for the detection of QRS peaks because the higher
frequency wavelet detail signal has smaller energy to the lower frequency signal. Furthermore, d3’
has higher detection accuracy than d4’ for low-noise signals. If ECG signals suffer interference from a
large amount of high-frequency noise, usually the higher frequency d3’ would be contaminated by
noise more than the lower frequency d4’. The detection of QRS peaks based on the lower-noise d4’
can reduce the noise interference and improve the detection accuracy of QRS peaks for high-noise
ECG signals.

Comparing the proposed algorithm with non-wavelet-based methods using 30-minute ECG
signals, the minimum FN was 79 in Manikandan and Soman [3], followed by 137 in Yazdani and
Vesin [17], and 180 in the proposed method. The minimum FP is 91 in the proposed method, followed
by 108 in Yazdani and Vesin [17], and 140 in Manikandan and Soman [3]. The DER of the proposed
method is 0.25%, which is slightly higher than the 0.20% of Manikandan and Soman [3] and the 0.22%
of Yazdani and Vesin [17]. The Se of the proposed method is 99.84%, which is slightly lower than the
99.93% of Manikandan and Soman [3] and the 99.87% of Yazdani and Vesin [17]. The maximum +P is
99.92% in the proposed method, followed by 99.90% in Yazdani and Vesin [17]. The results show that
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the proposed algorithm also improves the detection accuracy of QRS peaks in comparison with the
non-wavelet-based methods.

4.3. Limitations of the Proposed Algorithm

The limitations of the proposed QRS peak detection algorithm caused 271 detection failures of
QRS peaks, which can be classified into several types. Figure 12 illustrates the detection failure caused
by sudden high-frequency noise. The red circles indicate the QRS peaks that were correctly identified,
and the red arrow followed with FP:18569 indicates a false positive beat at sample 18569. Because the
sudden high-frequency noise cannot be detected by the proposed noise evaluation method, the QRS
peak detection was still based on the higher-frequency d3’, and, hence, this sudden large-amplitude
noise peak in Figure 12 is misidentified as a QRS peak. A total of 41 detection failures were caused by
the sudden high-frequency noise. Figure 13 demonstrates the detection failure caused by the greatly
reduced amplitude of the QRS peak compared to the adjacent QRS peaks. The black arrow followed by
V:295133 indicates the peak of a VPC beat at sample 295133, which is misidentified as a false negative
beat. Because the amplitude of this VPC beat is greatly reduced in comparison with those of other QRS
complexes, the peak of the VPC beat was misidentified as not being a QRS peak. Greatly decreased
amplitudes of QRS peaks caused a total of 62 detection failures.Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 19 
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Figure 14 shows the detection failures caused by large-amplitude artifacts. It is obvious that the
four peaks of large-amplitude artifacts are very similar to QRS peaks and are misidentified as QRS
peaks. A total of 26 detection failures were caused by large-amplitude artifacts. Figure 15 illustrates
the detection failure caused by a distance of less than 100 samples between two successive QRS peaks,
which caused a total of 15 detection failures. The VPC beat marked by V:267025 was misidentified
as not being a QRS peak because the distance between it and the previous QRS peak was less than
100 samples. Figure 16 demonstrates the detection failures caused by a P-peak sharper than the QRS
peak. The FP:141706 denotes a false positive beat at sample 141706, and the N:141768 represents a
normal beat at sample 141768, which is misidentified as a false negative beat. When a P- or T-peak is
sharper than a QRS peak, it causes two detection failures. One is the P- or T-peak misidentified as a
QRS peak, and the other is the QRS peak misidentified as not being a QRS peak. A total of 36 detection
failures were caused by the P- or T-peak being sharper than the QRS peak. Figures 17 and 18 illustrate
the detection failures caused by the inconsistent annotation of the MIT-BIH arrhythmia database. Not
QRS peaks that were annotated as QRS peaks caused a total of 57 detection failures. It is obvious that
the peaks indicated as N in Figure 17 are not QRS peaks but are annotated as peaks of the normal QRS
complexes. QRS peaks that were annotated as Not QRS peaks caused a total of 10 detection failures,
as illustrated in Figure 18. The peak indicated as FP should be a QRS peak, but the corresponding
annotation was lost. The remaining 24 detection failures were caused by other types. The limitations
of the proposed algorithm for these types of detection failures of QRS peaks should be addressed in
future work.
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5. Conclusions

This study proposes a QRS detection algorithm based on a four-level biorthogonal spline wavelet
transform. A noise evaluation approach was developed for selecting a lower-noise wavelet detail
signal to reduce the noise interference instead of pre-filtering out the high-frequency noise in the signal
preprocessing. If the noise amount in d3’ is lower than that in d4’, the detection of QRS peaks is based
on d3’; otherwise, it is based on d4’. The identification of QRS peaks was based on the extremum pairs
in the selected wavelet detail signals and the proposed decision rules. The proposed algorithm was
evaluated by the MIT-BIH arrhythmia database. It presents a high accuracy to detect QRS peaks. The
results show a 0.25% detection error rate, 99.84% sensitivity, and 99.92% positive prediction value.
The performance of the proposed algorithm is better than that of several wavelet-based methods and
non-wavelet-based algorithms.
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