
applied
sciences

Article

GPU Acceleration of Hydraulic Transient Simulations
of Large-Scale Water Supply Systems

Wanwan Meng 1, Yongguang Cheng 1,*, Jiayang Wu 1,2, Zhiyan Yang 1, Yunxian Zhu 3

and Shuai Shang 4

1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University,
Wuhan 430072, China; wwmeng@whu.edu.cn (W.M.); wujiayang@cjwsjy.com.cn (J.W.);
mry@whu.edu.cn (Z.Y.)

2 Ministerial Key Lab of Hydraulic Machinery Transients, Ministry of Education, Wuhan University,
Wuhan 430072, China

3 Construction Management Company for Chushandian Reservoir Project of Henan Province,
Zhengzhou 450000, China; zyx@hnsl.gov.cn

4 Zhangfeng Water Conservancy Management Company LtD., Qinshui 048000, China;
shangshuai777@126.com

* Correspondence: ygcheng@whu.edu.cn; Tel.: +86-139-7138-8746

Received: 28 November 2018; Accepted: 23 December 2018; Published: 27 December 2018 ����������
�������

Abstract: Simulating hydraulic transients in ultra-long water (oil, gas) transmission or large-scale
distribution systems are time-consuming, and exploring ways to improve the simulation efficiency is
an essential research direction. The parallel implementation of the method of characteristics (MOC)
on graphics processing unit (GPU) chips is a promising approach for accelerating the simulations,
because GPU has a great parallelization ability for massive but simple computations, and the explicit
and local features of MOC meet the features of GPU quite well. In this paper, we propose and
verify a GPU implementation of MOC on a single chip for more efficient simulations of hydraulic
transients. Details of GPU-MOC parallel strategies are introduced, and the accuracy and efficiency
of the proposed method are verified by simulating the benchmark single pipe water hammer
problem. The transient processes of a large scale water distribution system and a long-distance
water transmission system are simulated to investigate the computing capability of the proposed
method. The results show that GPU-MOC method can achieve significant performance gains, and the
speedup ratios are up to hundreds compared to the traditional method. This preliminary work
demonstrates that GPU-MOC parallel computing has great prospects in practical applications with
large computing load.

Keywords: graphics processing unit (GPU); method of characteristics; hydraulic transients;
large-scale water supply system; parallel computing; speedup ratio

1. Introduction

Hydraulic transients are the fluctuations of pressure and flow in water (oil, gas) transmission
or distribution systems caused by pump or valve operations, and their numerical simulations are
essential for design, operation and management of engineering projects [1–3]. The existing simulation
methods of hydraulic transients are adequate for many practical applications in terms of accuracy and
efficiency [4]. But in some special cases, simulation efficiency must be improved to better meet demands.
First, more and more water transmission systems longer than hundreds of kilometers (e.g., the Da
Huofang project and the Liaoning northwest water supply project in China are 354 kilometers and
598.4 kilometers, respectively) and water distribution networks containing thousands of pipes, loops,

Appl. Sci. 2019, 9, 91; doi:10.3390/app9010091 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app9010091
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/9/1/91?type=check_update&version=2

Appl. Sci. 2019, 9, 91 2 of 14

and branches (e.g., the networks in Xiongan New Capital City and Wuhan New Yangtze River
City, China) are newly built and planned, for which the hydraulic transient simulations are very
time-consuming, normally needing several hours for calculating one working condition. Second,
some of these long-distance systems are equipped with real-time monitoring and need online transient
simulations for instant decision-making on operations, for which the existing methods are not
competent [5]. Third, in design and optimization of many complex pipe systems, a large number of
layouts and working conditions should be simulated in a limited time [6]. Therefore, it is necessary to
find more efficient simulation methods of hydraulic transients.

Two approaches on improving the computing efficiency of hydraulic transients have already
been done. The first is to adopt more efficient algorithms. Wood et al. [7,8] proposed the wave
characteristic method (WCM) to efficiently simulate the transient processes of water distribution
systems. Boulos et al. [9] and Jung et al. [10] further proved WCM is more efficient than the
widely-used method of characteristics (MOC) because of its larger time-step interval and exemption
from interior section computation. The second approach is to optimize or parallelize computing codes.
Izquierdo and Iglesias [11,12] established a sub-procedure library for general hydraulic boundaries,
which were invoked directly in simulations to avoid tiny segmentation and reduce resource occupancy.
Li et al. [13] used a parallel genetic algorithm (PGA) in the transient simulations with cavitation and
obtained about 10 times of speedup compared to the serial genetic algorithm. Martinez et al. [14]
used an optimized genetic algorithm to redesign existing water distribution networks that do not
operate properly. Fan et al. [15] parallelized two computers to simulate the transients of several large
hydraulic systems, and achieved an efficiency of 1.442 times to that on a single computer. However,
these efficiency improvement are far from meeting the practical needs, therefore, new approaches
should be explored.

The graphic processing unit (GPU) has shown powerful capability in non-graphical computations
and scientists have started using it to conduct large-scale scientific calculations at the beginning of the
21 century [16]. Many successful GPU applications in fluid dynamics calculations have shown quite
promising performance gains. Wu et al. [17] accelerated the simulations of fluid structure interaction
(FSI) by implementing the immersed boundary-lattice Boltzmann coupling scheme on a single GPU
chip, and the attained memory efficiencies for the kernels were up to 61%, 68%, and 66% for the
testing case. Bonelli et al. [18] accelerated the simulations of high-enthalpy flows by implementing the
state-to-state approach on a single GPU chip, the comparison between GPU and CPU showed a speedup
ratio up to 156, and such speedup ratio increased with the problem size and the problem complexity.
Zhang et al. [19] implemented a multiple-relaxation-time lattice Boltzmann model (MRT-LBM) on
single GPU, and found the GPU-implemented MRT-LBM on a fine mesh can efficiently simulate
two-dimensional shallow water flows. Griebel et al. [20] simulated three-dimensional multiphase
flows on multiple GPUs of a distributed memory cluster, and the achieved speedup ratios on eight
GPUs were 115.8 and 53.7 compared to a single CPU. The supercomputing power of GPU comes from
its thousands of cores [21], for example, the number of cores for the latest single GPU GTX Titan Z is
up to 5760, and the core number of GPU will continue to grow as the technology develops. Therefore,
GPUs show a broad prospect in accelerating computations.

Unfortunately, the use of GPUs is sometimes hampered by the fact that most of the scientific codes
written in the past should be ported to GPU architecture. Efforts on this should be done; an important
example is the porting of a sophisticated CFD code for compressible flows, originally developed
in Fortran and described in [22]. Implementing MOC on GPUs is also an effort on this kind of
work. By analyzing the explicit and local characteristics of MOC, we find MOC has a good data
independence which is very suitable to be implemented on GPU architectures [23]. To our knowledge,
there is no existing report about parallelizing MOC computations on GPUs to accelerate hydraulic
transient simulations.

In this paper, we propose and verify a GPU implementation of MOC (GPU-MOC), and try to
apply it to transient simulations of practical systems.

Appl. Sci. 2019, 9, 91 3 of 14

2. Implementation of GPU-MOC Method

The essence of GPU acceleration is that it allows thousands of threads to execute in parallel. To be
specific, a GPU graphics card is made up of a series of streaming multiprocessors (SM), and it allows
thousands of threads to be executed at the same time [24]. Taking the TITAN X chip for example, it is
composed of 24 SMs, and in each SM can reside 2048 threads at most. Therefore, a single GPU card
can run 49,152 threads in total, at most, at the same time.

2.1. Characteristics of a GPU

A distinguishing feature of a GPU is that the greater number of threads that it includes, the higher
efficiency that it can achieve. The reasons may be ascribed to the structure and instruction load of
Compute Unified Device Architecture (CUDA). Thread switching is a zero-cost fine-grained execution
on a GPU. That is, when a warp (the basic execution unit) in one block has to wait for access to off-chip
memory or synchronizing instructions, a warp in another block in a ready state instead will execute the
calculation immediately. In this way, computational latency is efficiently hidden and a high throughput
is achieved.

2.2. Parallel Characteristics of MOC

The basic equations for unsteady flow are a pairs of hyperbolic partial differential equations
as follows.

Continuity equation:

A
∂H
∂t

+
a2

g
∂Q
∂x

= 0 (1)

Momentum equation:
∂Q
∂t

+ gA
∂H
∂x

+
f Q|Q|
2DA

= 0 (2)

where H(x,t) is piezometric head; Q(x,t) is discharge; D, A, a, g, and f are the diameter, cross-section area
of the pipe, wave speed, acceleration of gravity, and the Darcy-Weisbach friction factor, respectively.

The continuity and momentum equations are transformed into two pairs of equations which are
grouped and identified as C+ and C−, Equations (3) and (4), by the method of characteristics [25],
and the final formulas can be expressed as Equations (5) and (6):

C+ :

{
dH
dt + a

gA
dQ
dt + a

g
f Q|Q|
2DA2

dx
dt = +a

(3)

C− :

{
− dH

dt + a
gA

dQ
dt + a

g
f Q|Q|
2DA2

dx
dt = −a

(4)

QP =
Cn − Cm

Bn + Bm
(5)

HP =
CnBm + CmBn

Bn + Bm
(6)

where QL, QR, QP HL, HR, and HP are the discharge and head of sections L, R, and P, in which
discharge and head of sections L and R are known; the coefficients Cn = HL + BQL, Bn = B + R|QL|,
Cm = HR − BQR, Bm = B + R|QR|, R = f ∆x/(2gDA2), and B = a/(gA) are known constants; ∆x is
the space interval. As shown in the Cartesian mesh in the x-t plane (Figure 1), through Equations (5)
and (6), the values of section P can be calculated by those of sections L and R. The values of other
sections at the same time level as P can be solved with the same process.

Appl. Sci. 2019, 9, 91 4 of 14

Appl. Sci. 2018, 8, x FOR PEER REVIEW 4 of 14

mn

nmmn
P BB

BCBC
H

+

+
= (6)

where QL, QR , QP HL , HR, and HP are the discharge and head of sections L, R, and P, in which
discharge and head of sections L and R are known; the coefficients LLn BQHC += , Ln QRBB += ,

RRm BQHC −= , Rm QRBB += ,)2(2gDAxfR Δ= , and)/(gAaB = are known constants; xΔ is the
space interval. As shown in the Cartesian mesh in the x-t plane (Figure 1), through Equations (5) and
(6), the values of section P can be calculated by those of sections L and R. The values of other sections
at the same time level as P can be solved with the same process.

The solution process described above reflects the explicit and local features of MOC, which is
the most critical point for parallelizing MOC on GPU. The explicit feature refers to that the values at
section P at the unknown time level is only related to the values at section L and R at the previous
time level, having nothing to do with the values at other sections Pi at the same time level as P. The
local feature refers to that the values of each section are just connected with the values of its adjacent
sections. These features match the multi-thread parallel characteristics of GPU quite well. Therefore,
MOC can be built conveniently on a GPU-based CUDA architecture platform, which may fully take
advantage of GPU (strong ability of floating-point computing) to compensate the drawbacks of
MOC.

 CPU conducts logical operations
 //preparing initial data...
 //Invoke kernel
 for(j=0;j<M;j++){
 If(j%2==0) Kernel<<<Y+1,Z+1>>>(q,h,fq,fh);
 else Kernel<<<Y+1,Z+1>>>(fq,fh,q,h);
 cudaDeviceSynchronize();
 … }

Block 0
Thread ZThread 2Thread 0

GPU conducts floating-point operations
int tx=threadIdx.x+blockIdx.x*blockDim.x

Block 0 Block 1 Block Y

t-∆t

t+∆t

P2 P PNP1 P4

x=0 x=L

C -

L R

∆x

C +

Known sections Unknown sections

t

j-1

j+1

j

i+1 Ni-1 i

Figure 1. Schematic of parallel strategy of the GPU-MOC method: CPU codes dispose logical
operations, the Cartesian mesh in the x-t plane for MOC, and the thread organization structure of the
GPU.

2.3. Implementation of MOC on a GPU

The basic GPU-MOC parallel strategy is that the logical operations are conducted on a CPU and
the floating-point operations are executed on a GPU. The logical operations like initializing data,
allocating memory for arrays, transferring data between the host and device, and invoking MOC
kernels, are executed on the CPU, because the CPU has many logical processing units and is efficient
in disposing complex logical operations. The floating-point operations, including calculating the
present time level values and updating them to the previous time level values, are conducted on
GPU, because GPU is equipped with the layouts of pipelines and is efficient in disposing simple
floating-point operations.

2.3.1. MOC Kernel on GPU

Figure 1. Schematic of parallel strategy of the GPU-MOC method: CPU codes dispose logical
operations, the Cartesian mesh in the x-t plane for MOC, and the thread organization structure
of the GPU.

The solution process described above reflects the explicit and local features of MOC, which is
the most critical point for parallelizing MOC on GPU. The explicit feature refers to that the values at
section P at the unknown time level is only related to the values at section L and R at the previous time
level, having nothing to do with the values at other sections Pi at the same time level as P. The local
feature refers to that the values of each section are just connected with the values of its adjacent sections.
These features match the multi-thread parallel characteristics of GPU quite well. Therefore, MOC can
be built conveniently on a GPU-based CUDA architecture platform, which may fully take advantage
of GPU (strong ability of floating-point computing) to compensate the drawbacks of MOC.

2.3. Implementation of MOC on a GPU

The basic GPU-MOC parallel strategy is that the logical operations are conducted on a CPU
and the floating-point operations are executed on a GPU. The logical operations like initializing data,
allocating memory for arrays, transferring data between the host and device, and invoking MOC
kernels, are executed on the CPU, because the CPU has many logical processing units and is efficient
in disposing complex logical operations. The floating-point operations, including calculating the
present time level values and updating them to the previous time level values, are conducted on
GPU, because GPU is equipped with the layouts of pipelines and is efficient in disposing simple
floating-point operations.

2.3.1. MOC Kernel on GPU

The MOC kernel, executed on GPU, mainly calculates value of all MOC sections. The execution
configuration and parameters for MOC kernel are outlined in Figure 1, in which the thread blocks and
the thread grid are organized as 1D linear form that fits the line structure of pipeline well. The thread
grid includes Y+1 thread blocks, and each thread block contains Z+1 threads. Each thread is allocated
to a MOC section, thus, the total number of threads is equal to the total number of MOC sections.
During the calculation, threads are located by thread index tx, which is accessible within the kernel
through the built-in threadIdx.x and blockIdx.x variables. Threads that indexed in consecutive can be
accessed by global memory at the same time to calculate the corresponding MOC sections. The problem
of non-aligned access is unnoticeable because the information of the adjacent MOC sections like L

Appl. Sci. 2019, 9, 91 5 of 14

and R are in linear order. Thus, shared memory may not make obvious improvement in computing
efficiency. In Appendix A, an example of the MOC kernel for direct water hammer is given.

When deciding the threading arrangement, great care should be taken in terms of the block size
(number of threads per block), which may affect computing efficiency in some degree. Since resources
of shared memory and registers for each block are limited, and number of threads per block and
number of blocks per SM are limited. Too large or too small of a block size may reduce the number of
threads in each SM. Therefore, reasonable allocation of the block size is important to achieve a high
computing efficiency.

2.3.2. Implementation Procedures on CPU

GPUs and CPUs maintain their own dynamic random access memory (DRAM). Data transmission
between GPU memory and CPU memory is the bridge between GPU and CPU. In order to simplify the
codes on CPU, the unified memory is adopted. The codes of data transmission between CPU memory
and GPU memory are omitted, because unified memory can access both CPU memory and GPU
memory. Though codes for data transmission process are omitted, it is still needed to be conducted.
Thus, the computing efficiency is not improved.

Data transmission process usually includes three steps: first, copy input data from the CPU
memory to the GPU memory; second, load the GPU codes and execute them; and, thirdly, copy output
results from the GPU memory back to CPU memory. It is worth mentioning that data transmission
efficiency is the determining factor that limits the computational efficiency of the GPU, and many
optimizing strategies are aimed at accelerating these processes or reducing data transfer loads.

Two sets of 1D arrays are used to store discharge and head variables for MOC sections, one stores
input data and the other stores output data. Initially, the input data are stored in arrays q[tx] and h[tx],
and the output data will be stored in arrays fq[tx] and fh[tx]. After the calculation of one time step,
the output data are used as the input data for the next time step. Then the input data are stored in
fq[tx] and fh[tx], and the output data have to be stored in q[tx] and h[tx] instead. As a result, the MOC
kernel has to be invoked alternately by parity counts to switch the arrays that store input and output
data. A synchronous function cudaDeviceSynchronize() is used to make sure all computation of this
time step are completed before starting the next time step calculation.

In general, the implementation procedures of the CPU codes are listed as follows.

(1) Allocate unified memory and initialize two set of arrays, and copy input data from the CPU
memory to the GPU memory.

(2) Launch MOC kernel for parallel computing.
(3) Synchronize threads.
(4) Write the output data back from the GPU memory to the CPU memory, and set them as input

data for the next time step.
(5) Repeat steps (2)–(4) until the calculation for the last time step finishes.
(6) Output the results.

In Appendix B, the details of the CPU codes for direct water hammer are given.

3. Verification of GPU-MOC by Benchmark Cases

The benchmark cases regarding water hammer in a simple reservoir-single pipe-valve system are
simulated to verify the performance of GPU-MOC. The water level of reservoir is constant, and the
hydraulic transients are caused by the operations of the end valve. Four benchmark water hammer
phenomena, including direct water hammer, first-phase water hammer, last-phase water hammer,
and negative water hammer, are simulated. The CPU-MOC program is compiled by the standard
C based on Visual Studio 2010 and the GPU-MOC program is compiled by the combination of
standard C and CUDA C (an extended language of standard C) based on Microsoft Visual Studio

Appl. Sci. 2019, 9, 91 6 of 14

2010 (Microsoft Corporation: Redmond, WA, USA) and NVIDIA CUDA 8.0 (Nvidia Corporation:
Santa Clara, CA, USA).

The results of GPU-MOC and CPU-MOC show quite minor difference and agree well with the
pressure variation laws of the four water hammer phenomena (Figure 2), which successfully prove the
correctness of the proposed method.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 6 of 14

The benchmark cases regarding water hammer in a simple reservoir-single pipe-valve system
are simulated to verify the performance of GPU-MOC. The water level of reservoir is constant, and
the hydraulic transients are caused by the operations of the end valve. Four benchmark water
hammer phenomena, including direct water hammer, first-phase water hammer, last-phase water
hammer, and negative water hammer, are simulated. The CPU-MOC program is compiled by the
standard C based on Visual Studio 2010 and the GPU-MOC program is compiled by the combination
of standard C and CUDA C (an extended language of standard C) based on Microsoft Visual Studio
2010 (Microsoft Corporation: Redmond, WA, USA) and NVIDIA CUDA 8.0 (Nvidia Corporation:
Santa Clara, CA, USA).

The results of GPU-MOC and CPU-MOC show quite minor difference and agree well with the
pressure variation laws of the four water hammer phenomena (Figure 2), which successfully prove
the correctness of the proposed method.

Figure 2. Pressure curves at the valve for GPU-MOC and CPU-MOC method: (a) first-phase water
hammer; (b) direct water hammer; (c) last-phase water hammer; and (d) negative water hammer. H
denotes head and t denotes time.

Here, the computing efficiency of direct water hammer simulation is analyzed. Since the
efficiency of GPU-MOC strategy is only sensitive to the number of calculations, it is assumed that the
pipe length is long enough to be partitioned into sufficient calculation sections. Three cases are
simulated, in which the total section numbers are 214, 216, and 218, respectively. Three scenarios of
block size (number of threads per block) 64, 128, and 256 are included in each case for GPU-MOC
method to find out the effect of block size on computing efficiency. The transient behavior of 20 s is
simulated by using single precision. All the calculations are conducted on the computer that is
configured with one CPU processor (Intel Xeon e5-2620 v3 2.4G 12 cores, Intel Corporation: Santa
Clara, CA, USA) and one graphics card (NVIDIA Geforce GTX TITAN X, Nvidia Corporation: Santa
Clara, CA, USA), and the testing platform is Windows 10 64-bit operating system (Microsoft
Corporation: Redmond, WA, USA). Moreover, all the simulations are run for at least several times to
avoid the effect of machine temperature variation and possible frequency down-stepping of the
GPU. Each simulation starts when the GPU is cooled down to room temperature.

The performances of GPU-MOC are much better than those of CPU-MOC. As shown in Figure
3, the maximum performance for GPU-MOC is up to 1760.7 MSUPS (millions of section updates per
second), while for CPU-MOC is only 7.5 MSUPS. The reason is that the GPU executes in parallel
while the CPU executes serially. Note that the performance data are given in millions of section
updates per second (MSUPS). Moreover, the performances of GPU-MOC improve as the section
numbers increase. This is because sufficient active warps in the chip can effectively hide the
computational latency and achieve a high throughout.

Figure 2. Pressure curves at the valve for GPU-MOC and CPU-MOC method: (a) first-phase water
hammer; (b) direct water hammer; (c) last-phase water hammer; and (d) negative water hammer. H
denotes head and t denotes time.

Here, the computing efficiency of direct water hammer simulation is analyzed. Since the efficiency
of GPU-MOC strategy is only sensitive to the number of calculations, it is assumed that the pipe
length is long enough to be partitioned into sufficient calculation sections. Three cases are simulated,
in which the total section numbers are 214, 216, and 218, respectively. Three scenarios of block size
(number of threads per block) 64, 128, and 256 are included in each case for GPU-MOC method to
find out the effect of block size on computing efficiency. The transient behavior of 20 s is simulated
by using single precision. All the calculations are conducted on the computer that is configured with
one CPU processor (Intel Xeon e5-2620 v3 2.4G 12 cores, Intel Corporation: Santa Clara, CA, USA)
and one graphics card (NVIDIA Geforce GTX TITAN X, Nvidia Corporation: Santa Clara, CA, USA),
and the testing platform is Windows 10 64-bit operating system (Microsoft Corporation: Redmond,
WA, USA). Moreover, all the simulations are run for at least several times to avoid the effect of machine
temperature variation and possible frequency down-stepping of the GPU. Each simulation starts when
the GPU is cooled down to room temperature.

The performances of GPU-MOC are much better than those of CPU-MOC. As shown in Figure 3,
the maximum performance for GPU-MOC is up to 1760.7 MSUPS (millions of section updates per
second), while for CPU-MOC is only 7.5 MSUPS. The reason is that the GPU executes in parallel while
the CPU executes serially. Note that the performance data are given in millions of section updates per
second (MSUPS). Moreover, the performances of GPU-MOC improve as the section numbers increase.
This is because sufficient active warps in the chip can effectively hide the computational latency and
achieve a high throughout.

The same trend can be found in Table 1, in which the speedup ratios (the ratios of updating section
numbers per second of GPU-MOC to those of CPU-MOC) increase as the section numbers increase,
ranging from 36 to 236.6 when the section numbers increase from 214 to 218. Moreover, for each case,
GPU-MOC can achieve its best performance when the block size is 256. This is because a block size of
256 just makes a full use of the device processing capacity. Therefore, the block size of 256 is adopted
in the following application cases.

Appl. Sci. 2019, 9, 91 7 of 14
Appl. Sci. 2018, 8, x FOR PEER REVIEW 7 of 14

269.9

818.8

1745.5

271.6

825.6

1752

272.5

839.5

1760.7

0

500

1000

1500

2000

2500

7.5 7.5 7.4

0

2

4

6

8

218216

Section number

Pe
rf

or
m

an
ce

 (M
SU

PS
)

The performances of CPU-MOC

214

214

The performances of GPU-MOC

Pe
rf

or
m

an
ce

 (M
SU

PS
)

218216

Section number

 64
 128
 256

Figure 3. Performances of CPU-MOC in different section numbers and GPU-MOC in different
section numbers with different block sizes.

The same trend can be found in Table 1, in which the speedup ratios (the ratios of updating
section numbers per second of GPU-MOC to those of CPU-MOC) increase as the section numbers
increase, ranging from 36 to 236.6 when the section numbers increase from 214 to 218. Moreover, for
each case, GPU-MOC can achieve its best performance when the block size is 256. This is because a
block size of 256 just makes a full use of the device processing capacity. Therefore, the block size of
256 is adopted in the following application cases.

Table 1. Speedup ratios of GPU-MOC to CPU-MOC.

Section numbers
GPU-MOC with different block sizes

64 128 256
214 36 36.2 36.3
216 109.2 110.1 111.9
218 234.6 235.5 236.6

4. Application of GPU-MOC to a Water Distribution Network System

The transient process of an actual water distribution network system in Karney’s work [26] is
simulated. The length of the original system (Figure 4), namely Case 1, is about 9 km, with seven
nodes along the pipeline, a surge tank at node 3, a relief valve at node 6, and a control valve at node 7
(partially closed with τ = 0.6 initially). The transient phenomena are caused by closing the control
valve from opening τ =0.6 to τ = 0.2 within 10 s. The relief valve is initially closed, but it is set to
open linearly within 3 s once the pressure exceeds 210 m and then it is closed linearly within 60 s.
Details of other parameters can be found in [26].

 Conduits

Pipe
number

Length(m)

Case
1

Case
2

Case 3

L1 (1 to
2)

1001.2 10,012 100,120

Reservoir 2 Surge Tank Reservoir 1

Relief Valve

Control Valve

1

2

3 4

5

6

7

Qout1=2.0 m3/s

Qout3=1.0 m3/s

Qout2
Qout4=2.028 m3/s

Connector

Figure 3. Performances of CPU-MOC in different section numbers and GPU-MOC in different section
numbers with different block sizes.

Table 1. Speedup ratios of GPU-MOC to CPU-MOC.

Section Numbers
GPU-MOC with Different Block Sizes

64 128 256

214 36 36.2 36.3
216 109.2 110.1 111.9
218 234.6 235.5 236.6

4. Application of GPU-MOC to a Water Distribution Network System

The transient process of an actual water distribution network system (Figure 4) in Karney’s
work [26] is simulated. The length of the original system (Table 2), namely Case 1, is about 9 km,
with seven nodes along the pipeline, a surge tank at node 3, a relief valve at node 6, and a control valve
at node 7 (partially closed with τ = 0.6 initially). The transient phenomena are caused by closing the
control valve from opening τ = 0.6 to τ = 0.2 within 10 s. The relief valve is initially closed, but it is set
to open linearly within 3 s once the pressure exceeds 210 m and then it is closed linearly within 60 s.
Details of other parameters can be found in [26].

Table 2. The length of pipe for different Cases.

Pipe Number L1 (1 to 2) L2 (2 to 3) L3 (3 to 4) L4 (3 to 5) L5 (6 to 5) L6 (2 to 6) L7 (6 to 7)

Case 1 1001.2 2000 2000 502.5 502.5 1001.2 2000.2
Case 2 10,012 20,000 20,000 5025 5025 10,012 20,002
Case 3 100,120 200,000 200,000 50,250 50,250 100,120 200,020

As shown in Figure 5, the results of GPU-MOC and Karney’s work at nodes 3, 6, and 7 show
quite minor differences. Thus, the GPU-MOC method is reliable. The high pressure waves initiated at
node 7 by the closing valve are propagated throughout the system. At t = 3 s water starts to flow into
the surge tank and makes the tank water level rises gradually, and pressure at junction 3 fluctuates in
a relative narrow range. The pressure relief valve exceeds 210 m at t = 6.4 s. When the valve opens,
the release of fluid at that location reduces the pressure. The water through the relief valve at node 6
and the water level change in the surge tank at node 3 attenuate the transient pressure and allow the
system to reach steady state quickly.

Appl. Sci. 2019, 9, 91 8 of 14
Appl. Sci. 2018, 8, x FOR PEER REVIEW 8 of 14

Figure 4. Sketch map of the simple hydraulic network.

Figure 5. Comparison of head and discharge at surge tank (Node 3), pressure relief valve (Node 6),
and control valve (Node 7) with data from Karney [26].

As shown in Figure 5, the results of GPU-MOC and Karney’s work at nodes 3, 6, and 7 show
quite minor differences. Thus, the GPU-MOC method is reliable. The high pressure waves initiated
at node 7 by the closing valve are propagated throughout the system. At t = 3 s water starts to flow
into the surge tank and makes the tank water level rises gradually, and pressure at junction 3
fluctuates in a relative narrow range. The pressure relief valve exceeds 210 m at t = 6.4 s. When the
valve opens, the release of fluid at that location reduces the pressure. The water through the relief
valve at node 6 and the water level change in the surge tank at node 3 attenuate the transient
pressure and allow the system to reach steady state quickly.

To demonstrate the strong computing capability of the GPU-MOC in computing intensive
problems, the pipe length of the above Case 1 is increased tenfold and hundredfold, which are
corresponding to Case 2 and Case 3 (Figure 4Table 2), respectively. The pipe segment lengths xΔ of
Case 1, Case 2 and Case 3 are all set to 1 m, and the corresponding section numbers are 9014, 90,077,
900,767, respectively. The first 60 s transient behavior of the system caused by operating the control
valve at node 7 is simulated. The block size is set to 256.

The performances of GPU-MOC are much better than those of the CPU-MOC (Figure 6). The
maximum performance for GPU-MOC is up to 568 MSUPS, but for CPU-MOC is only 3.6 MSUPS. In
addition, the performances of GPU-MOC improve significantly as the scale of the system becomes
larger. For Case 3, it updates 568 MSUPS, but for Case 1 is only 55 MSUPS. That is to say, the
computing efficiency of Case 3 is more than 10 times to that of Case 1.

Reservoir 2 Surge Tank Reservoir 1

Relief Valve

Control Valve

1

2

3 4

5

6

7

Qout1=2.0 m3/s

Qout3=1.0 m3/s

Qout2
Qout4=2.028 m3/s

Connector

Formatted: Highlight

Commented [p3]: The numbers 5 and 6 in the original

Figure 4 are covered by the pipes, so we replace it with a new

one.

Formatted: Highlight

Formatted: Highlight

Figure 4. Sketch map of the simple hydraulic network.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 8 of 14

 Conduits

Pipe

number

Length(m)

Case 1 Case 2 Case 3

L1 (1 to 2) 1001.2 10,012 100,120

L2 (2 to 3) 2000 20,000 200,000

L3 (3 to 4) 2000 20,000 200,000

L4 (3 to 5) 502.5 5025 50,250

L5 (6 to 5) 502.5 5025 50,250

L6 (2 to 6) 1001.2 10,012 100,120

L7 (6 to 7) 2000.2 20,002 200,020

Figure 4. Sketch map of the simple hydraulic network.

Figure 5. Comparison of head and discharge at surge tank (Node 3), pressure relief valve (Node 6),

and control valve (Node 7) with data from Karney [26].

As shown in Figure 5, the results of GPU-MOC and Karney’s work at nodes 3, 6, and 7 show

quite minor differences. Thus, the GPU-MOC method is reliable. The high pressure waves initiated

at node 7 by the closing valve are propagated throughout the system. At t = 3 s water starts to flow

into the surge tank and makes the tank water level rises gradually, and pressure at junction 3

fluctuates in a relative narrow range. The pressure relief valve exceeds 210 m at t = 6.4 s. When the

valve opens, the release of fluid at that location reduces the pressure. The water through the relief

valve at node 6 and the water level change in the surge tank at node 3 attenuate the transient

pressure and allow the system to reach steady state quickly.

To demonstrate the strong computing capability of the GPU-MOC in computing intensive

problems, the pipe length of the above Case 1 is increased tenfold and hundredfold, which are

corresponding to Case 2 and Case 3 (Figure 4), respectively. The pipe segment lengths x of Case 1,

Case 2 and Case 3 are all set to 1 m, and the corresponding section numbers are 9014, 90,077, 900,767,

Reservoir 2 Surge Tank Reservoir 1

Relief Valve

Control Valve

1

2

3 4

5

6

7

Q
out1

=2.0 m
3
/s

Q
out3

=1.0 m
3
/s

Q
out2

Q
out4

=2.028 m
3
/s

Connector

Figure 5. Comparison of head and discharge at surge tank (Node 3), pressure relief valve (Node 6),
and control valve (Node 7) with data from Karney [26].

To demonstrate the strong computing capability of the GPU-MOC in computing intensive
problems, the pipe length of the above Case 1 is increased tenfold and hundredfold, which are
corresponding to Case 2 and Case 3 (Table 2), respectively. The pipe segment lengths ∆x of Case 1,
Case 2 and Case 3 are all set to 1 m, and the corresponding section numbers are 9014, 90,077, 900,767,
respectively. The first 60 s transient behavior of the system caused by operating the control valve at
node 7 is simulated. The block size is set to 256.

The performances of GPU-MOC are much better than those of the CPU-MOC (Figure 6).
The maximum performance for GPU-MOC is up to 568 MSUPS, but for CPU-MOC is only 3.6 MSUPS.
In addition, the performances of GPU-MOC improve significantly as the scale of the system becomes
larger. For Case 3, it updates 568 MSUPS, but for Case 1 is only 55 MSUPS. That is to say, the computing
efficiency of Case 3 is more than 10 times to that of Case 1.

Appl. Sci. 2019, 9, 91 9 of 14

Appl. Sci. 2018, 8, x FOR PEER REVIEW 9 of 14

The performances of GPU-MOC are much better than those of the CPU-MOC (Figure 6). The
maximum performance for GPU-MOC is up to 568 MSUPS, but for CPU-MOC is only 3.6 MSUPS. In
addition, the performances of GPU-MOC improve significantly as the scale of the system becomes
larger. For Case 3, it updates 568 MSUPS, but for Case 1 is only 55 MSUPS. That is to say, the
computing efficiency of Case 3 is more than 10 times to that of Case 1.

55

374.9

568

0

120

240

360

480

600

2.8
3.1

3.6

0

1

2

3

4

 Case 3Case 2

Pe
rf

or
m

an
ce

(M
SU

PS
)

Case 1

The performances of CPU-MOC

 Case 3Case 2

 P
er

fo
rm

an
ce

(M
SU

PS
)

Case 1

The performances of GPU-MOC

Figure 6. Performances of GPU-MOC and CPU-MOC in different section numbers.

The consumed time of GPU-MOC is far less than that of CPU-MOC (Table 2). Especially in Case
3, the consumed time of GPU-MOC is less than two minutes, but for CPU-MOC is more than four
hours, the achieved speedup ratio is up to 158. Therefore, finer calculation sections can be used to
simulate the large scale problems by GPU-MOC method. Note that the consumed time only includes
the time cost for floating point calculation, but does not include time spent on preparing the initial
data.

Table 2. Consumed time and speedup ratios of the two methods.

Cases Case 1 Case 2 Case 3
Time of GPU-MOC (s) 9.8 14.4 95.2
Time of CPU-MOC (s) 191.6 1761.4 15,039.2

Speedup ratio 19.5 122.2 158.0

5. Application of GPU-MOC to a Long-Distance Water Transmission System

The transient of a long distance water transmission project is simulated, in which the pumping
part is from an example in the book [27] by Chaudhry. We modified it by adding a long trapezoidal
channel between the upstream reservoir and the pump station (Figure 7). The parameters of the
project are shown in Table 3. The discharge of the two parallel pumps is lumped together, and the
suction lines being short are not included in the analysis. Pump trip is considered to be the cause of
the transients, and there is no valve action.

Figure 7. Notation for open channel and pipe combined system.

Table 3. Computation parameters.

Pipe Pump Trapezoidal channel

Channel Pipe
L1=200 km L2=1.0 km

Reservoir 1 Reservoir 2

Parallel Pumps

Figure 6. Performances of GPU-MOC and CPU-MOC in different section numbers.

The consumed time of GPU-MOC is far less than that of CPU-MOC (Table 3). Especially in Case 3,
the consumed time of GPU-MOC is less than two minutes, but for CPU-MOC is more than four hours,
the achieved speedup ratio is up to 158. Therefore, finer calculation sections can be used to simulate
the large scale problems by GPU-MOC method. Note that the consumed time only includes the time
cost for floating point calculation, but does not include time spent on preparing the initial data.

Table 3. Consumed time and speedup ratios of the two methods.

Cases Cases 1 Cases 2 Cases 3

Time of GPU-MOC (s) 9.8 14.4 95.2
Time of CPU-MOC (s) 191.6 1761.4 15,039.2

Speedup ratio 19.5 122.2 158.0

5. Application of GPU-MOC to a Long-Distance Water Transmission System

The transient of a long distance water transmission project is simulated, in which the pumping
part is from an example in the book [27] by Chaudhry. We modified it by adding a long trapezoidal
channel between the upstream reservoir and the pump station (Figure 7). The parameters of the project
are shown in Table 4. The discharge of the two parallel pumps is lumped together, and the suction lines
being short are not included in the analysis. Pump trip is considered to be the cause of the transients,
and there is no valve action.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 9 of 14

The performances of GPU-MOC are much better than those of the CPU-MOC (Figure 6). The
maximum performance for GPU-MOC is up to 568 MSUPS, but for CPU-MOC is only 3.6 MSUPS. In
addition, the performances of GPU-MOC improve significantly as the scale of the system becomes
larger. For Case 3, it updates 568 MSUPS, but for Case 1 is only 55 MSUPS. That is to say, the
computing efficiency of Case 3 is more than 10 times to that of Case 1.

55

374.9

568

0

120

240

360

480

600

2.8
3.1

3.6

0

1

2

3

4

 Case 3Case 2

Pe
rf

or
m

an
ce

(M
SU

PS
)

Case 1

The performances of CPU-MOC

 Case 3Case 2

 P
er

fo
rm

an
ce

(M
SU

PS
)

Case 1

The performances of GPU-MOC

Figure 6. Performances of GPU-MOC and CPU-MOC in different section numbers.

The consumed time of GPU-MOC is far less than that of CPU-MOC (Table 2). Especially in Case
3, the consumed time of GPU-MOC is less than two minutes, but for CPU-MOC is more than four
hours, the achieved speedup ratio is up to 158. Therefore, finer calculation sections can be used to
simulate the large scale problems by GPU-MOC method. Note that the consumed time only includes
the time cost for floating point calculation, but does not include time spent on preparing the initial
data.

Table 2. Consumed time and speedup ratios of the two methods.

Cases Case 1 Case 2 Case 3
Time of GPU-MOC (s) 9.8 14.4 95.2
Time of CPU-MOC (s) 191.6 1761.4 15,039.2

Speedup ratio 19.5 122.2 158.0

5. Application of GPU-MOC to a Long-Distance Water Transmission System

The transient of a long distance water transmission project is simulated, in which the pumping
part is from an example in the book [27] by Chaudhry. We modified it by adding a long trapezoidal
channel between the upstream reservoir and the pump station (Figure 7). The parameters of the
project are shown in Table 3. The discharge of the two parallel pumps is lumped together, and the
suction lines being short are not included in the analysis. Pump trip is considered to be the cause of
the transients, and there is no valve action.

Figure 7. Notation for open channel and pipe combined system.

Table 3. Computation parameters.

Pipe Pump Trapezoidal channel

Channel Pipe
L1=200 km L2=1.0 km

Reservoir 1 Reservoir 2

Parallel Pumps

Figure 7. Notation for open channel and pipe combined system.

Table 4. Computation parameters.

Pipe Pump Trapezoidal Channel

Length = 1000 m QR = 0.25 m3/s Water level of reservoir 1 = 1.5 m
D = 0.75 m HR = 60 m Length = 200 km, wide = 1 m

Wave speed a =1000 m/s NR = 1100 rpm Bottom slope = 0.0002
Q = 0.5 m3/s WR2 = 16.85 kg·m2 Side slopes 0.5 horizontal to 1 vertical

Friction factor = 0.012 ηR= 0.84 Manning roughness = 0.012

Appl. Sci. 2019, 9, 91 10 of 14

The differential equations for free-surface unsteady flow are solved also by MOC [25].
An interpolation procedure is necessary so that calculations can proceed along characteristic lines.
Errors are introduced in the interpolation approximation, and high order interpolation are always
adopted to reduce the errors. However, the consumed time and the storage space of the simulation
for high order interpolation would increase significantly. To investigate the computing efficiency
of the GPU-MOC method in high order interpolation, first-order and second-order Lagrange
interpolations [28] are used in simulating the transient processes of free-surface unsteady flow of
this system.

Figure 8 presents the comparisons of the history curves of pump head, discharge, speed, and head
of open channel at downstream by first-order and second-order interpolations. The results of pump
parameters for the two interpolations are nearly the same, because the treatments for the pressurized
pipe and pump are identical, and the water level change for the open channel is small, which has little
impact on pump parameters. After power is lost, the reactive torque of the liquid on the impeller causes
the rotational speed to decrease, which, in turn, reduces pressure head and discharge. As a result,
the discharge at the channel downstream end that delivers to the pump reduces quickly, causing the
water level rises. The water levels at the channel downstream end by the two interpolation methods
are different due to interpolation errors. Once the pump reaches its reverse rotating steady-state
conditions, the water level at the channel downstream end increases uniformly and slowly.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 10 of 14

Length = 1000 m QR = 0.25 m3/s Water level of reservoir 1 = 1.5 m
D = 0.75 m HR = 60 m Length = 200 km, wide = 1 m

Wave speed a =1000
m/s

NR = 1100 rpm Bottom slope = 0.0002

Q = 0.5 m3/s WR2 = 16.85
kg∙m2

Side slopes 0.5 horizontal to 1
vertical

Friction factor = 0.012 Rη = 0.84 Manning roughness = 0.012

The differential equations for free-surface unsteady flow are solved also by MOC [25]. An
interpolation procedure is necessary so that calculations can proceed along characteristic lines.
Errors are introduced in the interpolation approximation, and high order interpolation are always
adopted to reduce the errors. However, the consumed time and the storage space of the simulation
for high order interpolation would increase significantly. To investigate the computing efficiency of
the GPU-MOC method in high order interpolation, first-order and second-order Lagrange
interpolations [28] are used in simulating the transient processes of free-surface unsteady flow of
this system.

Figure 8. History curves of pump and channel parameters of First-order and second-order
interpolations.

Figure 8 presents the comparisons of the history curves of pump head, discharge, speed, and
head of open channel at downstream by first-order and second-order interpolations. The results of
pump parameters for the two interpolations are nearly the same, because the treatments for the
pressurized pipe and pump are identical, and the water level change for the open channel is small,
which has little impact on pump parameters. After power is lost, the reactive torque of the liquid on
the impeller causes the rotational speed to decrease, which, in turn, reduces pressure head and
discharge. As a result, the discharge at the channel downstream end that delivers to the pump
reduces quickly, causing the water level rises. The water levels at the channel downstream end by
the two interpolation methods are different due to interpolation errors. Once the pump reaches its
reverse rotating steady-state conditions, the water level at the channel downstream end increases
uniformly and slowly.

The computing efficiency of the GPU-MOC in high order interpolation is analyzed. The pipe
segment length is 1xΔ = m, time step is 0.001tΔ = s, and the corresponding section number is
201,000. The transient behavior in the system within 600 s after the pump trip is simulated. The block
size is set to 256.

Figure 8. History curves of pump and channel parameters of First-order and second-order
interpolations.

The computing efficiency of the GPU-MOC in high order interpolation is analyzed. The pipe
segment length is ∆x = 1 m, time step is ∆t = 0.001 s, and the corresponding section number is 201,000.
The transient behavior in the system within 600 s after the pump trip is simulated. The block size is set
to 256.

GPU-MOC method shows a great advantage in computing intensive problem, especially in high
order interpolations (Figure 9). For both first-order and second-order interpolations, the performances
of GPU-MOC are much better than those of CPU-MOC. Moreover, for GPU-MOC, the second-order
interpolation achieves more significant performance gains compared with the first-order interpolation.
For first-order interpolation, the consumed time is 45.726 hours by CPU-MOC, but only 0.217 hour by
GPU-MOC, and the achieved speedup ratio is 210.7. For second-order interpolation, the consumed
time is 288.9 hours by CPU-MOC, but only 0.281 hour by GPU-MOC, and the achieved speedup ratio
is up to 1027. That is to say, the speedup ratio of Second-Order is 4.9 times to that of the first-order.
Therefore, high-order computing methods executed on the GPU can be used in simulating large-scale
practical problems for obtaining more accurate results.

Appl. Sci. 2019, 9, 91 11 of 14
Appl. Sci. 2018, 8, x FOR PEER REVIEW 11 of 14

154.47

119.1

0

40

80

120

160

200

0.73

0.12

0.0

0.2

0.4

0.6

0.8

Pe
rf

or
m

an
ce

(M
SU

PS
)

 CPU-MOC

First-Order Second-Order

 P
er

fo
rm

an
ce

(M
SU

PS
)

 GPU-MOC

First-Order Second-Order
Figure 9. Performances of GPU-MOC and CPU-MOC for the two interpolation methods.

GPU-MOC method shows a great advantage in computing intensive problem, especially in
high order interpolations (Figure 9). For both first-order and second-order interpolations, the
performances of GPU-MOC are much better than those of CPU-MOC. Moreover, for GPU-MOC, the
second-order interpolation achieves more significant performance gains compared with the
first-order interpolation. For first-order interpolation, the consumed time is 45.726 hours by
CPU-MOC, but only 0.217 hour by GPU-MOC, and the achieved speedup ratio is 210.7. For
second-order interpolation, the consumed time is 288.9 hours by CPU-MOC, but only 0.281 hour by
GPU-MOC, and the achieved speedup ratio is up to 1027. That is to say, the speedup ratio of
Second-Order is 4.9 times to that of the first-order. Therefore, high-order computing methods
executed on the GPU can be used in simulating large-scale practical problems for obtaining more
accurate results.

6. Conclusions and Future Works

This paper presents a novel GPU implementation of MOC on single GPU card for accelerating
the simulation of hydraulic transients. CPU is mainly responsible for executing logical operations
and GPU is mainly responsible for executing floating operations. The MOC kernel, which is mainly
responsible for calculation, is executed on GPU and invoked by an odd-even alternate form by CPU.
The configuration parameters of the MOC kernel are organized as 1D linear structure to fit the line
structure of the pipes.

The benchmark single pipe water hammer problem is simulated to verify the accuracy and
efficiency of GPU-MOC method. It is found that the numerical results of GPU-MOC are identical
with CPU-MOC, but the computational efficiency is much higher, and the obtained speedup ratios
of GPU-MOC are up to hundreds compared to CPU-MOC. Two computing-intensive problems, the
large-scale water distribution system and the long-distance water transmission system, are
simulated, which successfully validate the high computational efficiency of the GPU-MOC method.
Moreover, the GPU-MOC method can achieve more significant performance gains as the size of the
problem increases. Therefore, finer calculation sections and high-order methods can be used to
simulate large-scale practical problems for getting more accurate results.

The GPU-MOC method has great value for practical applications because the algorithm is
simple, high-efficiency, easy to program, and convenient to popularize. Future work will focus on
further optimization of the present algorithm and more computational intensive transient
simulations like 2D or 3D and on multiple GPUs.

Author Contributions: Conceptualization: Wanwan Meng and Yongguang Cheng; methodology: Wanwan
Meng and Jiayang Wu; software: Wanwan Meng and Jiayang Wu; validation: Wanwan Meng, Yongguang
Cheng, and Zhiyan Yang; writing—original draft: Wanwan Meng and Yongguang Cheng; writing—review and
editing: Wanwan Meng, Yongguang Cheng, Zhiyan Yang, Yunxian Zhu, and Shuai Shang.

Figure 9. Performances of GPU-MOC and CPU-MOC for the two interpolation methods.

6. Conclusions and Future Works

This paper presents a novel GPU implementation of MOC on single GPU card for accelerating
the simulation of hydraulic transients. CPU is mainly responsible for executing logical operations
and GPU is mainly responsible for executing floating operations. The MOC kernel, which is mainly
responsible for calculation, is executed on GPU and invoked by an odd-even alternate form by CPU.
The configuration parameters of the MOC kernel are organized as 1D linear structure to fit the line
structure of the pipes.

The benchmark single pipe water hammer problem is simulated to verify the accuracy
and efficiency of GPU-MOC method. It is found that the numerical results of GPU-MOC are
identical with CPU-MOC, but the computational efficiency is much higher, and the obtained
speedup ratios of GPU-MOC are up to hundreds compared to CPU-MOC. Two computing-intensive
problems, the large-scale water distribution system and the long-distance water transmission system,
are simulated, which successfully validate the high computational efficiency of the GPU-MOC method.
Moreover, the GPU-MOC method can achieve more significant performance gains as the size of
the problem increases. Therefore, finer calculation sections and high-order methods can be used to
simulate large-scale practical problems for getting more accurate results.

The GPU-MOC method has great value for practical applications because the algorithm is simple,
high-efficiency, easy to program, and convenient to popularize. Future work will focus on further
optimization of the present algorithm and more computational intensive transient simulations like 2D
or 3D and on multiple GPUs.

Author Contributions: Conceptualization: W.M. and Y.C.; methodology: W.M. and J.W.; software: W.M. and J.W.;
validation: W.M., Y.C., and Z.Y.; writing—original draft: W.M. and Y.C.; writing—review and editing: W.M., Y.C.,
Z.Y., Y.Z., and S.S.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC)
(grant nos. 51839008, 51579187, and 11172219).

Acknowledgments: Our grateful thanks to Linsheng Xia for his valuable advice for revising the manuscript.
Thanks also to Editor Lynne Xu for correcting my English, editing and proof reading the text.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2019, 9, 91 12 of 14

Appendix A

MOC Kernel Function

Appl. Sci. 2018, 8, x FOR PEER REVIEW 12 of 14

Funding: This research was funded by the National Natural Science Foundation of China (NSFC) (grant nos.
51839008, 51579187, and 11172219).

Acknowledgments: Our grateful thanks to Dr. Linsheng Xia for his valuable advice for revising the manuscript.
Thanks also to Editor Lynne Xu for correcting my English, editing and proof reading the text.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

MOC Kernel Function

__global__ void MOC_kernel (float B, float R, float *q, float *h, float *fq, float *fh)
{

// Declear variables
 float Cn, Cm, Bn, Bm;

// Thread ID
 int tx = threadIdx.x + blockIdx.x * blockDim.x;

// Calculate constant coefficients
 Cn = h[tx-1] + B * q[tx-1];
 Cm = h[tx+1] - B * q[tx+1];
 Bn = B + R *fabs(q[tx-1]);
 Bm = B + R *fabs(q[tx+1]);

// Calculate head and discharge of MOC sections
 fq[tx] = (Cn - Cm) / (Bn + Bm);
 fh[tx] = (Cn * Bm + Cm *Bn) / (Bn + Bm);
}

Appendix B

Codes on CPU

int main()
{

// Allocate memory
float *q, *h, *fq, *fh;
int size = N* sizeof(float);
cudaError_t (cudaMallocManaged ((void**) &h, size));
cudaError_t (cudaMallocManaged ((void**) &q, size));
cudaError_t (cudaMallocManaged ((void**) &fh, size));
cudaError_t (cudaMallocManaged ((void**) &fq, size));

// Initiallize variables
 ...

// Configuration parameters
int threads = 256;
int blocks = N/threads + 1;

// Launch kernel
for (int i = 0; i<M; i++)
{

if (i % 2 == 0)
 MOC_kernel <<< blocks, threads >>> (B, R, q, h, fq, fh);

else
 MOC_kernel <<< blocks, threads >>> (B, R, fq, fh, q, h);

// Synchronize threads
cudaDeviceSynchronize();

}
// Output results

 ...
}

Appendix B

Codes on CPU

Appl. Sci. 2018, 8, x FOR PEER REVIEW 12 of 14

Funding: This research was funded by the National Natural Science Foundation of China (NSFC) (grant nos.
51839008, 51579187, and 11172219).

Acknowledgments: Our grateful thanks to Dr. Linsheng Xia for his valuable advice for revising the manuscript.
Thanks also to Editor Lynne Xu for correcting my English, editing and proof reading the text.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

MOC Kernel Function

__global__ void MOC_kernel (float B, float R, float *q, float *h, float *fq, float *fh)
{

// Declear variables
 float Cn, Cm, Bn, Bm;

// Thread ID
 int tx = threadIdx.x + blockIdx.x * blockDim.x;

// Calculate constant coefficients
 Cn = h[tx-1] + B * q[tx-1];
 Cm = h[tx+1] - B * q[tx+1];
 Bn = B + R *fabs(q[tx-1]);
 Bm = B + R *fabs(q[tx+1]);

// Calculate head and discharge of MOC sections
 fq[tx] = (Cn - Cm) / (Bn + Bm);
 fh[tx] = (Cn * Bm + Cm *Bn) / (Bn + Bm);
}

Appendix B

Codes on CPU

int main()
{

// Allocate memory
float *q, *h, *fq, *fh;
int size = N* sizeof(float);
cudaError_t (cudaMallocManaged ((void**) &h, size));
cudaError_t (cudaMallocManaged ((void**) &q, size));
cudaError_t (cudaMallocManaged ((void**) &fh, size));
cudaError_t (cudaMallocManaged ((void**) &fq, size));

// Initiallize variables
 ...

// Configuration parameters
int threads = 256;
int blocks = N/threads + 1;

// Launch kernel
for (int i = 0; i<M; i++)
{

if (i % 2 == 0)
 MOC_kernel <<< blocks, threads >>> (B, R, q, h, fq, fh);

else
 MOC_kernel <<< blocks, threads >>> (B, R, fq, fh, q, h);

// Synchronize threads
cudaDeviceSynchronize();

}
// Output results

 ...
}

Appl. Sci. 2019, 9, 91 13 of 14

References

1. Boulos, P.; Karney, B.; Wood, D.J.; Lingireddy, S. Hydraulic Transient Guidelines. J. Am. Water Resour. Assoc.
2005. [CrossRef]

2. Duan, H.F.; Che, T.C.; Lee, P.J.; Ghidaoui, M.S. Influence of nonlinear turbulent friction on the system
frequency response in transient pipe flow modelling and analysis. J. Hydraul. Res. 2018, 56, 451–463.
[CrossRef]

3. Pozos-Estrada, O.; Sánchez-Huerta, A.; Breña-Naranjo, J.A.; Pedrozo-Acuña, A. Failure analysis of a water
supply pumping pipeline system. Water 2016, 8, 395. [CrossRef]

4. Capponi, C.; Zecchin, A.C.; Ferrante, M.; Gong, J. Numerical study on accuracy of frequency-domain
modelling of transients. J. Hydraul. Res. 2017, 55, 813–828. [CrossRef]

5. Gonçalves, F.; Ramos, H. Hybrid energy system evaluation in water supply systems: Artificial neural
network approach and methodology. J. Water Supply Res. Technol. AQUA 2012, 61, 59–72. [CrossRef]

6. Shibu, A.; Reddy, M.J. Optimal design of water distribution networks considering fuzzy randomness of
demands using cross entropy optimization. Water Resour. Manag. 2014, 28, 4075–4094. [CrossRef]

7. Wood, D.J.; Dorsch, R.G.; Lighter, C. Wave-plan analysis of unsteady flow in closed conduits. J. Hydraul. Div.
1966, 102005, 1–9. [CrossRef]

8. Wood, D.J.; Lingireddy, S.; Boulos, P.F.; Karney, B.W.; Mcpherson, D.L. Numerical methods for modeling
transient flow in distribution systems. J. Am. Water Resour. Assoc. 2005, 97, 104–115. [CrossRef]

9. Boulos, P.F.; Karney, B.W.; Wood, D.J.; Lingireddy, S. Hydraulic transient guidelines for protecting water
distribution systems. J. Am. Water Work. Assoc. 2005, 97, 111–124. [CrossRef]

10. Jung, B.S.; Boulos, P.F.; Wood, D.J. Pitfalls of water distribution model skeletonization for surge analysis.
J. Am. Water Work. Assoc. 2007, 99, 87–98. [CrossRef]

11. Izquierdo, J.; Iglesias, P.L. Mathematical modelling of hydraulic transients in single systems.
Math. Comput. Model. 2002, 35, 801–812. [CrossRef]

12. Izquierdo, J.; Iglesias, P.L. Mathematical modelling of hydraulic transients in complex systems.
Math. Comput. Model. 2004, 39, 529–540. [CrossRef]

13. Li, S.; Yang, C.; Jiang, D. Modeling of Hydraulic Pipeline Transients Accompanied With Cavitation and Gas
Bubbles Using Parallel Genetic Algorithms. J. Appl. Mech. 2008, 75. [CrossRef]

14. Martínez-Bahena, B.; Cruz-Chávez, M.; Ávila-Melgar, E.; Cruz-Rosales, M.; Rivera-Lopez, R. Using a Genetic
Algorithm with a Mathematical Programming Solver to Optimize a Real Water Distribution System. Water
2018, 10, 1318. [CrossRef]

15. Fan, H.; Chen, N.; Yang, L. Parallel transient flow computations of large hydraulic systems. J. Tsinghua Univ.
2006, 46, 696–699.

16. Owens, J.D.; Houston, M.; Luebke, D.; Green, S.; Stone, J.E.; Phillips, J.C. GPU computing. Proc. IEEE 2008,
96, 879–899. [CrossRef]

17. Wu, J.Y.; Cheng, Y.G.; Zhou, W.; Zhang, C.Z.; Diao, W. GPU acceleration of FSI simulations by the immersed
boundary-lattice Boltzmann coupling scheme. Comput. Math. Appl. 2016. [CrossRef]

18. Bonelli, F.; Tuttafesta, M.; Colonna, G.; Cutrone, L.; Pascazio, G. An MPI-CUDA approach for hypersonic
flows with detailed state-to-state air kinetics using a GPU cluster. Comput. Phys. Commun. 2017, 219, 178–195.
[CrossRef]

19. Zhang, C.Z.; Cheng, Y.G.; Wu, J.Y.; Diao, W. Lattice Boltzmann simulation of the open channel flow
connecting two cascaded hydropower stations. J. Hydrodyn. 2016, 28, 400–410. [CrossRef]

20. Griebel, M.; Zaspel, P. A multi-GPU accelerated solver for the three-dimensional two-phase incompressible
Navier-Stokes equations. Comput. Sci. Res. Dev. 2010, 25, 65–73. [CrossRef]

21. Nvidia Corporation. NVIDIA CUDA C Programming Guide; Nvidia Corporation: Santa Clara, CA, USA, 2011;
ISBN 9783642106712.

22. Bonelli, F.; Viggiano, A.; Magi, V. A Numerical Analysis of Hydrogen Underexpanded Jets. In Proceedings of
the ASME 2012 Internal Combustion Engine Division Spring Technical Conference, Torino, Piemonte, Italy,
6–9 May 2012; American Society of Mechanical Engineers: New York, NY, USA, 2012; pp. 681–690.

23. Niemeyer, K.E.; Sung, C.J. Recent progress and challenges in exploiting graphics processors in computational
fluid dynamics. J. Supercomput. 2014, 67, 528–564. [CrossRef]

http://dx.doi.org/10.1002/j.1551-8833.2005.tb10892.x
http://dx.doi.org/10.1080/00221686.2017.1399936
http://dx.doi.org/10.3390/w8090395
http://dx.doi.org/10.1080/00221686.2017.1335654
http://dx.doi.org/10.2166/aqua.2012.080
http://dx.doi.org/10.1007/s11269-014-0728-6
http://dx.doi.org/10.3912/OJIN.Vol10No01Man04
http://dx.doi.org/10.1002/j.1551-8833.2005.tb10936.x
http://dx.doi.org/10.1002/j.1551-8833.2005.tb10892.x
http://dx.doi.org/10.1002/j.1551-8833.2007.tb08109.x
http://dx.doi.org/10.1016/S0895-7177(02)00051-1
http://dx.doi.org/10.1016/S0895-7177(04)90524-9
http://dx.doi.org/10.1115/1.2912934
http://dx.doi.org/10.3390/w10101318
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1016/j.camwa.2016.10.005
http://dx.doi.org/10.1016/j.cpc.2017.05.019
http://dx.doi.org/10.1016/S1001-6058(16)60643-1
http://dx.doi.org/10.1007/s00450-010-0111-7
http://dx.doi.org/10.1007/s11227-013-1015-7

Appl. Sci. 2019, 9, 91 14 of 14

24. Kirk, D.B.; Hwu, W.M.W. Programming Massively Parallel Processors: A Hands-on Approach, 2nd ed.;
Morgan Kaufmanm: San Francisco, CA, USA, 2013; ISBN 9780124159921.

25. Wylie, E.B.; Streeter, V.L.; Suo, L.S. Fluid Transients in Systems; Prentice Hall: Englewood Cliffs, NJ, USA,
1993; ISBN 9780133221732.

26. Karney, B.W.; McInnis, D. Efficient Calculation of Transient Flow in Simple Pipe Networks. J. Hydraul. Eng.
1992, 118, 1014–1030. [CrossRef]

27. Chaudhry, M.H. Applied Hydraulic Transients; Van Nostrand Reinhold: New York, NY, USA, 1979;
ISBN 9781461485377.

28. Singh, A.K.; Bhadauria, B.S. Finite difference formulae for unequal sub-intervals using Lagrange’s
interpolation formula. Int. J. Math. Anal. 2009, 3, 815.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1061/(ASCE)0733-9429(1992)118:7(1014)
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Implementation of GPU-MOC Method
	Characteristics of a GPU
	Parallel Characteristics of MOC
	Implementation of MOC on a GPU
	MOC Kernel on GPU
	Implementation Procedures on CPU

	Verification of GPU-MOC by Benchmark Cases
	Application of GPU-MOC to a Water Distribution Network System
	Application of GPU-MOC to a Long-Distance Water Transmission System
	Conclusions and Future Works
	
	
	References

