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Abstract: The continuous growth of Internet traffic and its applications causes more difficulties for
analyzing Internet communications. It has become an increasingly challenging task to discover
latent community structure and find abnormal behavior patterns in network communication. In this
paper, we propose a new type of network community—the application community—which can
help understand large network structure and find anomaly network behavior. To detect such a
community, a method is proposed whose first step is aggregating the nodes according to their
topological relationships of the communication. It then clusters different application nodes according
to the communication behavior modes in the same topological partition. Empirical results show that
this method can accurately detect communities of different applications without any prior knowledge.
In addition, it can identify the communities more accurately than other methods. Thus, this research
greatly benefits the administration of IoT and cyber security.
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1. Introduction

As internet hosts and applications continue to grow, it becomes increasingly important to
understand large network structure and traffic patterns between the interactions of nodes for efficient
network management [1–4] and security [5–7]. However, with the increasing supply of bandwidth
and diversification of applications of the Internet, detailed analysis of all traffic streams in large-scale
networks has become challenging for network measurement and administration. In recent years,
researchers have been focusing on the behavior modes of network nodes from the perspective of
network communities.

Compared with monitoring the hosts one by one, analyzing the overall characteristics and behavior
modes of network communities is equivalent to “compressing” the original data [8]. Meaning, we only
need to study a small number of hosts and their traffic flows to determine the overall characteristics and
behavior modes of the communities. Therefore, we can understand the overall status of the network
more quickly and effectively. Studying network communities can be used for unknown network traffic
detection [9,10], network traffic analysis [11,12], botnet detection [13,14], and application identification [15].
Such research can also provide an important basis for network administrators to perform resource
configuration and virus detection, which is significant for maintaining network security.

Typically, there are two types of methods for defining communities. One is to define communities
based on the similarity of hosts’ communication behaviors. For example, in a complex network,
a community is defined as a set of nodes [16,17] that are closely related to each other and sparsely
connected to the outside based on connectivity between nodes. While the other is to define communities
based on the closeness of the communication relationships. For example, for computer networks,
a community is generally considered to be composed of a group of hosts with common goals [18].
That is, a host cluster that accesses the same websites or uses the same services is called a community.
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Therefore, community detection methods can be divided into two categories. The first one is based on
topological partitioning [11,19–21] and the second one is based on host behavior clustering [22–24].

However, the communities detected by these two methods can only show that the member
hosts in the communities have similarities in a certain aspect. With the increasing variety of network
applications, these two communities cannot fully reflect the current state of the hosts or the use
of network resources. This is because the clustering method is easily affected by encryption and
obfuscation technologies. When a node is involved in multiple applications at the same time, it is
difficult to apply topological partitioning for accurate community division. For example, a content
delivery network node caches the contents of multiple websites. All hosts accessing this node are
generally regarded as a cluster, but cannot be distinguished by the different websites accessed.

In this paper we propose a new type a community and its corresponding detection method.
Compared with the above traditional communities, it has two important characters:

1. It uses the <IP, Port> two-tuple as a communication node to describe communication relations.
Thus it can identify the roles (server nodes or client nodes) of nodes more accurately, which
benefits the measurement and analysis of the entire application traffic mode of interaction.

2. It combines communication topological relationship and traffic behavior clustering to obtain
more accurate community identification results. For example, we will find IP nodes that carry
multiple services simultaneously and distinguish between normal users and malicious users who
are accessing a service port on the same host.

The rest of this paper is organized as follows. In Section 2 we discuss the related work on
community detection. In Section 3 we define the application community and introduce the method
of community detection. In Section 4 we show and evaluate the results of community detection.
In Section 5 we analyze and discuss typical communities in network to illustrate the practical value of
this method and conclude this paper.

2. Related Work

Network communities that distinguish different behavior modes are important for network
security administration and therefore of significant concern by researchers. According to different
goals, community detection methods are divided into two categories: host-based behavior clustering
and topology-based partitioning. These two methods are introduced as follows.

In network communication, the traffic streams generated by the same network application
show similar behavioral modes. With these modes, the communication behavior of the hosts can be
quantitatively represented, achieving host classification. However, because the number of applications
and hosts in the network cannot be determined in advance, unsupervised and semi supervised
clustering methods are often used to distinguish hosts with different behavior modes. Terzi et al. [25]
extracted features such as the ports, target Internet protocol addresses (IPs), and loads to describe the
communication behavior of the source IPs, and then clustered the source IPs to identify the botnet.
Wei et al. [24] identified active hosts from network traffic data, selected relevant features from the
message headers of these hosts, and built a host tree diagram using hierarchical clustering algorithms
to find host clusters with similar behaviors. Jakalan et al. [19] designed an algorithm to find important
IP nodes, extracted 15 communication mode features, used the dbscan clustering algorithm to obtain
the host cluster, and analyzed the clustering results by comparing the feature values of the hosts
between different clusters. Shadi et al. [26] aggregated the IPs in the terabyte traffic data into a tree
structure according to the amount of data transmitted and the associated address blocks to find the IP
block with the largest traffic in an enterprise network. Dewaele et al. [22] proposed nine features to
describe the host communication mode. He then used the unsynchronized clustering method of the
minimum spanning tree to distinguish different types of hosts.

Since the communication behavior exhibited by the hosts is similar to the social behavior in the
social network. The community detection method in the social network is also used in the computer
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network. Iliofotou et al. [23] proposed a method for classifying IPs based on tags that only needs the
connection between IPs and the usage of a few IP hosts to classify all IPs. Xu et al. [11,21] proposed
a bipartite-based method to study hosts with similar behaviors by analyzing the communication
relationships between hosts. Their method first divides the entire network into two independent sets
according to the network segments in which the hosts are located. The connection between the two sets
represents the communication relationship between the hosts. This method then uses a single-mode
projection to count the visits of hosts on the same network segment to hosts outside the network
segment, and constructs a similarity matrix. Finally, the host clustering method is used to divide
the hosts on the same network segment into several clusters based on behavior modes. Similarly,
Jakalan et al. [19,20] constructed a bipartite graph using the Net Flow data obtained from a boundary
route. In order to describe the similarities of IPs in the administrative domain, they constructed a
bipartite graph and applied a single-mode projection to construct a similar matrix to obtain the final
community partitioning result.

Both of the above-mentioned methods consider the hosts (or IPs) as a whole, and partition a host
(or IP) into a unique community. In fact, one client can use multiple applications at the same time, and
one server can also provide multiple services at the same time, which allows one host (or IP) to associate
with multiple communities at the same time. To improve the analysis of traffic flow interactions, in
this paper we propose a method to define and detect network application community. This method
considers the hosts providing different services and participating indifferent applications, so that the
communication relationship can be more clearly expressed. After segmenting the communication
relationship diagram, we cluster the hosts according to data transmission modes and finally identify
communities that are associated with different applications.

3. Application Community

3.1. Application Community Definition

Traditionally, a community is defined as a set of nodes that are closely related to each other and
sparsely connected to the outside based on connectivity between nodes. While in this paper, we
need to consider both communication relationships and traffic behavior characteristics to distinguish
multiple services carried by the same IP nodes and the normal and malicious connections that are
accessing a service port on the same host. The nodes in each application community satisfy the
following conditions.

1. There is a group of service nodes and other member nodes have communication relations to these
service nodes;

2. When the member nodes communicate with service nodes, the characteristics of data transmission
modes are similar.

When the set of nodes that meet these two conditions, we call it an application community (here
in after referred to “the community”). In Figure 1, Servers A and B provide different services. Clients
1–7 and Servers A and B communicate based on the connection. The line type is used to indicate
different data transmission behaviors. According to the above description of communities, the nodes
in the graph can be divided into three communities, namely {A, 1, 2}, {A, 3, 4, 5}, and {B, 4, 5, 6, 7}.
Among these, Servers A and B are leader nodes determining the community type, and Clients 1–7 are
member nodes that communicate with the leader nodes to obtain a certain service. Although {1, 2, 3,
4, 5} communicates with the A node, {A, 1, 2} and {A, 3, 4, 5} do not belong to the same community
because {1, 2} and {3, 4, 5} differ in data transmission behavior. The difference in data transmission
behavior may because that (1) Server A provides multiple services at the same time or (2) Client {1, 2}
or {3, 4, 5} access the server in an unconventional manner. Using the method proposed in this paper,
one can identify different communities when (1) the same node participates in different applications,
and (2) the same service node provides normal services or is attacked.
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Figure 1. Diagram of application community.

3.2. Application Community Detection Method

According to the definition of an application community, the community detection method
proposed in this paper is divided into two steps. The first step is to divide the network relationship
diagram into multiple partitions according to the nodes’ communication relationships. A partition
consists of a leader node (usually a server), multiple member nodes (usually clients), and a connection
between them (traffic). One or more services or applications may exist in a partition. Therefore,
according to the statistical characteristics of the traffic flow, the nodes in the same partition are further
divided to find a set of hosts whose connectivity and traffic characteristics are similar, which is the
final community identification result.

3.2.1. Network Topological Partitioning Based on Communication Relationship

A network application community is usually composed of a service node and multiple client
nodes. If you can find the server in the network first, then the server and its neighboring hosts will
naturally form a partition, which is helpful for identifying the community.

Diagrams are used here to represent network communication relationships overtime. A large
number of previous studies [8,9,11,18–21] use IP as a node in the communication. If data are transmitted
between two IPs, the nodes represented by the two IPs are connected by one side. There are two
limitations to this representation. First, it is impossible to determine from the topology whether an IP
is a server or a client. For example, in Figure 2, node 1 may indicate that (1) one server receives many
client visits or that (2) one client uses multiple applications to communicate with multiple servers at
the same time. Second, it is impossible to identify the situation (through topology) when a service node
provides multiple services. Since there is the possibility that an IP provides multiple services, even if
node 1 in Figure 2 is known as a server node, it is not known exactly which services are provided and
which clients correspond to each service.
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For most network application services, they open a fixed port to respond to requests from the
client. The use of the port is very helpful for accurately determining the type and quantity of services
provided by a server. Therefore, in this paper, the <IP, Port> two-tuple is used as a node in the network
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topology diagram. The communication relationship between the nodes is represented by a connection.
There are two advantages of doing this:

1. The server node and client node can be accurately distinguished. When a client communicates
with a server, it usually uses multiple ports and the server usually only uses a fixed port. This
difference in ports allows the server nodes to have a large degree of power, so that the identity
of a node can be clearly identified. Even if an IP accesses multiple servers at the same time, the
phenomenon that the server nodes have a large degree of power will not change.

2. It can be identified that the same IP bears multiple services. The same IP will open different ports
for different services, so the <IP, Port> two-tuple as a node can split a server IP into multiple
topology nodes according to different ports. Each node corresponds to a service provided by the
server IP. A client node’s access to various services can also be easily identified.

Server nodes and client nodes are form a common structure—the C/S structure. There is usually
one service node and multiple client nodes. In this structure client node only communicates with
the service node and does not communicate directly with other client nodes. Therefore, there is a
significant difference between the server node and client node in the number of adjacent nodes. Which
means, for a certain network service or application, a server node has many adjacent nodes and a client
node has few adjacent nodes. We define the adjacency matrix A as follows.

Aij =

{
1 i and j has a connection, i 6= j
0 Other

(1)

For node i, the definition of a set is

Pi =
{

p
∣∣Aip = 1

}
(2)

Qi =
{

q
∣∣Apq = 1, p ∈ Pi, q /∈ Pi, q 6= i

}
(3)

where |Pi| and |Qi| represent the number of elements in sets Pi and Qi, respectively. In Figure 1, for all
nodes i = 1, 2, 3, 4, 5, 6, 7, 8, their Pi and Qi values are shown in Table 1.

Table 1. Pi and Qi for each i.

i Pi Qi

1 {2, 3, 4, 5, 6, 7} {8}

2 {1, 8} {3, 4, 5, 6, 7}

3 {1, 8} {2, 4, 5, 6, 7}

4 {1} {2, 3, 5, 6, 7}

5 {1} {2, 3, 4, 6, 7}

6 {1} {2, 3, 4, 5, 7}

7 {1} {2, 3, 4, 5, 6}

8 {2, 3} {1}

It can be seen from Table 1 that the core node in the C/S structure, |Pi| > |Qi|, and the edge
nodes, |Pi| < |Qi|. Therefore, for any node, its |Pi| and |Qi| values can reflect its type or identity in the
network. In order to verify this idea, here we use the NetFlow log collected on an enterprise boundary
route, with <IP, Port> as the node, to calculate the |Pi| and |Qi| values of each node. According to the
well-known service port (20, 21, 22, 53, 80, 123, 443, 1080, 8080), we label the client and service nodes.
The results are shown in Table 2, indicating that 94% of the server nodes satisfy |Pi| > |Qi| and 98% of
the client nodes satisfy |Pi| ≤ |Qi|.



Appl. Sci. 2019, 9, 31 6 of 13

Table 2. |P| and |Q| values for different types of nodes.

|P|>|Q| |P|≤|Q| Total Number of Nodes

Server nodes 5006 318 5324

Client nodes 2122 154,789 156,911

Based on the above idea, the communication entities in a network (nodes represented by <IP,
Port>) can be divided into different subgraphs. The specific process is shown in Algorithm 1, where
the variable c is the subgraph number to be assigned. The vector C records the subgraph number,
which each node belongs to. It skips if a node has been assigned a subgraph number. If the value of
|Pi|+ |Qi| is very small (not larger than 2), the partitions formed by node i and its neighbors are small
enough to constitute an influential subgraph.

Algorithm 1 Network Relationship Division

Input: list of nodes
Output: list of partition numbers to which the node belongs
Initialize all element values in C to −1, c = 0
For i in nodes:

If C[i] ! = −1:
continue

End If
calculate Pi and Qi
If |Pi| + |Qi| > 2 and |Pi| > |Qi|:

C[i] = c
For each j in Pi:

C[j] = c
End For
c += 1

End If
End For
return C

3.2.2. Node Clustering Based on Traffic Behavior

In most cases, the result of node partitioning obtained in Section 3.2.1 can identify an application
community in the network. However, there may be malicious entities sending malicious messages,
such as distributed denial-of-service (DDos) attacks, worms, and Trojans, based on the inherent
communication relationship. Therefore, in this paper we further differentiate the communication
traffic flow according to the statistical characteristics of the transmission data before obtaining the final
community identification result. The members of a community obtained through the above two step
shave a very high similarity in both communication relationship and communication mode.

After the division process in Section 3.1, entities with close communication relationships are
divided into the same partition. In most cases, a pair of IPs will only communicate with one type of
service in a short period of time. Therefore, traffic flows between entities in the same partition can be
aggregated according to IP pairs to extract data transmission behavior characteristics. There are two
advantages to doing this:

1. Increasing the number of sample scan avoid the influence of outlier traffic flows on the results of
community partitioning, which can reflect the data transmission behavior between a pair of IPs
in more detail.

2. After clustering, the number of instances used for clustering is greatly reduced, reducing the time
for clustering calculations.
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The clustering features selected in this paper are identified by the five-tuple (<source IP, source
port, destination IP, destination port, proto>), and the statistical information of each traffic flow is
recorded, such as the number of packets and the number of bytes in each direction. During the
clustering process, all traffic flows between each pair of IPs are combined and a feature vector is
extracted to describe the data transmission behavior between the pair of IPs. Each vector includes
these several elements:

1. Number of nonrepeating ports used by the source IP.
2. Number of nonrepeating ports used by the destination IP.
3. Average value of the protocol number.
4. Minimum number of up flow packets.
5. Median number of up flow packets.
6. Maximum number of up flow packets.
7. Minimum number of down flow packets.
8. Median number of down flow packets.
9. Maximum number of down flow packets.
10. Minimum average packet length for up flow.
11. Average median packet length for up flow.
12. Maximum of average up flow packet length.
13. Minimum of average down flow packet length.
14. Median of average down flow packet length.
15. Maximum of average down flow packet length.

Features 1 and 2 reflect the usage of a pair of communication IP ports. Feature 3 is used to reflect
the usage of a pair of communication IP transmission layer protocols. In this paper, we only study
traffic flows with protocol numbers 6 (TCP) and 17 (UDP). Features 4–9 reflect the distribution of the
number of IP transmission packets, while Features 10–15 reflect the distribution of the length of a pair
of IP transmission packets. By extracting the above features, the data transmission behavior between
pairs of nodes with in a partition can be quantitatively described.

In order to unify the weights of each dimension, we normalize the actual (IP pair) feature values
in the same partition before clustering. In this paper, we use maximum and minimum scaling to scale
the feature to [0, 1]. If there is an N pair of IP pairs (i.e., instances of clustering) in a partition, the
scaling formula is

fik =
Fik −min(Fk)

max(Fk)−min(Fk)
(4)

where i represents the instance number to be clustered and Fik the i-th eigenvalue of the k instance.
k = 1, 2 . . . , 15, and Fk represents a sequence of all the eigenvalues of the k-th dimension of all instances
to be clustered. Values of max() and min() represent the maximum and small values of Fk, respectively.
Variable fik is the normalized eigenvalue.

Finally, in this paper we use the dbscan-clustering algorithm [27] to process all session traffic
in each subgraph. This algorithm is a density-based clustering algorithm that does not require the
number of clusters to be specified. Without any prior knowledge, the number of types of traffic flows
in a partition and the number of flows in each category are uncertain. Therefore, it is suitable to use the
dbscan algorithm. When the dbscan algorithm runs clustering, there are three important parameters
to specify:

1. eps

This parameter is the maximum distance that is allowed to constitute a cluster between instances.
In this paper, we set the parameter value to 1.0. If the distance between two instances is less than the
value, they are considered to be within the same cluster. If an instance is more than the distance of eps
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from all other instances, it is considered an outlier and to be labeled as −1. To simplify the end result,
we consider that all outliers belong to the same community.

2. min_samples

The parameter min_samples denotes the minimum number of instances in a cluster. In this paper,
the parameter value is set to 2. This means, there are at least two instances in a cluster. This parameter,
together with eps, determines how densely the instances are in the same cluster. For different data sets,
the values of these two parameters should also be adjusted accordingly.

3. metric

This parameter is the way the distance between instances is calculated. In this paper, we use
the Manhattan distance to indicate the similarity between two instances. For instances i and j, the
calculation formula of the Manhattan distance between them is

Manhattan distance(i, j) =
15

∑
k=1

∣∣∣ fik − f jk

∣∣∣ (5)

The dbscan algorithm takes the normalized eigenvector matrix as input. Each row of the matrix
represents a traffic flow between a pair of IPs and each column represents a feature dimension.
The algorithm outputs an array of labels, each element of the array corresponding to each row of the
matrix. The tag is used to indicate the class of the traffic flow represented by the corresponding vector.
All IPs involved in the same traffic flow are the results of the final network community identification.

4. Experimental Results

4.1. Datasets

To obtain the experimental dataset, we collected two weeks of traffic logs from the boundary
route [28] of an enterprise network that contains 150 active users. The dataset contained approximately
30 million traffic flows, including 209 intranet nodes and 54,147 outer network nodes. The logs were
stored in a format similar to Netflow and exported as readable text.

4.2. Experimental Results

4.2.1. Modularity

We evaluate the results of topological partitioning based on communication relationships by
calculating the modularity [1]. The modularity is widely used because it is simple to calculate and
can accurately reflect the quality of a global partition. The modularity can be calculated by the
following formula.

Q =
1

2m ∑
i 6=j

(
Aij −

kik j

2m

)
δ
(
Ci, Cj

)
(6)

where i and j represent any two nodes in the graph; m is the number of sides in the entire network;
Aij is the value of the row and Ci, Cj column in the adjacency matrix (1 or 0); and ki, k j represent the
modularity of nodes i and j, i.e., the number of adjacent nodes. The letter i represents the numbering
of the subgraphs j and δ

(
Ci, Cj

)
. The definition is

δ
(
Ci, Cj

)
=

{
1 Ci = Cj
0 Ci 6= Cj

(7)

Figure 3 shows the results of every hour of data per day, including 214,735 traffic flows and
16,145 IPs. The community identification was performed every 5 min. The modularity of the obtained
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division result is above 0.8. Therefore, the proposed method is simple and effective when comparing
the sizes of |Pi| and |Qi| to determine the identity of node i and divide the network accordingly.Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 12 
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4.2.2. Community Division Results

Figure 4 shows the number of subgraph partitions and the number of communities in each period
obtained by topological partitioning and clustering. The number of communities is larger than the
number of submap partitions. This is because some submap partitions are divided into different
application communities due to different data transmission behaviors, such as malicious users and
normal users in DDos attacks. Although the communication relationship is the same, it is divided into
different communities due to different communication behaviors.
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To illustrate the effectiveness of our method, we use the method proposed in Xu et al. [11] to
identify the same data. Since the Xu method uses a single-mode projection for the bipartite graph in
community identification, it can only identify communities from one side of the network at a time.
We use the community detection algorithm in Xu et al. [11] for the internal and external IPs in the
enterprise network; the results are shown in Figure 4. The results show that for the same dataset
the number of communities identified by our method is much larger than that obtained by Xu’s
method. Through further analysis of the results, we found that Xu’s method does not distinguish
between different data transmission characteristics (such as the DDos attack situation) in the same
communication relationship. Moreover, the communities identified by Xu’s method do not have a
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service node (leader node). Thus, it is difficult to visualize the characteristics of the communities. Our
method takes into account the communication relationship and data transmission characteristics when
identifying the communities and retains the leader nodes in the communities. These help to more
accurately identify and research the communities. This is the advantage of our method compared with
existing research methods.

5. Analysis of Discussion

We used the Cytoscape method [29] to visualize some typical communities in the community
detection results. The nodes represent the <IP, Port>, and connections represent the communication
relations between nodes. Nodes are represented in different shapes according to the community which
they belong to. The morphology of the community is shown in Figure 5, and the following phenomena
can be observed by analyzing the community.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 12 

5. Analysis of Discussion 

We used the Cytoscape method [29] to visualize some typical communities in the community 
detection results. The nodes represent the <IP, Port>, and connections represent the communication 
relations between nodes. Nodes are represented in different shapes according to the community 
which they belong to. The morphology of the community is shown in Figure 5, and the following 
phenomena can be observed by analyzing the community. 

 
Figure 5. Community discovery results. 

5.1. Normal and Abnormal Access on the Same Service Port 

A service may appear as a leader node in two communities. By checking the original traffic 
logs, we can find that the clients in the A community frequently use a large number of ports to send 
the same size packets to the server in a short period of time. The clients in the B community, 
however, use fewer ports uploading and downloading packets, and the length is random. We 
separately selected one of the two communities to check the original packet, and found that the 
clients in the A community attack the server and the clients in the B community browse the 
webpage normally. 

The experimental results show that the method can effectively distinguish different behavior 
modes on the same service port and can analyze the situation of the entire application community 
based on the observation of some individual traffic flows. Compared with the observation of each 
host, the community analysis presented in this paper can greatly reduce the necessary number of 
observation objects and the number of observations and can be used as a preprocessing step for 
traffic classification and traffic identification. For example, in this case, there were originally 10 
hosts and 10 observations. After community identification, it was only necessary to take one from 
each of the two communities for observation. 

5.2. Single-IP Bearing Multiservice 

There are two communities and servers related to the same IP, but there are significant 
differences in the data transmission behaviors. For example, in the A community, the number of 
down link packets of the traffic flow is generally small (less than 3). The down link packet length is 
also below 80 bytes. However, in the B community (numbered 8), the number of down link packets 
is relatively large (greater than 100), and the average packet length of the down link is also 100 
bytes or more. After analyzing the raw data, we found that the reason for this phenomenon is that 
the server uses two ports (53 and 443) and provides two services (DNS and https server). 

5.3. P2P Communication Community 

Through community identification, we find that a node IP communicates with 1773 external 
IPs and the IP is appeared as a leader node in 20 communities. In several communities, the IP 
communicates with a large number of public IPs. After verifying the traffic flows, we find that the 
IP is using P2P tools to download, including both eDonkey and Thunder network applications (and 

Figure 5. Community discovery results.

5.1. Normal and Abnormal Access on the Same Service Port

A service may appear as a leader node in two communities. By checking the original traffic logs,
we can find that the clients in the A community frequently use a large number of ports to send the
same size packets to the server in a short period of time. The clients in the B community, however, use
fewer ports uploading and downloading packets, and the length is random. We separately selected
one of the two communities to check the original packet, and found that the clients in the A community
attack the server and the clients in the B community browse the webpage normally.

The experimental results show that the method can effectively distinguish different behavior
modes on the same service port and can analyze the situation of the entire application community
based on the observation of some individual traffic flows. Compared with the observation of each
host, the community analysis presented in this paper can greatly reduce the necessary number of
observation objects and the number of observations and can be used as a preprocessing step for traffic
classification and traffic identification. For example, in this case, there were originally 10 hosts and
10 observations. After community identification, it was only necessary to take one from each of the
two communities for observation.

5.2. Single-IP Bearing Multiservice

There are two communities and servers related to the same IP, but there are significant differences
in the data transmission behaviors. For example, in the A community, the number of down link
packets of the traffic flow is generally small (less than 3). The down link packet length is also below
80 bytes. However, in the B community (numbered 8), the number of down link packets is relatively
large (greater than 100), and the average packet length of the down link is also 100 bytes or more. After
analyzing the raw data, we found that the reason for this phenomenon is that the server uses two ports
(53 and 443) and provides two services (DNS and https server).
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5.3. P2P Communication Community

Through community identification, we find that a node IP communicates with 1773 external
IPs and the IP is appeared as a leader node in 20 communities. In several communities, the IP
communicates with a large number of public IPs. After verifying the traffic flows, we find that the
IP is using P2P tools to download, including both eDonkey and Thunder network applications (and
protocols). There are control messages with small transmission lengths and mass data transmission
between nodes. Using previous community identification methods, it can only be regarded as a large
community; however, our method can divide the multiprotocol simultaneous communications into
different communities.

6. Conclusions

In this paper, we propose the definition of application community, which consider both
communication relationships and traffic behavior characteristics. We also propose a corresponding
detection method for application communities. In our application community the <IP, Port> two-tuple is
used as a communication entity when establishing the communication diagram. The clustering method is
used to distinguish different behavior mode. Our experiments demonstrate practical benefits of application
community in profiling traffic patterns discovering emerging Internet applications and detecting anomalous
traffic behaviors through synthetic traffic. It helps network administrators understand the distribution of
traffic streams and complete resource deployment or virus attack prevention. The future work will include
improving the algorithm for further reduction in calculations complexity of the detection method and
tracking the evolution of communities in networks.
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