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Abstract: This paper is concerned with the design of synchronized large-scale chaos random
number generators (CRNGs) and its application to secure communication. In order to increase
the diversity of chaotic signals, we firstly introduce additional modulation parameters in the original
chaotic Duffing map system to modulate the amplitude and DC offset of the chaotic states. Then
according to the butterfly effect, we implement modulated Duffing map systems with different
initial values by using the microcontroller and complete the design of large-scale CRNGs. Next,
a discrete sliding mode scheme is proposed to solve the synchronization problem of the master-slave
large-scale CRNGs. Finally, we integrate the aforementioned results to implement an innovative
secure communication system.

Keywords: chaotic Duffing map system; butterfly effect; large-scale CRNG; discrete sliding mode;
secure communication

1. Introduction

Chaotic system is a complex nonlinear system. In recent years, it has attracted extensive attention
in the field of engineering research. The reason is that chaotic systems have very rich dynamic behavior,
unpredictable trajectory, white noise-like broadband and the initial value sensitivity of the butterfly
effect. The chaos dynamics in most mechanical engineering systems is undesirable and needs to be
suppressed because it will affect the performance or damage the mechanical structure of systems.
In 1990, O.G.Y (Ott, Grebogi and Yorke) [1] proposed the study of chaos control. Researchers pointed
out that, when parameter values of chaotic systems are slightly modulated, the chaotic behavior
will produce huge and unpredictable changes. Several feedback control methods to suppress chaos
behavior have been proposed in the literature [2,3]. Although the chaos behavior might be undesired
in most mechanical systems, the noise-like behavior of chaos is useful to the application of image
encryption and secure communication [4–8]. Due to the practical application of chaos synchronization,
since the pioneering research of Pecora and Carroll [9], chaos synchronization has become an interesting
research field. Many control methods have been proposed to solve the synchronization problem for
chaotic systems, such as H∞ control [10,11], fuzzy sliding mode control [12,13], adaptive control [14,15]
and so forth. Among proposed control designs, sliding mode control method is often the first choice
for researchers because it is not sensitive to system parameters and external disturbances and with
good robustness.

In these two decades, chaotic systems have been widely applied in the areas of communication,
medicine and biology to solve several important engineering problems, especially in the security field
of communication. In the previous reports [4–6], the authors used the continuous chaotic systems with
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well-designed synchronization controllers to achieve the secure communication. However, in practical
circuit implementations for continuous chaotic systems, analog components, such as operational
amplifier (OPA), resistors, capacitors are necessary. Unfortunately, these analog components are
sensitive to environmental conditions and often result in circuit instability. On the other hand, owing to
the progress of microcontrollers with digital signal processing (DSP) technology, using microcontrollers
to replace the analog circuits has become more and more popular and important. Discrete chaotic
systems implemented by the microcontroller are more robust and less susceptible to temperature
variation and component aging but also at a lower price. Therefore, to solve the problem of instability
of analog circuits, we need to study the discrete chaotic systems realized by microcontrollers. Until
now, the applications of discrete chaotic systems to solve image encryption have been proposed in
References [7,8]. However, the synchronization control problem of discrete chaotic systems has not
been well solved in these studies. In addition, to the best of our knowledge, using discrete chaotic
systems to design the synchronized large-scale CRNGs has not been well discussed. Furthermore,
recently, due to the advent of quantum computers, many traditional encryption methods may become
unsafe. The encryption can be quickly cracked by quantum computers. Because the chaos system has
rich dynamic characteristics, it can generate a large amount of random signals in a very short time and
many scholars have pointed out that chaotic encryption method may be one of the solutions against
the attack of quantum computers [16,17].

For the above reasons, in this paper, we study the design of synchronized large-scale CRNGs and
its application to secure communication. In order to simplify the presentation of the paper, we choose
Duffing map for this study. However, the proposed modulation approach can also effectively applied
to other classes of discrete chaotic systems. First, we introduce a modulation approach by introducing
some parameters into the chaotic Duffing map to regulate and increase the diversity of chaotic state
responses. Then we implement the proposed modulated Duffing map systems under different initial
conditions by the microcontroller. Due to the butterfly effect, the state response of each Duffing map
system will be quite different. Therefore, we can get a large amount of random chaotic states and
complete the design of large-scale CRNGs. For subsequent communication security application, we
use sliding mode control to cope with the synchronization problem of the master-slave large-scale
CRNGs. Finally, the above results are integrated to realize an innovative secure communication system
to prove the correctness and feasibility of the research.

2. Design of a Large-Scale CRNG

In this paper, we will discuss the design and realization of a large-scale CRNGs and its application
to secure communication based on synchronized master-slave large-scale CRNGs. To design the
large-scale CRNGs, in the following, we first introduce the modulation of the Duffing map chaotic
system such that diversified random chaotic state responses can be obtained for large-scale CRNGs.
The original Duffing map system is described by the following system.

x1(k + 1) = x2(k)
x2(k + 1) = −0.2x1(k) + 2.75x2(k)− x3

2(k)
(1)

where x1, x2(k) are the system states. In order to adjust the amplitude and DC offset for state responses,
we define new state variables yi, i = 1, 2 satisfying

yi(k) = aixi(k) + di (2)

where ai, i = 1, 2 are given to adjust the amplitude and the DC offset of state responses, respectively.
From Equation (2), we have

xi(k) =
yi(k)− di

ai
, i = 1, 2 (3)
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By (1) and (3), a new modulated Duffing map chaotic system can be obtained as

y1(k + 1) = λ1y2(k) + λ2

y2(k + 1) = β1y1(k) + β2y3
2 + β3y2

2 + β4y2 + β5
(4)

where
λ1 = a1

a2
, λ2 = − a1

a2
d2 + d1, β1 = − 0.2a2

a1

β2 = − 1
a2

2
, β3 = 3d2

a2
2

, β4 = 2.75− 3d2
2

a2
2

, β5 = 0.2a2d1
a1
− 2.75d2 +

d3
2

a2
2
+ d2

For evaluating the modulation of the system amplitude and DC offset of random number
generator, we give the following simulation analysis. In the simulation, the modulation parameters are
given as a1 = 2, a2 = 4, d1 = −5, d2 = 5 and the initial conditions are selected as x1 = 0.4, x2 = −0.2.
The simulation results are given in Figures 1–3.
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Figure 1. The state responses of the Duffing map chaotic system (before modulation).
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Figure 3. The strange attractors of the original and modulated Duffing map chaotic systems,
respectively (left is before modulation, right is after modulation).

According to the simulation results above, it reveals, as expected, the amplitude is modulated
by 2 times and 4 times, while the DC offset is shifted by −5 and 5. Furthermore, we use the National
Institute of Standards and Technology (NIST) [18] test suite to test the randomness of the modulated
chaotic states. In the NIST test, first, we set the test parameters including the sequences length
n = 2 × 107 bits, the number of subsequences, m = 20. Then, we take byte 5 (bits 32~39) of every
modulated chaos states y1 and y2 in IEEE754 double-precision format [19] to test the randomness.
Finally, all the test results are shown in Table 1. In Table 1, the outcome of the test values is called
p value. When p value ≥ 0.01, then it passes the test. From Table 1, the generated numbers of y1 pass
all tests and those of y2 pass 13 tests. Therefore, we can conclude that the modulated chaotic states are
with good randomness.

Table 1. Randomness test.

Tests y1 y2

Frequency 0.911413 0.048716
Block Frequency 0.437274 0.637119

Cumulative Sums 0.275709 0.000648
Runs 0.534146 0.162606

Longest Run 0.350485 0.739918
Rank 0.534146 0.739918
FFT 0.834308 0.991468

Nonoverlapping Template 0.048716 0.000026
Overlapping Template 0.739918 0.162606

Universal 0.534146 0.275709
Approximate Entropy 0.911413 0.637119
Random Excursions 0.066882 0.090936

Random Excursions Variant 0.017912 0.025193
Serial 0.048716 0.048716

Linear Complexity 0.637119 0.437274

From discussed above, the random number generator can be implemented by using the modulated
Duffing map chaotic system. It is well known that the state response of a chaotic system is very
sensitive to initial values and very small differences can lead to very different chaotic state responses,
namely the butterfly effect. Based on this feature, we can use the butterfly effect to design large-scale
CRNGs. In addition, due to the high capacity and fast computing speed of the digital microcontroller,
we can implement this large-scale CRNG with microcontroller and can get a large amount of random
numbers in the very short time according to the computing speed of the microcontroller. To show the
butterfly effect, we use three sets of random generators (Duffing map systems in (1)) for comparison.
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(x1, x2) is the random number of the first random number generator, the second is (x11, x12) and
the third is (x21, x22). The initial conditions are selected as (x10, x20) = (0.9,−0.5), (x110, x120) =

(0.900001,−0.500012), (x210, x220) = (0.9000011,−0.500001), respectively. From the simulation results
in Figure 4, it can be found that the initial values with very small difference, as expected, will produce
completely different random state responses.
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Figure 4. Butterfly effect.

Now we are ready to implement the large-scale CRNG. Its structure is designed as shown in
Figure 5. We construct n Duffing maps with the same structure in the microcontroller. Each Duffing
map has different initial values. According to the butterfly effect mentioned above, we can get 2n
random numbers. It is worth mentioning that the microcontrollers have a large amount of program
memory capacity and fast computing speed, which means that we can use the microcontroller to
complete the large-scale CRNG in Figure 5 and obtain a large amount of random numbers in a very
short period time.
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In the following, we continue to discuss the realization of the proposed large-scale CRNG in
Figure 5. First, we construct ten sets (n = 10) of CRNGs by using the HT32F1765 microcontroller as
shown in Figure 6. The HT32F1765 operates at a frequency up to 72MHz with a Flash accelerator to
obtain maximum efficiency. It provides 128KB of embedded Flash memory for code/data storage
and up to 64 KB of embedded SRAM memory for system operation and application program usage.
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Due to the butterfly effect in the chaotic system, each set of CRNGs has different initial values, so the
output responses of the CRNGs of each set will be completely different. When we set up 10 sets of
CRNGs with different initial values, we can get 20 random numbers and then according to the IEEE
754 double-precision standard, each random floating-point value is represented with 64 bits. Therefore,
we can get 1280 random binary bits (2 × 10 × 64). At the same time, if necessary, we can also build
more chaotic systems in the HT32F1765 microcontroller to get more random bits. By using 8 × 8 LED
matrix, Figure 7 shows 256 random binary signals obtained from the proposed large-scale CRNG.
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3. Synchronization of Master-Slave Large-Scale CRNGs

The design of large-scale CRNGs has been completed. We continue to study the synchronization
of master and slave large-scale CRNGs. As mentioned above, the large-scale CRNG is composed of n
chaotic CRNGs with the same structure, so the synchronization controller for each chaotic CRNGs will
also have the same structure. Therefore, we first consider the design of a single master-slave CRNG.
The master and slave CRNGs are defined, respectively, as below.

Master random number generator:

x1(k + 1) = λ1x2(k) + λ2

x2(k + 1) = β1x1(k) + β2x3
2(k) + β3x2

2(k) + β4x2(k) + β5
(5)

Slave random number generator:

y1(k + 1) = λ1y2(k) + λ2

y2(k + 1) = β1y1(k) + β2y3
2(k) + β3y2

2(k) + β4y2(k) + β5 + u(k)
(6)
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where xi and yi, i = 1, 2 are, respectively, the state variables of the master and slave systems. u(k) ∈ R
is the control input introduced to achieve synchronization between the master and slave CRNGs.
By defining ei(k) = yi(k) − xi(k), i = 1, 2, the error dynamics can be obtained by the following
equation:

e1(k + 1) = λ1e2(k)
e2(k + 1) = β1e1(k) + β2(y3

2(k)− x3
2(k)) + β3e2(k)(y2(k) + x2(k)) + β4e2(k) + u(k)

(7)

In the following, the discrete sliding mode control (DSMC) is utilized to achieve the
synchronization. Generally, the DSMC design is composed of two steps. First, we need to select
an appropriate switching function for error dynamics (7) such that the sliding motion can ensure
the convergence of the error states. Second, we need to propose a DSMC to guarantee the existence
of the sliding mode and maintain the error dynamics on the sliding manifold [2]. To achieve the
synchronization based on DSMC, a switching function is selected as:

s(k) = e2(k) + αe1(k) (8)

Assuming the error dynamics is already on the sliding manifold (s(k) = 0), we have

e2(k) = −αe1(k) (9)

Substituting (9) into (7), we can obtain

e1(k + 1) = −αλ1e1(k) (10)

From (10), we can see that if α is specified to satisfy |−αλ1| < 1, than e1 converges to zero.
Furthermore, since e2(k) = −αe1(k) in the sliding manifold, we obtain e2 = 0 when e1 = 0.
After discussing the selection of the switching surface, we still have to design the controller to ensure
that the system can smoothly enter the sliding manifold such that s(k) = 0 and e2(k) = −αe1(k) can
be ensured. The controller design is described as follows. According to (7) and (8), we have

s(k + 1)
= e2(k + 1) + αe1(k + 1)
= β1e1(k) + β2(y3

2(k)− x3
2(k)) + β3e2(k)(y2(k) + x2(k))

+β4e2(k) + u(k) + αλ1e2(k)

(11)

If the controller u(k) is properly designed as:

u(k) = −(β1e1(k) + β2(y3
2(k)− x3

2(k)) + β3e2(k)(y2(k) + x2(k))
+β4e2(k) + αλ1e2(k)) + γs(k)

(12)

where |γ| < 1. Substituting (12) into (11), we can get

s(k + 1) = γs(k) (13)

Since |γ| < 1 is specified in (12), the error system can smoothly enter the sliding manifold, that
is, lim

k→∞
s(k) = 0. From the above discussion, we can confirm that the system can smoothly enter the

sliding mode under the action of the controller (12) and the error states in (7) can also converge to zero
as discussed above, that is, the master-slave CRNGs in (5) and (6) can achieve synchronization.

In the following, for evaluating the synchronization effect of master and slave CRNGs, the
parameters are given as a1 = 1, a2 = 5 d1 = 3, d2 = −3. Therefore, the sliding mode control law can be
obtained by (12) with α = 0.3, γ = 0.2. In numerical simulations, the initial conditions are selected as
x10 = 3.1, x20 = −4.5, y10 = −3.3, y20 = −4. The simulation results are shown in Figures 8–11. Figure 8
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shows the corresponding state responses of master and controlled slave CRNGs. Figure 9 shows the
error response between master and controlled slave CRNGs. Figures 10 and 11, respectively, show the
switching function and control input and phase planes of the controlled master-slave CRNG. From the
simulation results, it shows the proposed sliding mode control works well and the chaotic behavior of
controlled master and slave random number generator can be asymptotically synchronized.
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Considering the security of future applications and reducing the complexity of synchronization
controller for the master-slave large-scale CRNGs, we divide the controller u(k) (12) into two parts,
um(k) and us(k) satisfying u(k) = um(k) + us(k), where um(k) and us(k) are the combination signals
of master and slave random number generator, respectively. When the master and slave CRNGs
are in different locations, only the information um(k) is sent from the master CRNG through the
public channel while us(k) is generated in the slave CRNG and never appear in the insecure channel.
Therefore, the synchronization controller u(k) can be composed in the slave side and the master
and slave CRNGs can be synchronized without transmitting full secret information through the
public channel.

After completing the synchronization of the single master-slave CRNGs, the large-scale
synchronized master-slave CRNGs is given as shown in Figure 12.
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Figure 12. Synchronized large-scale CRNGs.

In Figure 12, First, the master CRNGi, i = 1, 2 . . . , n, sequentially generates the information
umi(k) required by each RNGi synchronization controller and in the slave RNGi, i = 1, 2 . . . , n, also
sequentially generates the required information usi(k). umi(k) and usi(k) are, respectively, time-sharing
selected by the selectors in the master and slave sides, then umi(k) and usi(k) is integrated to form
the aforementioned controller (ui(k) = umi(k) + usi(k)) and then the synchronization between master
CRNGi and slave CRNGi, i = 1, 2 . . . , n can be guaranteed. Because the computing speed of the
microcontroller is extremely fast, the large-scale master-slave CRNGs can also be synchronized quickly.

4. Design of Secure Communication Based on Synchronized Large-Scale CRNGs

In the following, we will discuss how to apply the synchronized master-slave large-scale CRNGs
to construct the secure communication system. The design diagram is given as follows:
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In Figure 13, the plaintext is sent to the encryption mechanism of the transmitter. The master
large-scale CRNG sends the random state to the encryption mechanism and encrypt the original
signal. After the encryption is completed, the transmitter transmits the cipher-text and the information
umi(k) to the receiver. At the receiver, combined usi(k) with umi(k) transmitted from the transmitter,
the synchronization controller ui(k) = umi(k) + usi(k) is constructed to achieve synchronization of the
master and slave large-scale CRNGs. Finally, the decryption mechanism with the synchronization
signal can complete the decryption.
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Figure 13. Communication system design.

In order to verify the design of the above-mentioned secure communication system, we use
Holtek’s 8-bit (HT66F50) and 32-bit (HT32F1765) microcontrollers to realize the secure communication
in Figure 13. The following Figure 14 shows the diagram of the secure communication system.
In Figure 14, 8-bit microcontroller is used to generate plaintext and 32-bit one is used to perform
large-scale CRNGs and its synchronization.
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The encryption and decryption in Figure 14 are realized by using the exclusive-or as shown
in Figure 15. When the master and slave large-scale CRNGs reaches synchronization, then the
master large-scale random number A and the slave large-scale random number B will be the same.
The encryption can be decrypted and the plaintext m can be recovered at the receiver side because
n = m⊕ A⊕ B = m⊕ A⊕ A = m.



Appl. Sci. 2019, 9, 185 11 of 13

Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 13 

 
Figure 15. The structure of encryption and decryption mechanism. 

After completing the circuit design, we use some basic components to implement the circuit as 
shown in Figure 16, in which the dot matrix LEDs are used to display master and slave random 
signals, plaintext, cipher-text and decrypted text, respectively. In Figure 16, we first disable the 
synchronization controller. We can find that the master random number and the slave random 
number cannot be synchronized and the encryption cannot be decrypted smoothly. While in Figure 
17, we enable the synchronization controller. Therefore, it can be found that the master random 
number and the slave random number are synchronized, as expected and the encryption can be 
decrypted. 

 
Figure 16. The secure communication system before synchronization. 

 
Figure 17. The secure communication system after synchronization. 

5. Conclusions 

Figure 15. The structure of encryption and decryption mechanism.

After completing the circuit design, we use some basic components to implement the circuit as
shown in Figure 16, in which the dot matrix LEDs are used to display master and slave random signals,
plaintext, cipher-text and decrypted text, respectively. In Figure 16, we first disable the synchronization
controller. We can find that the master random number and the slave random number cannot be
synchronized and the encryption cannot be decrypted smoothly. While in Figure 17, we enable the
synchronization controller. Therefore, it can be found that the master random number and the slave
random number are synchronized, as expected and the encryption can be decrypted.
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5. Conclusions

This paper proposes the synchronized master-slave large-scale CRNGs and its application to
secure communication. Some parameters are introduced to modulate the amplitude and DC offset of
the chaotic states. Then, by using the butterfly effect, we complete the design of large-scale CRNGs.
The discrete sliding mode control method is used to solve the synchronization problem of the master
and slave large-scale CRNGs. Finally, the above research results are integrated to design an innovative
confidential communication system. The proposed simulation, experimental results and the realization
of the secure communication system are given to show the effectiveness of the proposed method.
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