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Featured Application: Intrusion Detection and Smart Home.

Abstract: WiHi infrastructures are widely deployed in both public and private buildings. They make
the connection to the internet more convenient. Recently, researchers find that WiFi signals have
the ability to sense the changes in the environment that can detect human motion and even identify
human activities and his identity in a device-free manner, and has many potential security applications
in a smart home. Previous human detection systems can only detect human motion of regular moving
patterns. However, they may have a significant detection performance degradation when used in
intrusion detection. In this study, we propose Robust Device-Free Intrusion Detection (RDFID) system
leveraging fine-grained Channel State Information (CSI). The noises in the signals are removed
by a Principle Component Analysis (PCA) and a low pass filter. We extract a robust feature of
frequency domain utilizing Continuous Wavelet Transform (CWT) from all subcarriers. RDFID
captures the changes from the whole wireless channel, and a threshold is obtained self-adaptively,
which is calibration-free in different environments, and can be deployed in smart home scenarios.
We implement RDFID using commodity WiFi devices and evaluate it in three typical office rooms
with different moving patterns. The results show that our system can accurately detect intrusion of
different moving patterns and different environments without re-calibration.

Keywords: intrusion detection; human detection; channel state information; device-free passive

1. Introduction

Device-free human detection has attracted a lot of interest in recent years. It can detect human
presence in the monitoring area without any sensing-related devices attached to the people [1]. It can be
used well in intrusion detection systems, which is a vital security component in a smart home. Aiming
at handling the security issues in a smart home, many techniques have been utilized to implement
device-free human detection, such as video-based, infrared-based, Radio Frequency Identification
(RFID)-based and Ultra-Wide Bandwidth (UWB)-based approaches. Although they have a good
detection accuracy, these approaches have limited using conditions and need dedicated devices that
hinder their adoption. WiFi-enabled devices become the catalyst of device-free sensing as they have
been widely deployed in both public and private buildings. Besides being used for communication,
WiFi networks can also be used as sensor networks [2—4]. Many applications have emerged based on
WiFi infrastructures, human detection [5], indoor localization [6], and even human identification [7]
are some representative applications.
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A typical WiFi-based device-free human detection system usually contains several pairs of
transmitters and receivers. A wireless router can act as a transmitter, while a WiFi-enabled device
can act as a receiver. As a result, it doesn’t have the problem of key management [8,9] compared
with sensor-based approaches. The rational of WiFi-based device-free human detection is that human
presence has an impact on signal propagation, which will cause the signal strength fluctuation at
the receiver [10]. Previous WiFi-based human detection systems utilize Received Signal Strength
Indicator (RSSI) from Media Access Control (MAC) layer for it is easy to obtain. However, RSSI is a
coarse-grained measurement. In the typical indoor scenario, RSSI becomes unreliable due to multipath
fading. It may increase, decrease, or even remain the same when a person moves in the monitoring
area. Recently, many studies explore CSI from physical layer of wireless networks to detect human
motion [11-13]. As indicated in [14], CSI is a subcarrier-level measurement that is more fine-grained
compared with RSSI. It is more sensitive to environmental changes while keeps quite stable in static
scenarios. As a result, CSI succeeds in improving the performance of human detection.

However, state-of-the-art human detection techniques still have limitations for intrusion detection
systems. Common human detection techniques can only detect a human who is walking with a regular
pattern. Nevertheless, an intruder in the building is likely to keep away from the security devices
or move very slowly to hide himself from being monitored. Furthermore, most human detection
techniques require on-site calibration of both static and dynamic environments. On-site calibration is
labor intensive and it needs professional deployment and maintenance that makes a human detection
system more complex in practical use. Consequently, human detection techniques will fail in detecting
intruders in security systems, and we need to explore effective features to model human motion.

To deal with the limitations, in this work, we propose a Robust Device-Free Intrusion Detection
(RDFID) system leveraging fine-grained CSI. We investigate the impact of human motion on WiFi
signals and demonstrate that different patterns of human motion in different scenarios can be modeled
by a unified framework. First, we extract the wavelet variance of CSIs from frequency domain as the
feature. It is more sensitive to human motion, and more robust under different moving patterns. In
addition, the feature values of static and intrusion can be seen to be generated by different Gaussian
Models. As a result, intrusion can be detected using a Gaussian Mixture Model (GMM). As shown in
Figure 1, RDFID can detect human motion of different moving patterns. In addition, it can be easily
deployed that it can achieve a satisfying performance even using a single pair of transceivers, and
needs no re-calibration in different scenarios.

We prototyped RDFID in three typical home and office scenarios with commodity WiFi devices
composing only one wireless link. We evaluate the system and compare the performance with
Fine-grained Real-time passive human motion Detection (FRID), device-free Passive Detection of
moving humans with dynamic Speed (PADS) and Fine-grained Indoor Motion Detection (FIMD).
The results show that the detection precision of RDFID can achieve over 97% under different moving
patterns. Consequently, it makes intrusion detection systems a step closer to practical use.

In summary, the contributions of our work are as follows:

e  We propose RDFID, a novel device-free WiFi-based intrusion detection approach, which can
detect intruders with different moving patterns at a high accuracy, and needs no re-calibration in
different scenarios. It can be deployed in smart home scenarios to ensure security.

e  We extract real-time features from CSIs in frequency domain, which is more sensitive to human
motion of various moving patterns.

e  We use the Gaussian Mixture Model (GMM) as the classifier based on the observation that the
feature values under different moving patterns and different environments can be seen to be
generated by different Gaussian Models.

In the rest of this paper, the related works about WiFi-based human detection are reviewed in
Section 2. Some preliminaries are introduced in Section 3. Section 4 presents the design details of
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our proposed intrusion detection system, while the performance evaluation is provided in Section 5.
In Section 6, the potentials and limitations are discussed and we conclude this work in Section 7.

Figure 1. Different moving patterns in intrusion scenarios. (a) Regular walking; (b) walking while
bending down; and (c) creeping.

2. Related Work

WiFi-based passive human detection is the fundamental technique of various ubiquitous wireless
sensing applications, such as indoor localization, human identification and activity recognition. It can
be widely deployed in smart home scenarios to ensure the security. A large quantity of studies about
wireless sensing promote the development of wireless sensing.

Earlier passive human detection systems usually utilize RSSI from the MAC layer of the wireless
network. After Youssef et al. proposed the concept of device-free passive human motion detection,
they optimized their approach and made the system work in real environments [10]. Nuzzer leveraged
probabilistic techniques, and had the capability to both localize a single entity and estimate the number
of people in the area of interest [15]. Since RSSI is a coarse-grained measurement of wireless networks,
many RSSI-based human detection systems deployed multiple pairs of transceivers to achieve a higher
accuracy [16]. Another technique of human detection using multiple pairs of transceivers is Radio
Tomographic Imaging (RTI) [17]. Researchers also developed various approaches based on RTIL, such
as the kRTI [18] and dRTI [19]. However, RSSI-based human detection systems suffer from severe
multi-path efficiency [20]. As a result, more and more researchers move their attention to the more
fine-grained measurement, CSL

To overcome the shortcomings of RSSI-based human detection systems, Fine-grained device-free
Motion Detection (FIMD) utilized the burst pattern of CSIs during human motion to detection human
presence [21]. Fine-grained Indoor Localization (FILA) explored the frequency diversity of the
subcarriers in Orthogonal Frequency Division Multiplexing (OFDM) systems, and constructed a signal
propagation model [22,23]. As human motion can cause the fluctuation of the signal, Bfp harnessed the
variance of the amplitude of the CSIs to improve the performance of human detection [11]. PADS took
advantages of the whole information of CSI including both amplitude and phase feature to detect
human motion with various speeds [24]. It calculates the maximum eigenvalue of covariance matrix of
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normalized amplitude and phase information, respectively, as the feature. Support Vector Machine
(SVM) is used as the classifier. FRID explored the phase feature of CSIs and achieved calibration-free
human detection without the need of a normal profile [25,26]. Short-term averaged variance ratio
(SVR) and long-term averaged variance ratio which are two schemes based on the coefficient of
variance of phase are introduced to eliminate the re-calibration cost. Conventional human detection
systems demonstrated directional monitoring coverage, and Zimu Zhou et al. utilized CSI features
to virtually tune the coverage shape into disk-like [27]. Speed Independent Entity Detection (SIED)
extracted a novel feature from the whole wireless channel and transformed human detection into
a probabilistic problem to achieve a high detection accuracy [5]. AR-Alarm utilized a self-adaptive
learning mechanism to achieve intrusion detection without the need of re-calibration [13].

Besides human detection, wireless signals can be used in indoor localization, activity recognition
and even human identification. Abdel-Nasser et al. utilized CSI to provide a localization approach
with a high accuracy leveraging only a single pair of transceiver [28]. CSI-MIMO utilized frequency
diversity of CSI to construct the fingerprint of different locations and achieved a localization accuracy
of 0.95 m [29]. SpotFi computed the Angle of Arrival (AoA) of multipath components of different
antennas and improved the localization accuracy to 40 cm [30]. HiDFPL proposed a measurement
to represent the sensitivity of the receiver and enhanced the localization accuracy [31]. Xuyu Wang
et al. proposed PhaseFi, a fingerprinting system, using phase information of CSIs and incorporated
a greedy algorithm to train the weights of a deep network [32]. Rui Zhou et al. proposed an indoor
localization system based on CSI and SVM [33]. Density-based Spatial Clustering Of Applications
With Noise (DBSCAN) was utilized in the system to reduce the noise in CSIs.

CSI based human Activity Recognition and Monitoring (CARM) was proposed based on CSIs
of wireless channel that quantified the relationship between the movement speeds of different body
parts and activities, and it had the ability to recognize human activities [34]. Activity recognition
has a wide range of applications, such as somatosensory games. Wi-Play extracted CSI waveforms
from commercial WiFi devices to model some specified activity and achieved an activity recognition
system [35]. Wifi-based GEsture Recognition (WiGeR) utilized the fluctuation scheme of CSIs generated
by the moving of human hands to recognize gestures [36]. Smokey leveraged WiFi signals and had
the ability to recognize smoking activity even in the non-line-of-sight (NLOS) and through-wall
environments [37]. Wi-Chase utilized the CSIs from all subcarriers to achieve a higher activity
recognition accuracy [38].

It is confirmed that human’s gait is unique among different people, thus it can be used to identify
the human'’s identity. WifiU was presented to construct the gait profiles of different people utilizing
the unique variations in the CSIs [39]. WiWho was presented as a framework of human identification
utilizing human’s gait extracted from CSIs [40]. FreeSense combined Principal Component Analysis
(PCA), Discrete Wavelet Transform (DWT), and Dynamic Time Warping (DTW) to achieve a nine-user
human identification [41]. Wii extracted time and frequency-domain features and used time—frequency
analysis to achieve an accurate human identification system [7].

Although there have been quantities of work on human detection, they only perform well when
the people move in regular patterns. When an intruder appears, he is more likely to move in an
irregular way. As a result, a more robust human detection system is proposed in this paper to meet the
challenges of intruder detection.

3. Preliminary

CSl is leveraged in this study, and we will give a brief introduction of the background knowledge
in this section.

The wireless signals propagate through multiple paths from the transmitter to the receiver in a
typical indoor scenario. As a result, the received signal is the superposition of the signals from LOS
path and several reflection paths. OFDM framework is the basis of 802.11 n wireless networks, in
which our system works. In this framework, the wireless channel can be descripted by a Channel
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Impulse Response (CIR) in the time domain. Under the assumption of time-invariant, CIR can be
expressed as:

N
h(t) =Y ae %6(t — 1) +n(1), 1)
i=1

where a;, 6;, and 7; denote the amplitude, phase and time delay of the signal from i path, respectively;
N is the total number of paths; n(7) is complex Gaussian white noise; and J(7) is the Dirac
delta function.

Nevertheless, precise CIR can be extracted only from dedicated devices rather than commodity
infrastructures. To overcome this limitation, Channel Frequency Response (CFR) can be extracted
from frequency domain, which can model the wireless channel. CFR contains amplitude—frequency
response and phase—frequency response. Under the assumption of infinite bandwidth, CIR is
equivalent to CFR, and CFR can be transformed by Fast Fourier Transform (FFT) from CIR: [20]

H = FFT(h(7)). 2)
We can obtain CFRs in the format of CSI:

H=[H(f1),H(f2),..-, H(fn)], ®)

where N is the number of subcarriers in the wireless network.
The CSI is composed of amplitude and phase of a subcarrier:

H(fi) = |H(fi)|le/sn<H), o)

where fy is the central frequency of the subcarrier, and ZH represents its phase. Thus, a group of CSIs,
H(fx), (k=1,...,K), denote K sampled CFRs in subcarrier level.

4. System Design

4.1. System Overview

The framework of RDFID is presented in Figure 2. The system has four modules: pre-processing;
feature extraction; classification; and post-processing. There are various kinds of noise in the raw
collected CSI data, and most noise is removed in pre-processing module. We extract wavelet variance
as the real-time feature from frequency domain in feature extraction module. In the classification
module, a portion of data is utilized to train a system to be universal that can be adaptive to different
scenarios. In the post-processing module, the classification result is further processed to be closer
to reality.

Training
CSI |:> Pre-processing — Feature Extraction —» —» DPost-processing

Classification

Figure 2. System Framework.

The system can work in typical indoor scenarios with only one pair of commodity WiFi devices,
which include a wireless router and a laptop. The wireless router is the Transmit Xmt (TX) that
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supports Institute of Electrical and Electronic Engineers (IEEE) 802.11n protocol, while the laptop is the
Receive Xmt (RX) that is equipped with Intel 5300 network interface card (NIC). The WiFi devices keep
transmitting data to collect CSls in the monitoring area, and the system estimated intruder existence
according to the extracted feature.

4.2. Pre-Processing

The CSI data is extracted from the respond packets of Internet Control Messages Protocol (ICMP)
packets. As a result, the number of the group of CSlIs is the same as that of ICMP packets theoretically.
However, during data collection period, we find that the number of collected CSI records is larger
than that of transmitted ICMP packets we had set in advance. In order to calibrate the frequency of
the collected data, we conduct the linear interpolation in the raw data and it has a unified frequency.
In 802.11 n wireless networks, there are several subcarriers transmitting signals at the same time
under the OFDM framework. The subcarriers are independent theoretically. However, the CSIs of
adjacent subcarriers have some relationships. In consequence, PCA is used to extract independent data.
The related CSI streams can be combined into several independent principle components. For each
ICMP packet, a matrix of 3 x 30 constructed by CSIs can be extracted from the firmware. It can be
further reshaped into a 1 x 90 vector. For a certain time window, n ICMP packets have been received,
and we can obtain an n x 90 matrix. During the evaluation of the principle components, we find that
in most cases the first principle component can give an 80% contribution rate. As a result, we use the
first principle component as the representative data.

Unfortunately, there still exist some kinds of noises in the first principle component, and they have
negative impact on detection rate. The one that has the most significant impact is high frequency noise
induced by environment changes other than human movement. The movement of torso, arms, and
legs cause most of signal reflections. The frequency of the movements is lower than 10 Hz according to
our observation. As a result, a low pass filter is utilized to filter out the high frequency noise from the
collected data with the frequency higher than 10 Hz.

4.3. Feature Extraction

A proper feature is critical in classification tasks. Generally, the moving speed of a person is
constant in a short period, and some periodicity exists when the person is moving. For instance,
when the person walks, two steps construct a period. However, it is a challenging task to analyze
the periodicity directly from the waveform of the wireless signals. During our early exploration,
we find that besides time-domain features, frequency-domain features can better characterize the
waveforms in intrusion detection. As a result, in order to explore a scenario independent feature, we
utilize time—frequency analysis on the waveform. Continuous Wavelet Transform (CWT) combined
with wavelet variance is a proper tool to analyze the periodicity of the waveform. First, the wavelet
coefficient of the first principle component of the CSIs after low-pass filter (cpl) is calculated utilizing
CWT in Equation (5):

[eo]

Wi(a,b) = / x(t)

—00

ilp(t —b
Va a
where x(t) is the first principle component of the CSIs after low-pass filter (cpl), a and b are scale and
time, respectively. () is the wavelet function, and db6 (Daubechies) wavelet [42] is selected as it
provides the best performance after we have tried different wavelet functions.

)dt, ®)

As shown in Figure 3, it can be clearly seen that some periodicity exists in the waveform after
we conduct continuous wavelet transform. However, it is necessary to quantitatively calculate the
significance of the periodicity to confirm that the periodicity is caused by human behaviors.
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Figure 3. Wavelet coefficient of Channel State Information (CSI) when people move.

Wavelet variance is widely used in meteorology to calculate the periodicity of precipitation.
It reflects the distribution of the power of the wavelet coefficients of various scales. As a result, it can
also describe the significance of the periodicity of human motion. The wavelet variance is calculated
as Equation (6):

2
) db, (6)

+oo
var(a) = / ‘Wf(a, b)
2
where ‘Wf (a,b) ‘ is the power of the wavelet coefficient of scale a at time b.
During our experiment, we find that the distribution of the wavelet variance is different among

whether there is human motion as shown in Figure 4. In consequence, the wavelet variance is a proper
feature for intrusion detection.

12000

* human motion
NI *  static

10000 [
8000

6000 B R

Wavelet Variance

4000

2000 itee

Scales

Figure 4. The distribution of wavelet variance when there is human motion and static.

4.4. Training and Classification

As the distribution of the wavelet variance when there is human motion is different from that of
static scenario, the Gaussian Mixture Model (GMM) is an appropriate classifier. In this GMM, there are
two Gaussian models, one is static model and the other is human motion model. The moving data of
different volunteers in different moving patterns and the data collected in the static scenario construct
the training data. The GMM only need to be trained once, and it can be used in different scenarios
without being re-trained. As a result, after a trained GMM is generated, the intrusion detection system
is unsupervised. In the training phase, the vectors of wavelet variance of different scales and the
ground truth are utilized to train the GMM. In the classification phase, the inputs are only the vectors
of wavelet variance, while the outputs are the detection results whether there exists human motion.
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In the end of classification, a post-processing procedure is added to improve the detection accuracy.
In this procedure, it is assumed that a person cannot appear and disappear suddenly. As a result,
an additional window beyond the detection window is utilized to reduce the detection mistakes.
For example, 0 and 1 represent static and intrusion, respectively. If the detection result is 11011 in this
additional window, we can consider there always exists intrusion in this window. The cost of this
procedure is the time delay in detection, but the detection accuracy can be higher.

5. Evaluation

5.1. Experiment Setup

To evaluate the detection performance of the system, some real experiments are conducted in three
typical rooms from several aspects. The three rooms are a meeting room, a typical living room, and a
large office, and the sizes of the three room are 5m X 4 m,5m x 4 m and 10 m x 6 m, respectively.
The layout of the three rooms and transceiver deployment are shown in Figure 5. There are desks with
glass dam-boards and chairs in the office, while a meeting table and chairs in the meeting room, which
causes different multipath effects. Especially, in order to present a reasonable evaluation in a smart
home scenario, a typical living room was used as a scenario. In the living room a television, there is a
television on the wall, a sofa, a piano, a refrigerator, some other furniture, and some doors to other
rooms, which will cause much more complex multipath effects. A TP-Link 802.11n wireless router
with a single antenna is used as the transmitter and a Lenovo laptop equipped with a three-antenna
Intel WiFi Link 5300 (iwl 5300) NIC running Ubuntu 11.04 OS as the receiver. The firmware of the
NIC is modified in order to extract CSIs from data packets utilizing the CSI tools. In addition, we
upgrade the antennas of the NIC using three 6dbi gain antennas as shown in Figure 6 in order to
increase the signal-noise-ratio.

=V-V=-N\
l £ RX& £
e iU & £
T
(a) meeting room (b) living room

! 10m !

[ alala)

@@@Fﬂ‘

RX

N

Figure 5. Experimental scenario.

(c) large office

According to CSI tools, the sensing data is the CSIs of the respond packets when the transmitter is
continuously sending ICMP packets to the receiver. We recruited four volunteers in our experiments
with the basic information shown in Table 1. During data collection period, only a single person
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moves back and forth in different moving patterns respectively in the room without a fixed path.
The transmission rate in our experiments is configured to 200 Hz. A few cycles of data collection
process are conducted for one person, while each cycle contains only one moving pattern and lasts for
100 s. Data collection lasts for one week, and about 20 min moving data is collected for one person
moving in one pattern.

False negative (FN), false positive (FP), and the probability of detection (PD) are used as the
evaluation metrics in this paper. False negative is the ratio that RDFID fails to detect intrusion, while
false positive is the ratio it reports intrusion when nobody is in the room. The probability of detection
is the ratio that it successfully detects the existence of the intruder. The three metrics can be illustrated
by Figure 7, where P1-P4 are the elements of the confusion matrix in the form of percentage. As shown
in Figure 7, P4 represents FN and P1 represents FP. PD is described in Equation (7).

PD = P3/(P3 + P4), @)

Figure 6. The modified receiver.

Classified as
intrusion clear
¢E P P2
&
<
£ 5
<: P3 P4
£

Figure 7. Confusion matrix of intrusion detection.

Table 1. Basic information of volunteers.

Volunteers Gender Height (cm) Weight (kg) Age
1 male 174 63 30
2 male 175 70 27
3 male 170 62 27
4 female 163 51 26

5.2. Performance Evaluation

5.2.1. Intrusion Detection in Different Scenarios

In order to confirm that the performance of RDFID is independent of scenarios, we first evaluate
the system in different rooms. In addition, we compare the system with two other device-free human
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detection systems, FRID and PADS. When constructing the training set, we use the combination of the
data from the three scenarios to form six groups of training set and we name them a, b, ¢, ab, ac, and
bc, respectively, according to Figure 7, and all training sets contain the three moving patterns. Datasets
that are opposite to the training sets are used as test sets, which are bc, ac, ab, ¢, b, and a, respectively.
To ensure the reliability of the evaluation, each training set is equally divided into five parts, and five
experiments are conducted in which the classifier is trained using each part respectively. The result is
the mean of the five experiments. The window size in these experiments is 5 s. The FN and FP rate of
the three approaches is shown in Table 2. As indicated in the table, the FN rate of RDFID in different
scenarios is around 2%, which is the lowest among the three approaches. The FN rate of PADS is
affected more significantly by the selection of the training set because it uses SVM as its classifier, the
support vectors in different scenarios are not the same. As a result, the FN rate of PADS is higher. As
FRID does not need training data, the estimation of the parameters has particular influence on the
performance of human detection.

Table 2. False negative/false positive (FN/FP) of human detection in different scenarios (%).

FN FP
Training Set a b c ab ac bc a b c ab ac bc
RDFID 2.5 2.3 24 24 2.6 2.5 1.7 2.2 21 22 2.1 1.9
FRID 4.8 5.8 44 4.3 5.7 52 8.5 8.2 8.7 8.7 8.2 8.6
PADS 6.0 6.7 6.2 6.1 6.8 5.8 10.8 10.2 10.5 11.8 11.0 10.6

The FP rate of RDFID is lower than the other two approaches. Most of the FP rate is around
2%, which indicates RDFID generates less false alarms when detecting intruders. PADS uses phase
information in CSIs that is more sensitive to environmental changes; therefore, it achieves the highest
FP rate among the three approaches.

Figure 8 indicates the PD of the approaches in different scenarios. It can be seen from the figure
that RDFID achieves the most stable and lowest probability of detection.

100

I RDFID
9 I FRID |
[ IPADS

98 - q

97 - 1

96 - q

95 - q

PD (%)

94 1

931 1

92 - q

91 1

90
a b c ab ac bc

Training set

Figure 8. The probability of detection (PD) of human detection in different scenarios.

It can be seen from the results that the detection performance of RDFID is independent of scenarios.
The detection model trained in one scenario can be adapted to other scenarios directly in a relative
high detection performance.

5.2.2. Intrusion Detection among Different People

In order to evaluate the independence of the intrusion detection performance among different
people, we use the moving data of only one volunteer as the training data, while the moving data of
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all the four volunteers as the test data. The training data and test data of the first volunteer has no
intersection. In addition, the performance of RDFID is compared to that of PADS. When constructing
the training set, the moving data of the first volunteer is used as the training set. It contains the moving
data in all three scenarios and three different moving patterns. The evaluation is conducted five times,
and each time the training data is selected randomly from the moving data of the first volunteer. The
result is the mean of the five times. The window size is 5 s; the FN and FP rate of the two approaches
are presented in Table 3. It is indicated in the table that the FN rate of RDFID is relatively stable when
detecting different people. However, the FN rate of PADS is more sensitive to different people. Its FN
rate is even lower than that of RDFID when the test data and training data is from the same person. In
contrast, the FN rate of PADS suffers significant fluctuation when the test data and the training data is
from different people. The result shows that the FN rate of PADS is sensitive to training data and test
data, the moving data from different people can affect the detection performance. As a result, RDFID
has a better adaptability to different people.

Table 3. FN/FP of human detection of different people (%).

FN FP
Volunteer 1 2 3 4 1 2 3 4
RDFID 2.1 29 3.3 2.8 1.7 1.8 1.8 2
PADS 1.9 7.3 9.1 7.4 2.4 8.8 8.5 9.8

The trend of the FP rate of the two approaches is similar to that of the FN rate. The FP rate of
RDFID is still stable in the four tests and maintains about 2%. However, the FP rate of PADS achieves
a low level only when the test data and training data is from the same person, and raises significantly
using the test data of the other three people.

Figure 9 shows the PD of the two approaches when detection different people. Besides PADS
achieves a lower PD when the data of the same volunteer is used in both training set and test set,
RDFID has a higher PD when using the moving data of the other volunteers as test set.

100 T T T T
I RDFID
[___1PADS
95 1
S
@]
P~
90 R
85 1 1 1 1
1 2 3 4

Volunteer

Figure 9. PD of human detection of different people.

In consequence, RDFID is less sensitive to the training and test data, and can achieve a better
human detection performance.
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5.2.3. Intrusion Detection with Different Window Sizes

As RDFID is a window-based human detection approach, the detection performance is also
evaluated under different window sizes. To examine the advancement of RDFID, it is compared to
two other human detection approaches, FRID and PADS. In the construction phase of the training
set, a 30 s data segment is randomly divided from the regular walking data of the first volunteer in
scenario (a). The test data contains the regular walking data of the other three volunteers, while the
window size ranges from 1s to 5 s.

The results are the mean values of the three people. The FN and FP rate of the three approaches
under different window sizes are shown in Table 4. It is indicated from the table that the FN rate of
RDFID is as high as 11.7% when the window size is 1 s, but it decreases to 5.2% when the window
size changes to 2 s. Moreover, the FN rate of RDFID keeps decreasing as the window size increases.
It is because the 1-s window is too narrow for human motion, and people can only walk less than two
steps within the window. As a result, the periodicity in the extracted frequency-domain features is not
significant enough, which leads to a higher FN rate. Although the FN rate of FRID is lower than that
of RDFID when the window size is 1 s, it decreases slower when the window size increases. On the
other hand, as the training and test data is from the same scenario in this experiment, the variation of
the support vector of the features is insignificant; the FN rate of PADS can achieve a low level.

Table 4. FN/FP of human detection under different window sizes (%).

FN FP
Wi“dz’s‘;’ Size 1 2 3 4 5 1 2 3 4 5
RDFID 117 52 46 3 2.1 21 23 17 18 17
FRID 9.8 7.4 5.6 49 44 7 7.6 6.8 7.2 7.3
PADS 6.3 46 46 3.8 32 35 3.8 35 4 33

The FP rate of the three approaches all undergoes a low fluctuation, which indicates that the FP
rate of the three approaches can be less affected by the window size. However, as the extracted feature
in RDFID has a better discernibility between static and dynamic, this approach achieves the lowest
FP rate.

Figure 10 shows the PD of the three approaches when the window size is different. It can be seen
that PADS achieves a higher PD when the window size is no larger than 3 s, but the PD of RDFID
increases fast as the window size gets larger, and gets the highest of the three approaches when the
window size is larger than 3 s.
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Figure 10. PD of human detection under different window sizes.
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5.2.4. Intrusion Detection with Different Moving Patterns

The most important problem that RDFID solves is human detection under different moving
patterns. In consequence, to evaluate the ability of RDFID in this problem, the data of different moving
patterns is used in this evaluation. To address the importance of this problem, RDFID is compared
to FRID, PADS, and FIMD [21]. A 30 s moving data segment of the first volunteer in scenario (b)
under regular moving pattern is randomly divided as training data, while the data of the other three
volunteers in scenario (b) under three different moving patterns is used as the test data. The results of
the three approaches are the mean values of the three volunteers, and the window size is 5 s.

The FN and FP rate of the four approaches under different moving patterns is shown in Table 5.
It can be seen from the table that the FN rate of RDFID remains stable under different moving patterns.
However, the FN rate of the other three approaches raises significantly when the volunteers creep on the
floor. FRID, PADS, and FIMD are affected more significantly because the influence of the human body to
the transmission of the wireless signal becomes weak when the volunteers creep on the floor. The FN
rate of RDFID has a small fluctuation because the extracted feature is related to the periodicity of human
motion. It can detect human at a high accuracy as long as there exists a periodicity of human motion.

Table 5. FN/FP of human detection under different moving patterns (%).

FN FP
Vs e B g NI BT Crping
RDFID 2.3 2.5 2.6 1.7 1.7 15
FRID 4.8 5.2 9.8 7.8 6.2 3.6
PADS 4.3 4.8 6.4 4.3 4.1 2.8
FIMD 5.4 5.7 12.5 6.8 6.4 4.8

The FP rate of RDFID is still stable under the three moving patterns, while the change trend of the
FP rate of the other three approaches is the opposite to that of the FN rate. The reason is the same that
the influence of human body to the transmission of the wireless signal becomes less when the person
creeps on the floor. The low FP rate of the other three approaches is on the cost of the high FN rate. In
consequence, RDFID has the ability to detect human of different moving patterns. It has the advancement
of human detection especially when the person moves in an irregular pattern. The robustness of RDFID
is higher that the detection performance is less affected by different moving patterns.

As illustrated in Figure 11, the PD of RDFID is the highest and stable under the three different
moving patterns benefiting from the frequency-domain feature.
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Figure 11. PD of human detection under different moving patterns.
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5.2.5. Intrusion Detection under Different Moving Speeds

As a special case, human detection under different moving speeds plays an important role in
intrusion detection systems. The four volunteers are asked to walk in a regular pattern at 1.5 m/s,
0.7 m/s, and 0.2 m/s, respectively, in the meeting room. A 30 s data segment is randomly divided from
the data of the first volunteer walking at the speed of 0.7 m/s as the training data, while the walking
data of the other three volunteers under different speeds is used as the test data. The window sizeis 5,
and the results are the mean value of the three volunteers. The human detection performance of RDFID
is compared to PADS and FRID. The FN and FP rate of the three approaches under different moving
speeds is shown in Table 6. As indicated in the table, the trends of the FN rate of the approaches are
the same that they all increase as the moving speed becomes slower. The influence of human motion to
the transmission of the wireless signal decreases when the moving speed becomes slower. Especially
when the person moves far away from the first Fresnel zone, the reflected signal is submerged in the
signal from the LOS path. As a result, it is of great difficulties to extract effect environmental change
information from the received signal. On the other hand, it can be seen that the FN rate of RDFID is
lower than the other approaches.

Table 6. FN/FP of human detection under different moving speeds (%).

FN FP
Moving Speed (m/s) 1.5 0.7 0.2 1.5 0.7 0.2
RDFID 1.2 1.8 34 1.2 1.2 0.9
FRID 2.1 3 4.2 2.1 2.3 1.8
PADS 22 33 5.7 33 23 1.2

It can be seen that the FP rate of the three approaches under different moving speeds is relatively
stable and keeps at a low level. It indicates that the probability of false alarm of the three approaches is
low when detecting human motion.

As can be seen from Figure 12, the PD of the three approaches all suffer a decrease when the
moving speed becomes slower. The performance of human detection can be affected by different
moving speeds, but the overall detection performance can meet the requirement of security in a regular
smart home environment.
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Figure 12. PD of human detection under different moving speeds.
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6. Discussion

We did a set of evaluations in this work and demonstrated the effectiveness of RDFID to detect
human motion of different moving patterns using WiFi signals. However, there are still some
limitations in RDFID. In this section, we will give a discussion about the limitations and potentials
of RDFID.

Although the approach can achieve a high intrusion detection accuracy, it may be influenced by
several factors.

First, the relative location of the intruder and transceivers can affect the detection accuracy.
There exists a relationship between the impact of the intruder to the signal transmission and the
distance of the intruder to the transceivers. When the intruder moves far away from the transceivers or
the first Fresnel zone, it becomes more difficult to extract effective features from the collected CSI of the
ambient wireless signal. As a result, the detection accuracy suffers a degradation when the distance of
the intruder to the transceivers.

In addition, in real scenarios there may exist more than one intruder. Nevertheless, the movement
of multiple intruders will break the periodicity of the received CSI. In consequence, the detection
performance will be affected directly.

Despite these limitations, WiFi signal-based intrusion detection systems have much potential in a
smart home. In our future work, we will explore more effective features that less affected as much by
the distance of the intruder to the transceivers and the number of the intruders in the environment to
make the approach more robust in smart home applications.

7. Conclusions

In this paper, we propose RDFID, a robust device-free passive intrusion detection approach.
The moving pattern of the intruder has less influence to the detection performance of RDFID.
Furthermore, the detection accuracy can achieve a high level without re-calibration when the scenario
has changed. It only need commodity off-the-shelf (COTS) WiFi devices, and extract fine-grained
channel state information from the physical layer of the wireless network. The time-frequency analysis
technique is utilized to extract the features that are affected less by the environment from the frequency
domain. As a result, the performance of RDFID is less affected by the moving pattern of the intruder
and the different indoor scenarios. In order to evaluate the effectiveness of RDFID, a set of experiments
were conducted from several perspectives. The results demonstrate that RDFID can achieve a high
performance of intrusion detection, and can meet the security requirement in a smart home.
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